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Abstract. – OBJECTIVE: Obesity is a serious 
problem among Saudis because of the country’s 
affluent lifestyle. Obesity is associated with var-
ious metabolic disorders and characterized by 
low-grade inflammation that leads to the release 
of pro-inflammatory cytokines, human growth fac-
tors (GFs), lipids, aberrant adipokines, and other 
chemokines from adipose tissue. The objective of 
this study is to delineate the effects of GFs on mi-
crobiota and their relationship to body mass index 
(BMI) and food habits.

SUBJECTS AND METHODS: In a cross-sec-
tional study, 32 randomly selected participants 
(16 males and 16 females) were enrolled in a sur-
vey covering their sociodemographic informa-
tion, medical history, lifestyle, and dietary prac-
tices. The information on diet, health condition, 
food and drink intake habits were examined un-
der four distinct BMI categories: normal, un-
derweight, overweight, and obese. The partici-
pants’ serum samples were analyzed for the var-
ious GFs using a human magnetic 30-plex pan-
el multiplex assay. Bioinformatics analysis was 
performed to investigate which bacterial taxa 
are enriched and to predict the functional pro-
files of the samples. 

RESULTS: Correlational studies revealed sex-
based differences between GFs and microbiota. Fe-
males exhibited a significant correlation between 
epidermal GF (EGF) and Proteobacteria, whereas 
males showed a significant correlation between fi-
broblast GF-basic and Actinobacteria. Interestingly, 
a combined analysis of both sexes showed a signifi-
cant correlation between EGF and vascular endothe-
lial GF with Firmicutes. The data in the underweight 
group revealed a correlation between granulocyte 
colony-stimulating factor (G-CSF) and hepatocyte 
GF with Firmicutes. In the obese group, a correla-
tion was found between G-CSF and Actinobacteria. 

CONCLUSIONS: Our results identified links 
between GFs, microbiota, and BMI in a Saudi 
cohort. The insights from this preliminary study 
will contribute to the predictive diagnosis of 
obesity. However, further research involving a 
larger cohort will be necessary to understand 
the mechanistic aspects of these GFs to provide 
biomarkers of potential obesity.
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Introduction 

Most of the world’s adult population is expect-
ed to be either overweight or obese by 20301. The 
latest data2 (2016) suggest that 39% of adults aged 
18 years or over (38% of males and 40% of fe-
males) are overweight. In Saudi Arabia, the prev-
alence of obesity among adults increased progres-
sively from 22% in 1990-19933 to 36% in 20054. 
More recently, interest has emerged regarding the 
gut microbiota’s role in determining the effects of 
diverse genetic combinations and environmental 
factors on the immune system and, thus, disease 
susceptibility5-7. 

The first evidence of the role of microbiota 
in controlling adiposity and energy homeostasis 
came from animal studies8. The quality and com-
position of the diet have also been reported9 to af-
fect the microbiota. In fact, consuming a high-fat 
diet results in a major shift in metagenomic char-
acteristics as compared to a normal or balanced 
diet. This is best seen in high-fat Western diets, 
in which a reduction in Bacteroidetes and an in-
crease in Firmicutes, especially Mollicutes, is as-
sociated with an increase in the genes responsible 
for handling sugars10. 

A wide range of pro-inflammatory mediators, 
including growth factors (GFs), such as the nucle-
ar protein high mobility group box-1 (HMGB1), 
are implicated in several pathogenic process-
es related to obesity11. HMGB1 is an important 
mediator known to be involved in signaling by 
way of advanced glycation end products, partic-
ularly the receptor for advanced glycation prod-
ucts (RAGEs), and through the toll-like receptors 
(TLRs)12,13. In spite of these differences in species 
composition, many functions of the gut microbio-
ta are apparently shared among individuals. Such 
functions include the conversion of nondigestible 
carbohydrates (dietary fiber) to short-chain fatty 
acids, the provision of a barrier against patho-
genic bacteria, and the modulation of the innate 
and adaptive immune systems14-16. Indeed, re-
cent metagenomic and metabolomic studies10,17-20 
demonstrate that gut microbiota may modulate 
the harvesting of energy from the diet, the storage 
of energy as triglyceride, and energy expenditure 
through fatty acid oxidation, in turn mediating di-
et-induced obesity.

