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Abstract. – OBJECTIVE: Previous studies 
suggested that single-nucleotide polymorphisms 
(SNPs) of interferon gamma (IFNG) and its recep-
tor IFNGR1 may be involved in the pathogenesis 
of tuberculosis (TB). We aimed to examine the 
association of IFNG gene polymorphisms with 
TB in the Tibetan population and use the ma-
chine learning method to establish a clinical pre-
diction model of TB.

PATIENTS AND METHODS: A total of 613 TB 
patients and 603 healthy controls were selected 
for the study. Associations between SNPs and TB 
were analyzed using logistic regression, adjust-
ed for sex and age. Clinical data and SNPs were 
integrated to construct a TB prediction model us-
ing random forest (RF) machine learning.

RESULTS: For IFNG, rs1861494 CT was a pro-
tective factor against TB compared with TT gen-
otype (p = 0.010). The rs1861494 C allele was a 
protective factor for TB (p = 0.010). For IFNGR1, 
the rs3799488 C allele reduced the risk of TB by 
30% (p < 0.001). rs9376267 CT (p = 0.005) and TT 
(p = 0.001) genotypes were protective factors for 
TB. Compared with the rs1327475 GG genotype, 
the frequency of the GA genotype in the case 
group significantly differed from the controls (p 
= 0.013). rs2234711 GA (p < 0.001), AA (p < 0.001) 
genotype and A (p < 0.001) alleles were also asso-
ciated with TB. Finally, five markers are identified 
using the RF model. The area under the curve 
(AUC) reaches 0.6 in the training set and 0.59 in 
the test set.

CONCLUSIONS: Our study found that IFNG 
and IFNGR1 gene polymorphisms were associat-
ed with TB in a Tibetan population. The results 
also demonstrate the potential of clinical-SNPs 
as diagnostic tools for TB.
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Introduction

Tuberculosis (TB) is a chronic infectious dis-
ease and a major global health problem. TB is one 
of the leading causes of death worldwide, especial-

ly in Asia and Africa, and its fatality rate is second 
to the human immunodeficiency virus (HIV). The 
World Health Organization (WHO) 2021 reported 
that there were 9.87 million new TB cases glob-
ally in 2020 and 1.28 million TB-related deaths 
among HIV-negative people1. China ranks second 
in TB cases among countries with a high TB bur-
den after India. However, only 5-10% of people 
infected with Mycobacterium TB (MTB) develop 
TB. Many reasons affect the outcome of TB in-
fection, such as previous vaccination, exposure to 
microbes, malnutrition, and co-infection with oth-
er pathogens2. Recently, a series of case-control 
studies have found that genetic polymorphisms 
were associated with TB3-5.

Anthropological studies on genes showed sus-
ceptibility to infectious disease is associated with 
genetic polymorphisms6. Furthermore, genetic 
variants play a crucial role in the progression of 
TB in humans7. Studies have shown that genetic 
heterogeneity contributes 39-71% to the devel-
opment of TB8. Other factors that influence TB 
progression include adaptive immunity and innate 
immunity. It is suggested that immune-related 
genes, including IL1B, IL6 and TNF, contribute 
to the development of TB9. Therefore, the genetic 
factors associated with TB may be due to popula-
tion-based differences in innate and adaptive im-
munity10. TB can be regulated by various immune 
cells and depends on the interaction of cytokines 
secreted by these cells11.

