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Abstract. – OBJECTIVE: Osteoarthritis (OA) 
has the highest disability rate among chron-
ic diseases. The burden on patients and pub-
lic health care resources is increasingly evident 
due to increasing obesity rates and aging popu-
lations. So, there is still a lack of early diagnosis 
and treatment for OA. 

MATERIALS AND METHODS: A total of three 
OA cartilage tissue datasets (GSE1919, GSE32317, 
and GSE5235) were obtained from the Gene Ex-
pression Omnibus (GEO) database. Screening 
of differentially expressed genes and WGCNA 
of overlapping genes were performed using the 
R language package. Functional and immune in-
filtration analyses of overlapping genes were al-
so carried out while hub genes were screened 
through LASSO regression analysis method and 
ROC curve. Finally, experimental validation was 
carried out through PCR and Western Blot analy-
sis of rat cartilage.

RESULTS: A total of 149 differentially ex-
pressed genes were screened, and they were 
mainly enriched in the cytokine-cytokine recep-
tor interaction, rheumatoid arthritis, and inter-
leukin (IL-17) signaling pathways. Four co-ex-
pression modules were obtained, of which the 
blue module was the most substantial morbidity 
associated with OA. Thirteen overlapping genes 
were identified based on significant module net-
work topology analysis and differential genes, 
upon which their validation through LASSO re-
gression analysis method and ROC curve was 
performed. From these, five signature genes 
were determined, before three potential core 
genes were finally identified after confirmation 
using the validation set. 

CONCLUSIONS: ATF3, FOSL2, and GADD45B 
may be hub genes to the osteochondropathy, 
and they are expected to be new biomarkers and 
drug targets in OA research.
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Introduction

Across the world, osteoarthritis (OA) is the 
most prevalent joint disease resulting in afflict-
ing all kinds of joints throughout the body, of 
which the knee is the most severely affected, 
and morbidity increases with age1. Surveys 
have shown the prevalence is about 50% in 
people over the age of 60 and 80% in people 
over the age of 75, 2.46 times more common in 
women than in men, and it has a disability rate 
of 53%2. Despite the considerable individual, 
economic, and social costs of OA, it has not 
received much general attention, with some 
people even considering OA to be an essential 
part of ageing3. This view leads to patients of-
ten being at the end-stage of the disease when 
they seek medical attention and having to un-
dergo total knee replacement. Consequently, 
the search for hub genes with regard to the pro-
gression of OA, and for biomarkers and target-
ed drugs, is of great importance in mitigating 
the disease’s effects and reducing the disability 
rate of OA patients.

With the development of gene microarrays 
and high-throughput sequencing technologies in 
recent years, there has been a gradual increase in 
genetic data for OA. Most existing studies have 
focused on screening for independent differen-
tial genes, neglecting the correlation between 
genes and clinical phenotypes4. Weighted gene 
co-expression network analysis (WGCNA) can 
be performed by discovering modules of highly 
related genes, aggregating these modules using 
signature genes or hub genes within them, and 
association analysis either with each other or with 
clinical phenotypes5,6. This lattermost is more in 
line with the topological overlap measure (TOM) 
in a biological sense7.
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In this study, articular cartilage was used as an 
entry point to mine the GEO database for OA-re-
lated gene datasets. These datasets were then bio-
informatically analyzed using WGCNA, screened 
and confirmed by validation groups which yield-
ed the genes ATF3, FOSL2, and GADD45B as 
demonstrating the potential to be OA biomarkers 
and therapeutic targets. This paper provides new 
insights into the molecular mechanisms of osteo-
chondropathy.

Materials and Methods

Data Collection and Preprocessing
To acquire the necessary data, the National 

Center for Biotechnology Information (NCBI) 
and Gene Expression Omnibus (GEO) database 
(https://www.ncbi.nlm.nih.gov/geo/) was parsed 
for microarray datasets by searching the key-
word “osteoarthritis”. This returned three data-
sets from cartilage tissue (GSE1919, GSE32317 
and GSE55235), it contains 24 OA patients and 
25 healthy control samples. The probes were 
annotated using Perl software (https://www.perl.
org/,5.32.1.1) for the matrix file of the experimen-
tal dataset series, their names were converted 
into gene names, and the expression values of all 
probes corresponding to the same gene were av-
eraged8. The “limma” package in R language was 
used for normalization and the “sva” package for 
batch correction. 