The recent spate of knowledge suggests that 
studying gut microbiota could open new doors in 
the field of obesity management. Due to the ef-
fect of diet and host genes, gut microbiota com-
position will vary in different populations, but, to 

date, no data are available on the largely affluent 
Saudi population. Thus, this project aimed to de-
lineate the effects of GFs on microbiota and their 
relationship to body mass index (BMI) as well as 
the effects of food habits on GFs among the Saudi 
population. 

Subjects and Methods 

Study Sample
Two hundred healthy Saudi adults were sur-

veyed using a preset questionnaire. Of the 117 
who satisfied both the inclusion and exclusion cri-
teria (56 females and 49 males), 32 participants 
(16 females and 16 males) were enrolled and strat-
ified under four BMI categories (with four sub-
jects each) following World Health Organization 
(WHO) criteria as follows: obese ≥ 30 kg/m2; 
overweight 25.0-29.9 kg/m2; normal 18.5-24.9 kg/
m2; underweight < 18.5 kg/m2 21. Fecal and blood 
samples of 2 mL were collected from all the par-
ticipants. Participants were eligible for the study 
if they were ≥ 18 years of age, apparently healthy, 
and not on any medication affecting weight or 
sleeping habits. Among those recruited those 
with history of colon cancer, inflammatory bowel 
disease, or acute or chronic diarrhea in the previ-
ous eight weeks, those treated with antibiotics in 
the two months prior to fecal sampling, and those 
taking medication or supplements were excluded 
from the study. Informed consent was obtained 
from all the subjects prior to participation after 
they were informed of the study’s objectives, their 
right to know, and their right to withdraw from 
the study. The investigation was ethically ap-
proved by the institutional review board of King 
Abdulaziz University, Jeddah, Kingdom of Saudi 
Arabia (No. 361-14).

Study Design
This cross-sectional study surveyed healthy 

adult individuals accompanying relatives in pri-
mary health centers and hospitals in the cities of 
Jeddah and Makkah, Saudi Arabia. All the partic-
ipants completed a predesigned questionnaire on 
their sociodemographic information, medical his-
tory, lifestyle, and dietary practices. The recruits 
were interviewed by trained medical students 
using a structured questionnaire that included 
demographic information and specific questions 
on dietary habits, patterns, and intake as well as 
specific questions on sleep patterns. 
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General Health Indicators and 
Anthropometric Measurements

The height of each participant was measured 
to the closest 0.5 cm using a stadiometer (Detec-
to, Webb City, MO, USA), and the lightly clothed 
participants were weighed to the nearest 0.5 kg 
using a portable calibrated scale (Omron BF511, 
Beringe, The Netherlands). Blood pressure was 
measured using a mercury blood pressure mon-
itor (Kawamoto Corporation, Osaka, Japan), and 
heart rate was recorded. Anthropometric mea-
surements, including waist, hip, and neck circum-
ference, were taken using standard methods22. 
BMI – an individual’s weight in kg divided by 
their height squared (BMI = kg/m2) – was calcu-
lated for each participant. 

Blood Sample Collection
Overnight fasting blood samples of 2 mL were 

drawn from the subjects and placed in sterile 
tubes. The tubes were centrifuged, and the serum 
was transferred to labeled Eppendorf tubes and 
stored at -80 °C until analysis. 

Extraction of DNA from Stool Samples 
and 16S Ribosomal RNA Sequencing 
Using MiSeq Technology

A NucleoSpin® Tissue Mini Kit (Macherey 
Nagel, Hoerdt, France) was used to extract DNA 
samples for sequencing of 16S ribosomal RNA us-
ing MiSeq technology as previously reported23-25. 