The previous study suggests that the inter-
feron gamma (IFNG) plays an essential role 
in TB progression12. IFNG is secreted by nat-
ural and T cells and is a critical T helper type 
1 cytokine. IFNG knockout mice infected with 
MTB exhibited relatively higher MTB bacilli 
loads, while the expression level of reactive ni-
trogen intermediates decreased13. IFNG levels 
are elevated and can activate macrophages in 
the presence of MTB infection14. Additionally, 
IFNG polymorphism is associated with TB in 
different populations15.
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IFNG exerts its effects by binding to two 
IFNG receptors (IFNGR1 and IFNGR2), and fur-
ther by triggering a signaling cascade16. IFNG ho-
modimers lead to receptor dimerization by inter-
acting with both receptors. IFNGR1 is located on 
chromosome 6q23.4 and encodes the IFNGR li-
gand-binding chain (alpha). IFNGR1 was associ-
ated with multiple diseases such as chronic pros-
tatitis17, Behçet’s disease18, and gastric cancer19. 
As a critical gene in the IFNG signaling pathway, 
IFNGR1 was found to be associated with the 
pathogenesis of TB in previous study20. Defects 
in the IFNGR1 gene significantly increase the risk 
of MTB infection. Furthermore, it was suggested 
that IFNGR1 polymorphisms are associated with 
TB susceptibility in different populations15,21. 

Although the statistical approach can correct 
for the effects of unrandom allocation or con-
founding factors, it does not consider the potential 
interactions between variables. Machine learning 
is a new technique that can be applied in medi-
cal practice to help diagnose and determine the 
prognosis of diseases. It may be an innovative 
new way to predict TB22. Machine learning meth-
ods have been applied to diagnose and prognosis 
various diseases, including anti-TB drug-induced 
hepatotoxicity (ATDH), ovarian, breast and liver 
cancers23,24.

We considered that our previous study found 
IFNG and IFNGR1 gene polymorphisms to be 
associated with TB but lack validation in inde-
pendent populations. Therefore, in this study, 
we validated the association results in the Ti-
betan population. At the same time, we use the 
random forest (RF) machine learning method to 
predict TB.

Patients and Methods

Cases and Controls
Patients with TB and healthy controls were 

from the People’s Hospital of the Aba Tibetan Au-
tonomous Prefecture. The diagnosis of TB main-
ly depends on the symptoms of patients, sputum 
culture/smear/TB-DNA positive results, imaging, 
and the response to anti-TB drug therapy. The di-
agnosis of TB is based on WHO guidelines1. All 
participants with cancer, HIV, immune-related 
diseases, and other lung diseases were excluded. 
Included investigators must sign an informed con-
sent form indicating their willingness to partici-
pate in the study. Subsequently, professional nurs-
es draw 5ml of blood from their peripheral veins 

and store it at -80°C after centrifugation. We use a 
DNA extraction kit (Axygen Scientific Inc, Union 
City, CA, USA) to extract DNA from peripheral 
blood based on the manufacturer’s instructions. 
This study has been approved by the Ethics Com-
mittees of the West China Hospital of Sichuan 
University. Our research follows the Declaration 
of Helsinki.

In this study, we selected Tag-SNPs for ge-
notyping. Tag-SNPs selection criteria and SNPs 
genotyping refer to our previous published 
studies21. To control the genotyping quality, we 
randomly selected 5% of the samples to repeat 
the genotyping.

Statistical Analysis
Differences in the distribution of continuous 

variables between the two groups were tested us-
ing the student’s t-test. Using the X2-test to Test 
Hardy Weinberg equilibrium (HWE) and dichot-
omous variables. Associations between SNPs and 
TB were analyzed using logistic regression, ad-
justed for sex and age. Haplotype and pairwise 
linkage disequilibrium (LD) calculations were 
performed using the SHEsis online software plat-
form (http://analysis.bio-x.cn). The statistics were 
done in SPSS version 19 (IBM; Armonk, NY, 
USA). p < 0.05 was considered the cut-off value 
of statistical differences.

Clinical data and SNPs data were sorted into 
CSV files for RF analysis. Stratified sampling 
divided the data into training cohorts (70%) 
and test cohorts (30%). Score the importance 
of each feature. The prediction model was es-
tablished by selecting the appropriate variables 
by performing cross-validation of ten folds re-
peated five times. ROC curve was used to eval-
uate the accuracy of the model. Random Forest 
package of R 4.1.2 software (R Foundation for 
Statistical Computing, Vienna, Austria) was 
used for RF analysis.