Differential Gene Screening and 
Enrichment Analysis

The “limma” package in R language (version 
as per http://www.r-project.org/,4.1.2) was also 
used to screen the differentially expressed genes. 
Conditions were set at |log2FC|≥1 and p<0.05, 
while the differential results were visualized with 
the “Pheatmap” and “ggplot2” packages. The 
differential genes obtained were enriched via 
the Kyoto Encyclopedia of GENEs and Genomes 
(KEGG) and Gene Ontology (GO) enrichment 
analysis carried out with R software.

WGCNA Construction and 
Module Core Gene Screening

WGCNA was performed on the processed 
dataset using the “WGCNA” and “limma” pack-
ages in R language. Since the index of fit was 
positively correlated with the power value and the 

average connectivity was negatively correlated 
with power, there was a need to find the appro-
priate power value9-11. The adjacency matrix was 
constructed using the proximity values between 
each pair of node genes in the network and their 
Pearson correlation coefficients, which were used 
to calculate the topological overlap (TOM) and 
the corresponding dissimilarity (1-TOM)12. The 
differences measured based on TOM were used 
to construct a dendrogram by clustering the mean 
link hierarchy to cluster highly similar modules 
together13, and then merged with a height cut-off 
of 0.2514. Finally, the module with the largest 
absolute p-value was selected as the key module, 
and its key genes were determined by calculating 
its MM (Module Membership) value and GS 
(Gene Significance)15,16. The intersection genes of 
differentially expressed genes and core genes of 
WGCNA key modules were screened by VEN-
NY 2.1 (http://bioinfogp.cnb.csic.es/tools/ven-
ny/), which mapped them out in a Venn diagram.

LASSO Regression Analysis Method and 
ROC Curve Validation

LASSO regression analysis method is a 
high-performance variable selection method 
which prevents activity fitting and incorporates 
the best prognostic factors into the modeling17. 
This method was applied, via the “glmnet” pack-
age in R language on the overlapping genes 
obtained in part 2.3 to screen for potential core 
genes. The ROC curves were then validated us-
ing the “pROC” package, and if the area under 
the curve (AUC) was ≥0.8 and p<0.05, the gene 
was considered to have a high clinical diagnostic 
value18.

Immunological Cell Infiltration
CIBERSORT is a generalized deconvolution 

algorithm for quantifying complex tissue cell 
fractions from gene expression profiles19. For this, 
28 immune cells were selected to calculate their 
relative proportions in the normalized gene ex-
pression data by the CIBERSORT algorithm in R 
software. These proportions were displayed in a 
bar plot function, and the Wilcoxon rank sum test 
was used to compare the difference in the content 
of each immune cell between the two groups, 
with p<0.05 used as a screening criterion for 
higher levels of immune infiltration. Subsequent-
ly, the results were visualized using the “vioplot” 
package in R language.
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Experimental Validation

Experimental Animals
A total of 48 SPF-grade SD rats (6-8 weeks 

old, weighing 200±20 g, Jinan Panyue Labora-
tory Animals, Animal License No.: SCXK (Lu) 
20140007) were kept on a 12-hour light-dark 
schedule at 25±2°C and 55%±5% humidity. They 
were allowed free access to food and water. These 
experiments conformed to the Guide for the 
Care and Use of Laboratory Animals published 
by the National Institutes of Health. All animal 
experiments were approved by the Animal Ethics 
Committee of the Affiliated Hospital of Shan-
dong University of Traditional Chinese Medicine 
(AWE-2021-04).

Modeling and Experimental 
Administration

The rats were randomly divided into two 
groups: the control group and the experimental 
group. In the experimental group, the rats were 
anesthetized with 1% pentobarbital (50 mg/kg) 
and the left knee joints were exposed using the 
medial patellar approach after sterilization was 
performed. The anterior cruciate ligaments and 
medial collateral ligaments were transected, and 
the medial menisci were removed using the mod-
ified Hulth method to establish the KOA model. 
After four weeks of feeding, all rats were eutha-
nized with 1% pentobarbital (100 mg/kg) and the 
knee cartilages were collected.