Multiplex Growth Factors Assay
Multiplex GF analysis was performed on the 

participants’ serum for hepatocyte growth factor 
(HGF), epidermal growth factor (EGF), fibroblast 
growth factor-basic (FGF-B), granulocyte-mac-
rophage colony-stimulating factor (GM-CSF), 
vascular endothelial growth factor (VEGF), and 
granulocyte colony-stimulating factor (G-CSF) 
using a multiplex immune-bead assay kit for 
human cytokines 30-plex panel (LHC6003M, 
Thermo Fisher Scientific, Waltham, MA, USA) 
end according to the manufacturer’s instructions. 
Briefly, antibody-coated polystyrene magnetic 
beads (25 μL) with various spectral intensities 
were sonicated in solution, added to each well of 
a 96-well plate, and washed twice with 1× wash 
buffer; this and subsequent washing steps were 
done using a handheld magnetic plate placed at the 
bottom of the 96-well plate to retain the magnetic 
beads and prevent their loss. Standards (1:3 serial 
dilution) and samples (undiluted serum) were pre-
pared and added to the beads (100 μL), the mix-

tures were incubated at room temperature on an 
orbital shaker at 500 rpm for two hours to capture 
analytes, and then the plates were washed to re-
move all unbound analytes. The plates were then 
incubated with biotinylated detection antibodies 
(100 μL) for one hour and then washed twice with 
wash buffer (200 μL). Streptavidin-RPE antibod-
ies (100 μL) were then added to the beads, which 
were incubated for 30 minutes and then washed 
three times with wash buffer (200 μL). The mag-
netic beads were then resuspended in 100 μL of 
wash buffer, and the data were acquired using a 
MAGPIX instrument (Luminex, Waltham, MA, 
USA). Finally, the GF expression data were ana-
lyzed using a Luminex xPONENT multiplex as-
say.

Bioinformatics 
The raw NGS data produced by paired-end 

sequencing using the MiSeq technology were 
demultiplexed and analyzed using the Quantita-
tive Insights into Microbial Ecology 2 (QIIME 
2) pipeline (version 2021.2)26. Quality control 
and denoising were performed using the DADA2 
package (Bioconductor, Roswell Park Compre-
hensive Cancer Center, Buffalo, NY, USA), with 
forward and reverse truncation set to 210 bp and 
185 bp, respectively, to remove low-quality and 
chimeric sequences. The taxonomic classifica-
tion analysis was performed by assigning the de-
noised sequences to the representative reference 
sequences of bacterial genomes using an in-house 
trained classifier. The training was performed 
using the latest version of Greengenes (13_8) 
99% Operational Taxonomic Units (OTUs) full-
length sequences. The database contains refer-
ence sequences that are clustered using a 99% 
similarity threshold, offering the most taxonomic 
information and the highest accuracy of classi-
fication, especially when using clinical data and 
not simulated data27. Decreasing the percentage of 
similarity cut-off results in a rapid loss of infor-
mation; the number of unique taxonomic labels 
(genus and species level) declines as sequences 
are collapsed into larger OTUs27. Each denoised 
sequence was assigned to a single OTU with a 
specific ID number and was subsequently con-
sidered to be representative of the specific taxo-
nomic unit. To identify the varying abundance of 
taxa (OTUs) between groups with different EGF 
and FGF levels, thus explaining the differences 
between groups, we performed an analysis us-
ing the Linear Discriminant Analysis Effect Size 
(LEfSe tool 1.0.8, The Huttenhower Lab, Boston, 
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MA, USA)28, setting the p-value at 0.05 and the 
logarithmic linear discriminant analysis (LDA) 
score cutoff at 2.0. LEfSe uses the nonparametric 
factorial Kruskal-Wallis’ (KW) sum-rank test to 
detect features with significantly different abun-
dance with respect to the class of interest. The as-
sociation between the taxa reported as differently 
abundant and the specific metabolic functions 
in which microbiota take part were investigated 
using the Phylogenetic Investigation of Commu-
nities by Reconstruction of Unobserved States 
2 (PICRUSt2) pipeline29. PICRUSt analysis was 
conducted to predict the total number of molec-
ular pathways (and their relative abundances) to 
which the microbial community of each sample 
contributed. To extract pathway abundances as 
high-level prediction output, we used the Meta-
Cyc database (an open-source alternative to 
KEGG) as suggested by the PICRUSt2 manual. 
A subsequent LEfSe analysis was performed to 
identify the most differently abundant pathways 
among various groups29. The threshold of the log-
arithmic LDA score for discriminative features 
was set to 2.0; as a result, only pathways meeting 

an LDA significance threshold > 2 and with a sta-
tistically significant change (p < .05) in relative 
abundance are shown.