Results

Demographics of the Participants 
and Results of Quality Control

A total of 613 TB patients (mean age, 4.53 ± 
14.54 years; 392 males and 221 females) and 603 
healthy controls (mean age, 34.63 ± 13.85 years; 
404 males and 199 females) were selected for 
the study (Table I). All participants are Tibetans. 
There was no significant difference in gender and 
age between the two groups (p > 0.05).
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Polymorphisms of the Three Genes  
in the Two Groups

As shown in Table II, two tag-SNPs of IFNG 
and four tag-SNPs of IFNGR1 were identified in 
the study. All tag-SNPs in the control group con-
formed to HWE. Table III shows the results of the 
association analysis of SNPs and TB. For IFNG, 
we only found that the rs1861494 polymorphism 
was associated with TB. rs1861494 CT was a pro-
tective factor against TB compared with TT gen-
otype (OR = 0.73, 95%CI: 0.57-0.93; p = 0.010). 
The rs1861494 C allele was a protective factor for 
TB (OR = 0.80, 95%CI: 0.68-0.95; p = 0.010). 
rs1861494 was also related to TB in the dominant 
model (OR = 0.72, 95%CI: 0.58-0.91; p = 0.005). 

For IFNGR1, four tag-SNPs were associ-
ated with TB in different genetic models. The 
rs3799488 C allele reduced the risk of TB by 30% 
(OR = 0.70, 95%CI: 0.57-0.85; p < 0.001). Com-
pared with the rs3799488 TT genotype, the fre-
quencies of CC (OR = 0.87, 95%CI: 0.80-0.95; p 
= 0.001) and CT (OR = 0.66, 95%CI: 0.52-0.84; p 
= 0.001) decreased significantly in the case group. 
rs9376267 CT (OR = 0.70, 95%CI: 0.54-0.90; p = 
0.005) and TT (OR = 0.58, 95%CI: 0.41-0.81; p 
= 0.001) genotype were protective factors for TB. 
The C (OR = 0.75, 95%CI: 0.64-0.88; p = 0.001) 
allele is also associated with TB. Compared with 
the rs1327475 GG genotype, the frequency of the 
GA genotype in the case group significantly dif-
fered from the controls (OR = 0.67, 95%CI: 0.48-
0.92; p = 0.013). In addition, the frequency of the 
A allele decreased in the case group (OR = 0.74, 

95%CI: 0.55-0.99; p = 0.045). Finally, rs2234711 
GA (OR = 1.65, 95%CI: 1.26-2.16; p < 0.001), 
AA (OR = 2.13, 95%CI: 1.54-2.93; p < 0.001) 
genotype and A (OR = 1.48, 95%CI: 1.26-1.73; 
p < 0.001) alleles were also associated with TB.

LD Patterns and Haplotype Analysis
Haplotypes analysis showed that IFNG AC 

haplotype was associated with TB. For IFNGR1, 
we found that both CTGG and TCAG haplotypes 
were associated with TB (Table IV). LD analyses 
showed that all SNPs did not have high LD (r2 < 
0.8) (Figure 1).

Subgroup Analysis
Stratified analysis of the included SNPs was 

performed based on a cut-off of 25 years (Ta-
ble V)25, 26. For IFNG, in the female subgroup, 
rs2069718 and rs1861494 were associated with 
TB. rs1861494 was associated with TB in indi-
viduals aged < 25 years. For IFNGR1, in the male 
subgroup, rs3799488, rs9376267 and rs2234711 
were associated with TB. In the female subgroup, 
rs3799488, rs9376267, rs1327475 and rs2234711 
were related to TB. rs3799488, rs9376267, 
rs1327475 and rs2234711 were also associated 
with TB in the age ≥ 25 subgroups of the included 
population.

Diagnostic Potential of Tuberculosis 
Based on Polymorphisms

Clinical information of all participants and 
SNPs of IFNG and IFNGR1 were analyzed by RF. 

Table I. Demographic distribution of healthy controls and tuberculosis patients.