PCR Validation
Total RNA was extracted from rat cartilage tis-

sues using TRlzol reagent (TaKaRa Corporation, 
Otsu, Shiga, Japan). 1 µg of total RNA was used 
as a template to configure a reverse transcription 
reaction system according to the protocol in the 
reverse transcriptase instructions. A total of 20 

µL was used to synthesize cDNA. cDNA was 
added according to the instructions on the Fast 
SYBR GREEN Master Mix (Applied Biosys-
tems, Foster City, CA, USA) kit, and the 2-ΔΔCt 

method was used to calculate the gene expression 
levels in each of the two groups. The real-time 
fluorescence-based quantitative PCR primer se-
quences are shown in Table I.

Validation by Protein Immunoblotting
Procedure: Take about 50 mg of well separated 

cartilage tissue, grind and collect the bone pow-
der, and add it into the 1000 µL RIPA lysis solu-
tion, lyse on ice for 30 min, centrifuge, transfer 
the supernatant to a 1.5 mL centrifuge tube, store 
at -20°C and then determine the protein content. 
Wash the glass plate, pour the gel, prepare the 
samples, perform electrophoresis, terminate the 
electrophoresis, and transfer the membrane. Al-
low the membranes to dry and moisturize them 
with TBS and then transfer to a petri dish con-
taining the blocking buffer (5% skimmed milk 
powder TBST tween) and close by shaking on 
a decolorizing shaker (Haimen Kylin-Bell Lab 
Instruments Co., Ltd, Haimen, China) at room 
temperature for 1 hour. Incubate membranes 
overnight at 4°C with TBST tween containing 
5% BSA diluted at 1:1,000. After incubation with 
TBST at 1:5,000 dilution for 2 hours at room 
temperature, wash the membrane 3 times for 10 
minutes each in TBST on a decolorizing shaker at 
room temperature; perform chemiluminescence 
and obtain pictures through gel imaging system 
(Shanghai Tianneng Technology Co., Ltd, Shang-
hai, China).

Statistical Analysis
R4.1.2 software was utilized for the necessary 

statistical analysis and data processing. All mea-
sures were normally distributed using normality 

Table I. The list of primer sequences in the real-time fluorescence-based quantitative PCR analysis.

	 Gene symbol	 Primer (5’-3’)

ATF3	 Forward: GAGGATTTTGCTAACCTGACACC
	 Reverse: TTGACGGTAACTGACTCCAGC
FOSL2	 Forward: CCAGCAGAAGTTCCGGGTAG
	 Reverse: GTAGGGATGTGAGCGTGGATA
GADD45B	 Forward: CAACGCGGTTCAGAAGATGC
	 Reverse: GGTCCACATTCATCAGTTTGGC
PPP1R15A	 Forward: GAGGGACGCCCACAACTTC
	 Reverse: TTACCAGAGACAGGGGTAGGT
PTGDS	 Forward: TGCAGCCCAACTTTCAACAAG
	 Reverse: TGGTCTCACACTGGTTTTTCCT
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test and expressed as: mean ± standard deviation 
(X±S), and differences were considered statisti-
cally significant at p<0.05.

Results

Gene Screening Results
A total of 149 differentially expressed genes 

were obtained from all datasets based on the cor-
rected p<0.05 and |log2FC|≥1 criteria, including 

68 up-regulated and 81 down-regulated genes. 
The visual heat map and volcano plot are shown 
as per Figure 1. 

Results of GO and 
KEGG Enrichment Analysis

GO enrichment analysis showed differentially 
expressed genes were mainly involved in leu-
kocyte migration and chemotaxis, regulation of 
angiogenesis, and regulation of vascular system 
development in BP. CC enrichment showed bi-

Figure 1. Screening map of OA differential genes: (A) heat map of the differentially expressed genes in OA and normal 
cartilage samples, where red represents up-regulated genes and blue the down-regulated genes, while the vertical coordinates 
are gene names; (B) volcano map of the differentially expressed genes, in which the black, red, and green parts represent genes 
which were not differentially expressed, upregulated genes, and down-regulated genes, respectively.
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ological processes occurred mainly in the colla-
gen-containing extracellular matrix, outer plasma 
membrane, etc., and in MF they were mainly 
enriched in receptor ligand activity, signaling 
receptor activator activity, and cytokine activity, 
as shown in Figure 2A. The KEGG pathway 
enrichment illustrated the enrichment of those 
differential genes in the cytokine-cytokine re-
ceptor interaction pathway, rheumatoid arthritis 
pathway, and interleukin 17 signaling pathway, 
as per Figure 2B.