Statistical Analysis
Prism GraphPad version 6.0 (La Jolla, CA, 

USA) was used evaluate the results. Pearson’s 
moment correlation was employed to measure 
the strength of the relationship between microbi-
ota and GFs with the effect of sex and BMI. The 
Jonkcheere-Terpstra test for ordered variables 
was used to evaluate the effect of food intake on 
GFs. p-value considered to be significant when 
lower than 0.05. 

Results

Microbiota Composition According to 
BMI Stratification

Table I shows the demographic characteristics 
for participants, while Table II shows the mean, 
median, Standard Deviation (SD), and ranges of 
microbiota counts and the investigated GFs in all 
participants.

Investigation of discriminant bacterial taxa 
and predicted metabolic potentials of the micro-
biota in individuals presenting different levels of 
growth factors

The samples were categorized in three groups 
(low, normal, and high) based on the level of the 
GF of interest identified in the patients’ serum; 
they were subjected to LDA using the LEfSe tool. 
The analysis revealed which taxa were differently 

Table I. Demographics of the study population.

Total  Count Percentage
  32 100.0

BMI Underweight 8 25.0
 Healthy 8 25.0
 Overweight 8 25.0
 Obese 8 25.0
Sex Male 16 50.0
 Female 16 50.0

Table II. Descriptive statistics.

     Variables N Mean Median SD Range

Microbiota 
 Bacteroidetes 32 25,237.16 23,902.00 12,446.48 61,722.0
 Actinobacteria 32 811.19 320.50 1,222.52 5,939.0
 Verrucomicrobia 32 979.25 11.50 1,971.62 7,989.0
 Proteobacteria 32 2,186.69 1,200.00 2,500.10 10,080.0
 Firmicutes 32 22,581.59 17,808.00 12,364.87 58,753.0
Growth Factor
 G-CSF 32 67.03 73.49 17.37 67.9
 GM-CSF 32 0.85 0.63 0.62 2.5
 EGF 32 58.95 25.00 64.22 248.2
 HGF 32 201.80 166.16 114.44 584.7
 FGF-B 32 20.71 13.02 33.13 175.8
 VEGF 32 2.59 0.00 7.65 35.31
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abundant between samples with different levels 
of GFs, thus explaining the differences between 
these groups. It should be noted that the analysis 
was successfully completed for the GFs EGF, FGF 
and HGF; however, differently enriched taxa were 
identified only in samples with different EGF and 
FGF levels (Figure 1). No specific taxonomic rank 
was found to be discriminative between samples 
with normal and low HGF levels. In the case of 
the GFs G-CSF and GMCSF, all 32 samples were 
categorized in the same group (high and normal, 
respectively); thus, the LEfSe analysis to find taxa 
discriminative for the different groups could not 
be performed.

A significant enrichment in the genera Butyr-
icimonas, Phascolarctobacterium, and Turici-
bacter was observed in samples with normal, 
low, and high EGF levels, respectively (Figure 
1). Specifically, the Phascolarctobacterium ge-
nus (Firmicutes phylum) presents the highest rel-
ative abundance in high-EGF samples, with the 
highest LDA score being slightly above 4.0. The 
scores for Turicibacter (Firmicutes phylum) and 
Butyricimonas (Bacteroidetes phylum) are 3.5 

and > 3.0, respectively. The biological pathways 
analysis using PICRUSt found that the glycolytic 
pathway in Pyrococcus is significantly enriched 
in samples with normal EGF concentration, pre-
senting an LDA score above 2.0 (Figure 2). In 
low-EGF samples, the processes of homolactic 
fermentation and anhydromuropeptides recycling 
are significantly enriched (LDA > 3.0) (Figure 2).