Parameter Cases, n = 613 Controls, n = 603 p-value

Age, (years)* 34.53±14.54 34.63±13.85 0.909
Male, n (%) 392 (63.9%) 404 (67.0%) 0.145

*Data are presented as mean ± SD.

Table II. Basic information of all SNPs in our study.

Gene/SNPs chromosome Location Functional Consequence MA MAF HWE

IFNG      
rs2069718 12 68550162 intron3 G 0.139 0.995
rs1861494 12 68551409 intron3 C 0.316 0.960
IFNGR1      
rs3799488 6 137519780 intron6 C 0.184 0.921
rs9376267 6 137531031 intron1 T 0.382 0.832
rs1327475 6 137536455 5’FLANKING A 0.071 0.843
rs2234711 6 137540520 5’UTR_exon1 A 0.429 0.413

Abbreviation: SNP, single nucleotide polymorphism; MA, minor allele; MAF, minor allele frequency; HWE, Hardy Weinberg equilibrium.



8780

S.-Q. Wu, X.-J. Ding, Q.-L. Yang, M.-G. Wang, J.-Q. He

Table III. Genotype distribution of IFNG and IFNGR1 polymorphisms.

Gene/SNPs Case (%), n = 613 Control (%), n = 603 p# OR# (95% CI)

IFNG    
rs2069718A>G    
Genotype    
AA 429 (70.0) 447 (74.1)  
GA 164 (26.8) 144 (23.9) 0.193 1.19 (0.92-1.54)
GG 20 (3.3) 12 (2.0) 0.138 1.74 (0.84-3.60)
Allele    
A 1,022 (83.4) 1,038 (86.1)  
G 204 (16.6) 168 (13.9) 0.063 1.23 (0.99-1.54)
Genetic model    
Dominant   0.105 1.23 (0.96-1.58)
Recessive   0.171 1.66 (0.80-3.42)
rs1861494T>C    
Genotype    
TT 294 (48.0) 241 (40.0)  
CT 251 (40.9) 283 (46.9) 0.010 0.73 (0.57-0.93)
CC 68 (11.1) 79 (13.1) 0.063 0.71 (0.49-1.02)
Allele    
T 839 (68.4) 765 (63.4)  
C 387 (31.6) 441 (36.6) 0.010 0.80 (0.68-0.95)
Genetic model    
Dominant   0.005 0.72 (0.58-0.91)
Recessive   0.281 0.83 (0.59-1.17)
IFNGR1    
rs3799488T>C    
Genotype    
TT 411 (67.0) 343 (56.9)  
CT 179 (29.2) 226 (37.5) 0.001 0.66 (0.52-0.84)
CC 23 (3.8) 34 (5.6) 0.001 0.87 (0.80-0.95)
Allele    
T 1,001(81.6) 912 (75.6)  
C 225(18.4) 294 (24.4) <0.001 0.70 (0.57-0.85)
Genetic model    
Dominant   <0.001 0.65 (0.51-0.82)
Recessive   0.121 0.65 (0.38-1.12)
rs9376267C>T    
Genotype    
CC 237 (38.7) 178 (29.5)  
CT 284 (46.3) 306 (50.7) 0.005 0.70 (0.54-0.90)
TT 92 (15.0) 119 (19.7) 0.001 0.58 (0.41-0.81)
Allele    
C 758 (61.8) 662 (54.9)  
T 468 (38.2) 544 (45.1) 0.001 0.75 (0.64-0.88)
Genetic model    
Dominant   0.001 0.67 (0.52-0.84)
Recessive   0.029 0.72 (0.53-0.97)
rs1327475G>A    
Genotype    
GG 532 (86.8) 494 (82.1)  
GA 75 (12.2) 104 (17.3) 0.013 0.67 (0.48-0.92)
AA 6 (1.0) 4 (0.7) 0.599 1.41 (0.39-5.03)
Allele    
G 1,139 (92.9) 1,092 (90.7)  
A 87 (7.1) 112 (9.3) 0.045 0.74 (0.55-0.99)
Genetic model    
Dominant   0.022 0.69 (0.51-0.95)
Recessive   0.547 1.48 (0.41-5.27)
rs2234711G>A    
Genotype    