WGCNA and Intersectional Gene 
Screening Results

As shown in the sample clustering (Figure 
3A), there were no outliers, so no deviant samples 

were present to be removed when performing 
subsequent analyses20. Firstly, it was necessary to 
select the appropriate power value to ensure its 
efficacy and a standard scale-free network before 
conducting the analysis, as shown in Figure 3B 
and Figure 3C. When the power equaled 5, the 
correlation coefficient was 0.84, which could 
be considered to constitute an ideal scale-free 
network, at which point the scale-free topology 
index of fit became 0.9, which was imported 
into the WGCNA package to construct the gene 
module. The WGCNA algorithm was used to 
calculate the association and adjacency matrices 
of the gene expression profiles of the OA sam-
ples to obtain the TOM, as well as a clustering 
map of the genetic system and a heat map of the 

Figure 2. Plots of GO and KEGG enrichment analysis of differential genes: (A) GO enrichment analysis of differential 
genes, where the horizontal and vertical coordinates represent the rate and GO function, respectively, while the size of the 
dots denotes the quantity of enriched genes, (the larger the circle the more genes), and the gradient of the color indicates the 
corrected p-value (the closer to red, the smaller the p-value); and (B) KEGG enrichment analysis of differential genes, where 
the horizontal and vertical coordinates represent the rate and the enrichment pathway, respectively, while the size of the 
dots denotes the quantity of enriched genes, (the larger the circle the more genes), and the gradient of the color indicates the 
corrected p-value (the closer to red, the smaller the p-value).
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Figure 3. Sample clustering and weighted gene co-expression network pre-construction: (A) sample clustering showing no 
outliers which needed to be removed from subsequent analysis; (B) scale-free topology module fit with average connectivity 
at different soft threshold powers (β), wherein the red line in the graph on the left indicates R2 = 0.9; and (C) test of optimal 
power value with a correlation coefficient of 0.84 when the power value was 5.
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correlation between module features and OA 
(Figure 4). Through the correlation heat map, 
it was observed the blue module displayed the 
strongest positive and negative correlation with 
disease, containing 342 genes. To identify the 
core genes, an intra-module analysis was con-
ducted on the significant modules, defining the 
core genes as those satisfying the conditions 
GS>0.5 and MM>0.8. From this, sixteen genes 
were obtained, as shown in Table II. A further 
thirteen potential genes were obtained by plotting 
the Venn diagram, which were then used for the 
next analysis, as shown in Figure 5.

LASSO Regression Analysis Method and 
ROC Curve Validation Results

As shown in Figure 6A-6B, five feature genes 
were obtained from LASSO regression analy-
sis method, namely ATF3, FOSL2, GADD45B, 
PPP1R15A, and PTGDS. ROC curve analysis 
was performed on these five genes and screened 
applying the criteria of AUC≥0.8 and p<0.05 for 
testing. The results showed all five genes met 
these criteria, displaying good diagnostic value 
(Figure 6C-6G).

Immunological Cell Infiltration Results
Analysis of the proportion consisting of im-

mune cells in the data set and the differences 
revealed activated B cells, macrophages, CD4 
memory T cells, and memory B cells were sig-
nificantly more highly expressed in OA cartilage 
tissue compared to normal chondrocytes, while 
eosinophils and CD8 memory T cells were rela-
tively less expressed (Figure 7).

Experimental Results
PCR results showed that ATF3, FOSL2, 

GADD45B, PPP1R15A and PTGDS were signifi-
cantly different between the two groups (p<0.05), 
(Figure 8 A-E). Western blot results showed that 
ATF3, FOSL2 and GADD45B were significantly 
different between the control and experimental 
groups (p<0.05). The differences in expression 
were not significant between PPP1R15A and PT-
GDS (p>0.05) (Figure 9 B-F). In consideration 
of the two results, we suggest that ATF3, FOSL2 
and PTGDS may be the core genes of OA.

Discussion

OA is one of the common orthopedic diseases 
and its morbidity is increasing year by year while 

seriously threatening people’s quality of life. In 
normal adult cartilage, chondrocytes are normal-
ly quiescent cells, and their survival and anabolic 
activity are essential for maintaining cartilage 
tissue. Therefore, chondrocyte metabolism has an 
essential influence in the pathogenesis of OA21. In 
response to the current situation in which the mo-
lecular mechanisms of OA are still unclear, in this 
study we used bioinformatics analysis methods to 
investigate OA biomarkers and pathological pro-
cesses in cartilage tissue obtained from OA and 
normal cartilage.