LEfSe analysis revealed that, at the genus lev-
el, members of Lactobacillus (Lactobacillaceae 
family) and Weissella (Leuconostocaceae fami-
ly) were more relatively abundant in individuals 
with high levels of FGF, yielding LDA scores 
slightly above 4.0 and less than 3.5, respective-
ly (Figure 3). According to the prediction of the 
functional profiles of the samples’ microbiota, 
the biosynthesis of the amino acids L-glutamate 
and L-glutamine is the most differently enriched 
(with an LDA approximately equal to 3.0) in 
samples characterized by low levels of FGF. In 
high-FGF samples, the most differently enriched 
pathway is that of inosine 5’-phosphate biosyn-
thesis III, followed by the degradation of glycer-
ol to butanol (Figure 4).

Figure 1. The bacterial taxa enriched in samples with high, low, and normal EGF levels are depicted with red, green, and blue 
bars, respectively.

Figure 2. Prediction of the molecular pathways to which the microbial community of low- and normal-EGF samples con-
tributed.
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The Effect of Growth Factors 
on Microbiota in Relation to Sex

Table III shows the significant correlations be-
tween microbiota and GFs, namely EGF, VEGF, 
and FGF-B, with and without the effect of sex. Sex 
has a significant effect on the correlation between 

GFs and microbiota. In females, there is a moderate 
significantly positive correlation between EGF and 
Proteobacteria. In males, a moderate significantly 
positive correlation is evident between FGF-B and 
Actinobacteria. Combining both sexes revealed 
that EGF had a weak significantly positive correla-

Figure 3. Histogram depicting the results of the LEfSe analysis. The LDA scores of bacterial families and genera found to be 
enriched in samples with high FGF levels are compared to those with normal and low levels (see Figure 4).

Figure 4. Prediction of the molecular pathways to which the microbial community of high- and low-FGF samples contributed.

Table III. Relationship between GFs and microbiota in relation to sex.

Spearman  rho Bacteroidetes Actino- Verruco- Proteo-
Correlation    bacteria  microbia  bacteria Firmicutes

All  
   EGF r -0.267 -0.008 -0.084 0.382 0.233
  p .140 .966 .648 .031* .200
   VEGF r -0.167 -0.042 0.180 -0.040 0.364
  p .362 .818 .324 .827 .041*
M
   FGF-B r -0.089 0.576 -0.230 0.375 0.245
  p .744 .019* .391 .152 .361
F
   EGF r -0.318 -0.282 -0.046 0.571 -0.376
  p .230 .290 .866 .021* .151

F: female; M: male; * Statistically significant results (p < 0.05).
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tion with Proteobacteria, while VEGF had a weak 
significantly positive correlation with Firmicutes. 
Correlations with the remaining GFs were not sig-
nificant and are not listed.

The LEfSe analysis of the taxa differently 
enriched between male and female individuals 
revealed in females a significant presence (LDA 
score above 3.6) of two genera, Porphyromonas 
and Paraprevotella, belonging to the Bacteroi-
dales order, Bacteroidia class, and Bacteroidetes 

phylum (Figure 5a). The genera found enriched 
in male individuals were Prevotella (Bacteroid-
ia class), Lachnospira, and Dorea (both Clos-
tridia class). The cladogram produced by the 
LEfSe analysis (Figure 5b) identifies the most 
differently abundant taxa in the two groups. The 
green-colored branches depict the taxa enriched 
in the group of samples derived from male in-
dividuals, while those in red represent the taxa 
enriched in females.

Figure 5. A, Histogram of the LDA scores for bacterial taxa differently abundant between male and female individuals. B, 
Taxonomic cladogram presenting taxa found significantly differently represented in samples from male and female individu-
als by LDA effect size. Significantly discriminant taxon nodes are colored, and the branch areas are shaded according to the 
highest-ranked group for that taxon. Highly abundant and selected taxa are indicated with the letters a-j.