Continued
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Briefly, a total of eight variables were included in 
the calculation. The model reached optimality 
when the decision tree = 500 (mtry = 2), and the 
error rate was 43.24% based on this parameter for 
classifying the training set data (Figure 2). Figure 
2A ranks the critical variables, the larger the val-
ue, the more vital the importance of the variable. 
Among all SNPs in the model, rs1327475 was the 
most significant predictor of TB. Figure 2B shows 
that the error is the lowest when the first five vari-
ables are selected for model establishment. Figure 
2C shows the random forest tree obtained by RF 
calculation. The X-axis represents the number of 
trees. Y-axis represents the cross-validation error. 
After model evaluation, the area under the ROC 

curve of the training set was 0.60 (0.58 - 0.63), 
and the area under the ROC curve of the test set 
was 0.59 (0.55 - 0.63). The results indicated that 
the model had moderate accuracy in predicting 
TB susceptibility (Figure 2D and Figure 2E). 
ROC curves’ best accuracy, sensitivity and speci-
ficity were 0.58, 0.52 and 0.64, respectively.

Discussion

In this study, we assessed the association of 
IFNG and IFNGR1 gene polymorphisms with the 
risk of TB in a Tibetan population. The results of 
multiple logistic regression suggested that IFNG 

SNPs, single nucleotide polymorphisms; CI, confidence interval; OR, odds ratio; #adjusted by age and sex status.

Table III. Genotype distribution of IFNG and IFNGR1 polymorphisms.

Gene/SNPs Case (%), n = 613 Control (%), n = 603 p# OR# (95% CI)

GG 137 (22.3) 204 (33.9)  
GA 307 (50.1) 279 (46.3) <0.001 1.65 (1.26-2.16)
AA 169 (27.6) 119 (19.8) <0.001 2.13 (1.54-2.93)
Allele    
G 581 (47.4) 687 (57.1)  
A 645 (52.6) 517 (42.9) <0.001 1.48 (1.26-1.73)
Genetic model    
Dominant   <0.001 1.79 (1.38-2.3)
Recessive   0.001 1.55 (1.18-2.02)

Figure 1. Pairwise linkage disequilibrium (LD) of IFNG and IFNGR1 gene polymorphisms. LD r2 values (range from 0 to 1) 
for all pairs of SNPs are presented as percentages. Shading from white to black indicates LD measured as r2 (range from 0 to 1).
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Figure 2. A, Parameter importance score chart. The Mean Decrease Accuracy and Mean Decrease Gini value of the first eight critical variables, the larger the value is, the more important the 
index is; B, Cross verification curve. The lowest errors were found when the first five variables were selected for model building; C, Random forest trees. The X-axis represents the number 
of trees. Y-axis represents the cross-validation error. The lower dashed line represents the control group error, the upper dashed line represents the experimental group error, and the middle 
dashed line represents all sample errors; D, Training set ROC curve; E, test set ROC curve.  
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and IFNGR1 gene polymorphisms were associ-
ated with TB. At the same time, the RF method 
combined with clinical data and SNPs was used 
to construct a TB prediction model.

When the human body is infected with MTB, 
the innate immune response expressed by natural 
killer cells (NK) and NK T cells producing IFNG 
will be activated. Once specific antigen immunity 
is established, CD4 and CD8 T cells will secrete 
IFNG27. A study has shown that IFNG knockout 
mice are more susceptible to MTB infection than 
wild type mice13. In addition to mouse studies, a 
clinical study has shown that IFNG plays a vital 
role in human MTB infection28. The above evi-
dence points to the critical role of IFNG in TB. 
Therefore, IFNG gene polymorphism has become 
a reliable candidate marker for TB.