In contrast to other bioinformatics analyses, 
WGCNA can systematically describe patterns 
of association between genes across microar-
ray samples, and this approach has been suc-
cessfully applied to the analysis of cancer, 
mouse genetic and brain imaging data22. The 
enrichment analysis revealed the differential 
genes obtained in the three samples from the 
experimental group were primarily enriched in 
signaling pathways related to the inflammatory 
response. Thus, the pathological process of OA 
may be mediated by inflammatory cytokines 
and other anti-inflammatory cytokines, and 
these cytokines are likely to have a protective 
effect on the joint tissue by modulating the in-
flammatory response23. The results of immune 
infiltration analysis showed macrophages and 
other cells are significantly upregulated in OA 
cartilage and may play a role in the inflam-
matory response to OA. It has been reported 
that macrophages may be involved in cartilage 
repair by regulating the validation response24, 
which provides a new direction for our under-
standing of how OA progresses. Finally, ATF3 
(activating transcription factor 3), FOSL2 (fos-
like antigen2), and GADD45B (growth arrest 
and DNA-damage inducible protein beta) were 
screened through the test of the validation 
group. The result was consistent with previous 
enrichment analyses and immunological cell 
infiltration results; therefore, it is suggested 
that ATF3, FOSL2, and GADD45B are likely to 
be potential biomarkers and therapeutic targets 
for the treatment of OA.

ATF3 is currently recognized as a stress-in-
ducible gene, as well as a hub gene in the cellular 
adaptation response25. It also acts as a selective 
marker of neuronal injury and is often highly 
expressed as neuropathic pain caused by periph-
eral nerve injury26, which may be related to the 
painful symptoms of OA. Blom et al27 observed 
increased expression of ATF3 in a mouse model 
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Figure 4. Dynamic identification clustering of modules and heat map of module-disease correlations: (A) gene dendrogram 
obtained by hierarchical clustering, where a row of colored bars below the tree diagram indicate the module assignment 
determined by dynamic tree cutting; (B) heat map of correlations between module feature genes and OA, in which the number 
above each cell indicates the corresponding correlation coefficient, the number in parentheses below is the test p-value, and the 
red and blue represent positive and negative correlations, respectively, while ME shows the module signature genes.

A

B
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of arthritis was often transient, instead of per-
sistent, and it was significantly downregulated 
in the later stages of the disease. Their findings 
suggested the painful state of arthritis may have 
multiple neuropathic phenotypes, which indirect-
ly suggests ATF3 is the main cause of pain in 

OA patients in the later stages. The results of 
this experiment were also validated by the low 
expression of ATF3 in the dataset obtained from 
this study, which was collected from patients with 
severe OA. Elsewhere, Chan et al28 confirmed 
ATF3 plays an important role in influencing 

Table II. Core gene screening table.

	 Gene name	 GS	 MM

ATF3	 0.79	 0.83
COL14A1	 0.63	 0.83
COL3A1	 0.53	 0.84
FOSL2	 0.61	 0.83
GADD45B	 0.55	 0.87
KLF4	 0.62	 0.88
KLF9	 0.66	 0.84
LRRC17	 0.55	 0.83
MAFF	 0.72	 0.83
MXRA5	 0.55	 0.81
NFKBIA	 0.64	 0.88
NID2	 0.60	 0.84
PIGA	 0.58	 0.88
PPP1R15A	 0.75	 0.85
PTGDS	 0.70	 0.82
RHOB	 0.65	 0.91

Figure 5. Venn diagram of differential genes vs. core 
genes: the blue part represents the number of differential 
genes, and the yellow part represents the number of core 
genes obtained by screening with the WGCNA algorithm.