A

B
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The Effect of Growth Factors 
on Microbiota in Relation 
to BMI Category

Table IV shows the significant effect of BMI 
on the correlations between microbiota and 
GFs, namely G-CSF, HGF, and VEGF. The data 
show strong significantly negative correlations 
of G-CSF and HGF with Firmicutes in sub-
jects categorized as underweight, a strong sig-
nificantly positive correlation between VEGF 
and Verrucomicrobia in subjects with a nor-
mal BMI, a strong significantly positive cor-
relation between VEGF and Proteobacteria in 
overweight subjects, and a strong significantly 
positive correlation between G-CSF and Acti-
nobacteria in obese subjects. Correlations with 
the remaining GFs were not significant and are 
not listed.

The LDA size effect analysis did not reveal 
any representative genus or species for the four 
BMI groups; however, PICRUSt2 analysis pro-
vided insight into the functions of the microbio-
ta. The pyrimidine deoxyribonucleosides salvage 
pathway is the top differently abundant process in 
underweight as compared to normal, overweight, 
and obese individuals, with an LDA score close 
to 3.0 (Figure 6 A and B). The relative abundance 
of the super-pathway of UDP N acetylglucos-
amine-derived O-antigen building blocks biosyn-
thesis is high in obese individuals, with an LDA 
score close to 2.5 (Figure 6 A and C).

Effects of the Consumption of Various 
Foods on Growth Factors

We studied the effect of various food habits 
on the tested parameters. Dietary habits were de-
fined as poor when individuals consumed high 
levels of junk food and highly caffeinated drinks 
(e.g., French fries, canned juice, black tea, Arabic 
coffee, Turkish coffee, cappuccino, and energy 
drinks) and low levels of healthy foods and drinks 
(e.g., fruits, vegetables, dairy, green tea, fresh 
juice, roselle, and cinnamon). Only bread exhib-
ited a significant correlation between the amount 
consumed and levels of the GF VEGF; no other 
food, healthy or unhealthy, exhibited any signifi-
cant correlation with other GFs (Table V). 

Relationship Between BMI and Tested 
Growth Factors 

The Luminex xMAP analyses of GFs revealed 
no significant differences between any of the sub-
jects as stratified by BMI category (Figure 7).

However, when subjects were segregated ac-
cording to sex and stratified under BMI categories, 
the Luminex xMAP analyses for GFs indicated that 
HGF levels in the serum of underweight males dif-
fered significantly at the 95% confidence level from 
those of overweight males (p = .0517). A nonsignif-
icant decrease in the levels of EGF was observed in 
the underweight males compared to other groups. 
However, as for the rest of the factors, the levels did 
not differ significantly between groups (Figure 8).

Table IV. Relationship between GFs and microbiota in relation to BMI.

No: normal BMI; Ov: overweight; Ob: obese; *Statistically significant results. (p < 0.05); **Statistically high significant results 
p-value < .01.

Spearman  rho Bacteroidetes Actino- Verruco- Proteo-
Correlation    bacteria  microbia bacteria Firmicutes

Underweight 
   G-CSF r 0.169 -0.116 0.040 0.167 -0.898
  p .688 .784 .925 .693 .002**
   HGF r 0.277 0.084 0.049 0.210 -0.764
  p .506 .843 .909 .618 .027*
No
   FGF-B r -0.475 -0.020 0.770 -0.194 0.601
  p .235 .963 .025* .645 .115
Ov
   EGF r -0.110 -0.417 -0.183 0.835 0.037
  p .795 .304 .665 .010** .932
Ob
   EGF r 0.322 0.755 -0.250 -0.114 0.073
  p .437 .030* .550 .787 .864
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Figure 6. A, The most dif-
ferently abundant predicted 
function of the bacterial com-
munities in obese and under-
weight individuals. B-C, His-
togram presenting the relative 
abundance of the two predict-
ed biological functions found 
enriched in obese and under-
weight individuals.