Studies have shown that IFNG is a candidate 
gene for TB. However, the results have been 
inconsistent. rs2069718 located in intron 3 was 
reportedly related to Chronic prostatitis/chronic 
pelvic pain syndrome17 and TB29. However, in 
our study, rs2069718 was not associated with 
TB. It has been proposed that rs1861494 can alter 
gene transcription and further functionally alter 
IFNG expression levels30. rs1861494 has been 
reported to be associated with various diseases, 
including IgA nephropathy31, inflammatory bow-
el disease32 and asthma33. Several studies have 
explored the relationship between rs1861494 
and TB, but the results are inconsistent. A study 
in Argentina showed that rs1861494 was related 
to TB in a dominant model34. Another study has 
shown that the GG genotype is associated with 
TB29. Our previous study in the Han population 
revealed that the C allele is a risk factor for TB21. 

However, the C allele is a protective factor for 
TB in the Tibetan population in this study. The 
results of these differences may be attributed to 
ethnic differences.

The IFNG signaling pathway is regulated by 
the ligand binding to IFNGR1. Some scholars35 
have proposed that IFNGR1 gene mutations may 
be associated with MTB infection. rs3799488 has 
been shown to be associated with HBV, and CT/
CC genotypes were a high-risk factor for HBV36. 
Another study37 showed that rs3799488 was as-
sociated with rectal cancer. In this study, CT, CC 
and the C allele were protective factors for TB38. 
rs9376267 located in intron 1 is associated with 
TB risk under a recessive model39. rs9376267 is a 
protective factor of TB in this study under differ-
ent gene models. rs1327475 has been shown to be 
a risk factor for TB in a previous study40. Contrary 
to their results, our study showed that rs1327475 
was a protective factor for TB. rs2234711 is lo-
cated in the 5’-UTR region of IFNGR1 and en-
codes human IFNGR1 ligand binding chain 1. It 
has been found that the conversion of T to C in 
the promoter region of rs2234711 may reduce the 
expression level of IFNGR1 on the cell surface41. 
A study in Africa found that the minor allele of 
rs2234711 was relatively low in the TB group, 
suggesting its protective role in TB42. Another 
study in China43 showed that the rs2234711 C al-
lele is a protective factor against TB. Our findings 
are basically consistent with them. However, the 
results of IFNGR1 gene polymorphisms in Tibet-
an are inconsistent with our previous studies. The 
difference results need to consider racial differ-
ences and may be attributed to the difference in 
minimum allele frequency.

Table IV. Haplotype analyses in this study.

Gene/haplotype Case (%), n=1,226 Control (%), n=1,204 p OR (95% CI)

IFNG    
AC 386.9 (31.6) 441.0 (36.6) 0.009 0.80 (0.68-0.95)
AT 635.1 (51.8) 597.1 (49.5) 0.258 1.20 (0.94-1.29)
GT 203.9 (16.6) 168.0 (13.9) 0.064 1.23 (0.99-1.54)
Other* 0.1 (0.0) 0.1 (0.0)  
IFNGR1    
CTGG 223.9 (18.3) 294.0 (24.4) <0.001 0.70 (0.57-0.85)
TCAG 87.0 (7.1) 111.9 (9.3) 0.052 0.75 (0.56-1.00)
TCGA 634.7 (51.8) 510.9 (42.4) <0.001 1.47 (1.25-1.73)
TCGG 35.2 (2.9) 37.2 (3.1) 0.763 0.93 (0.58-1.49)
TTGG 233.9 (19.1) 243.8 (20.3) 0.497 0.93 (0.76-1.14)
Other* 11.4 (0.9) 6.17 (0.5)  

CI, confidence interval; OR, odds ratio. *Those lowest frequency threshold (LFT) < 0.03 were pooled in this part.
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At the same time, we performed haplotype anal-
ysis. IFNG AC and IFNGR1 CTGG haplotypes are 
protective factors against TB. IFNGR1 TCGA hap-
lotype is a risk factor for TB. In addition, we also 
conducted subgroup analysis according to gender 
and age. Interestingly, rs3799488, rs9376267 and 
rs2234711 were associated with TB in the female 
group. In the male group, rs2069718, rs1861494, 
rs3799488, rs9376267, rs1327475 and rs2234711 
were associated with TB. In the age < 25 groups, 
only rs1861494 was related to TB. In the age ≥ 25 
groups, rs3799488, rs9376267, rs1327475, and 
rs2234711 were associated with TB.