Table V. Effect of bread consumption on VEGF level.

*Statistically significant results (p < 0.05).

   Jonkcheere-Terpstra Test
Variable Growth  Consumption Level  p-value
  Factor  
  Low Moderate High

Bread VEGF 21.43 13.00 13.84 .011*

A

B

C
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Finally, the Luminex xMAP analyses for GFs 
indicated that HGF levels in the serum of un-
derweight females were lower than those of the 
obese and were nearly significant (p = .0969). A 
near-significant decrease in the level of EGF was 
observed in underweight females (p = .0796) and 
overweight females as compared to the normal 
control (p = .0185). As for the remaining GFs, 
neither FGF-B, GM-CSF, nor G-CSF differed 
significantly between the BMI categories among 
women (Figure 9). 

Discussion

Gut microbiota plays a critical role in human 
metabolism and health30, and research31 has fo-
cused on identifying these microorganisms, their 
functions, and their role in metabolic pathways. 
Ample evidence shows that microbiota is likely 
to be involved in obesity and diabetes32-34, but no 
studies have yet clearly described the correlation 
between GFs and microbiota in relation to sex, 
BMI, and food habits. 

Figure 7. GF levels stratified by BMI category for all subjects.
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Studies35 have shown that bacteria in the intes-
tinal flora play a vital role in controlling postna-
tal growth in rats; they ensure optimal postnatal 
growth and play an essential role in determining 
the size of adult individuals, mainly in cases of 
undernutrition. One of the key factors in this rela-
tionship is insulin-like growth factor-1 (IGF-1), as 
its production and activity are controlled by mi-
crobiota36,37. Less activity and lower levels of IGF-
1 have been observed in germ-free mice than in 
normal mice. Interestingly, the injection of IGF-1 

into germ-free mice and interfering with IGF1 ac-
tivity in normal mice have revealed that the favor-
able growth of intestinal microbiota is associated 
with an enhanced production and activity of IGF-
1, while the reduced growth of the same microbi-
ota is associated with reduced activity of the GF38.

Growth retardation may be caused by chronic 
undernutrition. Retardation is a consequence of re-
sistance to the activity of the pituitary growth hor-
mone, which usually stimulates the production of 
various GFs, including IGF-139-41. This resistance to 

Figure 8. GF levels of male subjects stratified under BMI categories.
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the pituitary growth hormone results in a decreased 
IGF-1 production, causing a retardation in normal 
development and a reduction in the size of the indi-
vidual relevant to their age. The exact role of micro-
biota in such mechanisms remains to be elucidated36.

Hypothalamic transforming growth factor-β 
(TGF-β) is reportedly excessively produced in the 
brain as a result of obesity38. It is worth noting that 
TGF-β plays a vital role in cell growth, differentiation, 
and maturation, and its presence is vital for cell devel-
opment. TGF-β is needed by the brain to regulate the 
neurological development of synapse functions, and 
its absence may be detrimental and unhealthy42,43. 

A study on breast cancer (BC) patients found 
that obese BC patients had systemically higher 
levels of interleukin-6 (IL-6) and/or fibroblast 
growth factor 2 (FGF-2) and were less sensitive 

to anti-VEGF treatment44. Researchers44 using 
a mouse model have demonstrated that obesity 
increases with higher FGF-245. The use of met-
formin or a specific FGF receptor inhibited the 
normalization of FGF-2 expression, lowered the 
vessel density, and re-established tumor sensi-
tivity to anti-VEGF therapy in obese mice. This 
indicates that obesity promotes resistance to an-
ti-VEGF therapy in BC patients, mediated by 
the production of angiogenic and inflammatory 
related factors44. Obesity impaired the effects 
of anti-VEGF therapy on angiogenesis, tumor 
growth, and metastasis. The data of a study44 us-
ing a murine BC model indicate an association 
between obesity and higher IL-6 production by 
adipocytes and myeloid cells in tumors. Blocking 
the IL-6 reversed the obesity-induced resistance 

Figure 9. GF levels of female subjects stratified under BMI categories.
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to anti-VEGF therapy in primary and metastatic 
sites. A positive correlation was noted between 
the plasma concentrations of IL-6 and FGF-2 and 
the visceral adipose tissue (VAT). IL-6, in par-
ticular, was elevated during treatment in patients 
with elevated VAT and BMI. In addition, there 
was an abundance of IL-6 and FGF-2 expression 
in tumors, especially in adipocyte-rich regions. 
Ample evidence indicates a major role of microbi-
ota in the metabolism of dietary components and 
on its impact on health31,34,45,46. Inflammation was 
induced by microbiota in GF mice through the in-
hibition of FGF-23 to eventually reinstate homeo-
stasis, and it was observed that FGF-23 regulates 
vitamin D metabolism47. Studies48,49 have shown 
that coffee has antibiotic effects, and its consump-
tion has resulted in a significant decrease in E. 
coli and Clostridium spp. counts and caused a 
higher Bifidobacterium spp. count. 

According to our LDA, individuals with high 
levels of FGF are characterized by the presence 
of two representative genera, Lactobacillus and 
Weissella, both belonging to the Lactobacillaceae 
family. Two of the more enriched biological pro-
cesses in these samples are the biosynthesis (III) 
of inosine-5’-phosphate and the degradation of 
glycerol to butanol. The species of the Clostridia 
genus as well as some Lactobacillus brevis strains 
naturally produce butanol, but efforts have been 
made to genetically manipulate other bacteria of 
the Lactobacillaceae family to produce butanol50. 
Our prediction of the functional profiles in low-
FGF samples revealed that only the L-glutamate 
and L-glutamine biosynthesis pathways were 
more abundant than in high- and normal-FGF 
samples. Regarding the relationship between GFs 
and microbiota according to sex, the Spearman’s 
correlation revealed that EGF had a significant but 
weak positive correlation with Proteobacteria, 
but this association was not observed at the ge-
nus and species level through the LDA. Moreover, 
the weak positive correlation between VEGF and 
Firmicutes was observed only at the phylum lev-
el, although the genera Dialister, Lachnospira, 
and Dorea as well as bacteria of the Clostridia 
class belonging to Firmicutes were found to be 
enriched in males.

It has also been reported that the consumption 
of Arabic coffee as well as various kinds of honey 
can regulate gut microbiota, helping to maintain 
intestinal balance48. Coffee consumption results 
in a reduction of Bacteroides spp. and Clostridi-
um spp. counts in the proximal colon, but this was 
not the case with Bifidobacterium spp. Further-

more, Lactobacillus counts increased significant-
ly because of coffee consumption49. Coffee intake 
may also decrease the risk of nonalcoholic fatty 
liver disease (NAFLD), and researchers have dis-
cussed the potential biological mechanisms un-
derlying the benefits of coffee consumption for 
NAFLD50. 

Various food components, especially proteins, 
may increase the inflammatory effects of human 
diets. In fact, the modern diet consumed daily by 
humans has many peptides and proteins that can 
activate TGF-β and TLRs and induce inflamma-
tion51. Interestingly, Khorasan wheat affected the 
reduction of pro-inflammatory VEGF regardless 
of the baseline level, which was higher in two 
chronic disease populations52. Strategies aimed 
at reducing VEGF levels are considered to have 
therapeutic significance, as increased (overex-
pressed) VEGF is a proven causative agent of the 
increased permeability of endothelial cells (leak-
age) and in regulating subsequent inflammatory 
responses, resulting in the progression of vascular 
complications53. This agrees with our findings, in 
which the consumption of bread and a healthy diet 
resulted in the downregulation of VEGF levels. 

Conclusions 

The information presented in this study – that 
changes in levels of specific circulating GFs are 
highly associated with obesity – offers potential 
as a diagnostic tool to predict obesity among adult 
Saudis in clinical settings. It is recommended that 
future research decipher the role of GFs in obesity 
and further explore the involved mechanisms.
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