Based on the clinical and genomic data, pre-
vious researchers23 compared the accuracy of 
various machine learning methods in predicting 
ATDH. The artificial neural network with clini-
cal and genomic factors showed the best predic-
tion performance, with an accuracy of 88.67% 
and a sensitivity of 80% in the test set. Another 

study examined the gut microbiotas in patients 
with chronic kidney disease. Five best microbial 
markers were identified using an RF model, with 
an area under the curve of 0.99 and 0.95 in the 
discovery and validation cohorts, respectively44. 
These studies illustrate the successful application 
of machine learning methods to predict the occur-
rence of adverse events in multifactorial diseases. 
Some studies45-47 also use random forest machine 
learning methods to diagnose TB or latent TB in-
fection. In contrast to previous studies, our study 
combined clinical and SNPs data to establish a TB 
prediction model using machine learning for the 
first time. We analyzes multiple variables based 
on the RF model, scores the importance of each 
variable, and obtains the optimal combination of 
variables to construct the TB prediction model. 
The results of the training set and test set were 
consistent, indicating reliable results and specific 
clinical application values.

SNP, single nucleotide polymorphism; CI, confidence interval; OR, odds ratio. #adjusted by age and sex status.

Table V. Subgroup analysis of IFNG and IFNGR1 polymorphisms and TB.

Gene/SNPs Genetic model p# OR#(95% CI)

IFNG   
rs2069718A>G allele  
Male  0.529 1.10 (0.82-1.48)
Female  0.033 1.44 (1.03-2.01)
<25  0.197 1.29 (0.88-1.89)
≥25  0.202 1.20 (0.91-1.57)
rs1861494T>C allele  
Male  0.164 0.85 (0.68-1.07)
Female  0.013 0.73 (0.57-0.94)
<25  0.002 0.62 (0.46-0.83)
≥25  0.264 0.89 (0.73-1.09)
IFNGR1   
rs3799488T>C allele  
Male  0.028 0.74 (0.57-0.97)
Female  0.003 0.65 (0.49-0.86)
<25  0.077 0.73 (0.51-1.04)
≥25  0.001 0.68 (0.54-0.86)
rs9376267C>T allele  
Male  0.023 0.77 (0.62-0.97)
Female  0.006 0.71 (0.56-0.91)
<25  0.642 0.93 (0.70-1.25)
≥25  <0.001 0.68 (0.56-0.82)
rs1327475G>A allele  
Male  0.319 1.19 (0.85-1.67)
Female  0.005 1.69 (1.17-2.43)
<25  0.298 1.28 (0.81-2.03)
≥25  0.014 1.45 (1.08-1.94)
rs2234711G>A allele  
Male  0.003 1.39 (1.13-1.72)
Female  0.001 1.52 (1.12-1.93)
<25  0.129 1.25 (0.94-1.65)
≥25  <0.001 1.54 (1.27-1.86)
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Our study also has some limitations. First, the 
SNPs associated with TB lacked functional val-
idation. Furthermore, the area under the ROC 
curve in the training and test sets was not very 
high, and the prediction model was only moder-
ately accurate in predicting TB disease. The re-
sults need to be validated in a larger population. 
Finally, multiple machine learning methods were 
not used to analyze and compare clinical data and 
SNPs in TB.

Conclusions

Our study found that IFNG and IFNGR1 gene 
polymorphisms were associated with TB in a Ti-
betan population group. The RF combined model 
with clinical data and genetic risk factors generat-
ed the best prediction in TB.
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