Figure 6. LASSO regression analysis method and ROC analysis results: (A) model cross-validation of the LASSO regression 
analysis method, in which two dashed lines correspond to two particular λ values: lambda.min; and lanbda.lse (left and right); 
(B) LASSO regression analysis method analysis for screening risk factors, where each curve in the graph represents the 
trajectory of 1 independent variable coefficient; (C-G) the results of ROC analysis for ATF, FOSL2, GADD45B, PPP1R15A, 
and PTGDS, respectively. The horizontal coordinate represents the false positive rate, while the vertical coordinate represents 
the sensitivity, i.e., the true positive rate. AUC is the area under the curve value.
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MMP13 expression after CFO transcription, and 
that it is transcriptionally dependent on the ini-
tial inflammation-induced expression of cFOS/
cJUN. In experiments conducted on mice, ATF3 
deficiency did not lead to skeletal abnormalities 
or affect cartilage formation but attenuated the 
progression of OA brought about by surgically 

induced knee instability26. This suggests ATF3 
may play an important role in the treatment of 
early OA.

FOSL2 (also known as FRA2) is a FOS-asso-
ciated protein of the AP-1 family, members of 
which can function by forming heterodimeric 
complexes with JUN proteins29. In this study, a 

Figure 7. Graph of immune cell infiltration results: blue denotes the normal samples, while red denotes the OA samples, 
p<0.05 indicates significant difference, and the horizontal and vertical coordinates represent the 28 immune cells and their 
scores, respectively.

Figure 8. PCR graph results. A-E, They represent the expression of ATF3; FOSL2; GADD45B; PPP1R15A and PTGDS, 
respectively.
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decrease of FOSL2 expression in chondrocytes 
of OA were observed. Previously, research con-
cluded that FOSL2 plays a key role in inflamma-
tion-related diseases and activation of FOSL2/
AP-1 induces a systemic inflammatory state. 
This increases both the infiltration of neutro-
phils and pro-inflammatory macrophages and 
the levels of pro-inflammatory cytokines such 
as TNF-α, IL-1β, and IL-630. Fan et al31 report-
ed three subclasses of the mitogen-activated 
protein kinases (MAPKs): ERKs, JNKs, and 
p38 MAPK, play a key role in the induction of 
FOSL2/AP-1 activity, but the exact mechanism 
by which they regulate FOSL2 is not yet clear 
and requires further investigation. FOSL2 is 
also a key regulator of leptin expression in adi-
pocytes32, and its deficiency promotes obesity. In 
this study, FOSL2 was expressed at low levels in 
all cases of OA samples, which is also consistent 
with obesity being a major cause of OA. Previ-
ous studies have shown FOSL2 is repressed in 
the early hypertrophic state of chondrocytes, 
suggesting that this gene is closely associated 
with the early onset of OA33, and that the regula-
tion of FOSL2 is likely to have positive implica-
tions for the prevention of OA.

GADD45B is a member of a family of small 
molecule (18-kd) proteins which respond to 
genotoxic stress34. In recent research, GADD45B 
has been identified as an important mediator of 

BMP-2-induced early gene expression in chon-
drocytes and Col10α1 in late mouse embryonic 
mast chondrocytes35. It appears to have import-
ant effects on the progression of the early stages 
of OA. Relevantly, Tsuchimochi et al36 report-
ed that, early on, it activates the p38 MAPK 
pathway while other research has concluded 
GADD45B may activate C/EBPβ and thus form 
a positive feedback loop in chondrocytes, lead-
ing to cartilage degradation and bone redundan-
cy37. In cell experiments, the use of GADD45B 
inhibitors can target the regulation of MAPK 
kinase 7 to inhibit endoplasmic reticulum stress 
and reduce chondrocyte apoptosis38.Combined 
with the progress of current research, it may be 
stated GADD45B is closely related to early car-
tilage damage in OA.

However, the study presented here has some 
limitations. Firstly, because of the small sample 
size of the original dataset, even when data 
validation was performed, further suitable clin-
ical samples are still needed for experimental 
validation. Secondly, this research was limited 
by certain conditions and further investigation 
could not be carried out on the role of core genes 
in the significant module. Furthermore, in the 
literature review, one of the findings was that 
the expression of ATF3 and GADD45B did not 
correlate linearly with disease progression. This 
suggests the two genes may play different roles 

Figure 9. Protein expression maps. A, WB detection of relative expression of various proteins. B-F, They represent the 
protein expression of ATF3; FOSL2; GADD45B; PPP1R15A and PTGDS, respectively.
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at different times in OA, but the lack of more 
direct and objective data did not allow arrival at 
any definitive conclusion. Therefore, more effort 
in refining the results of this study in the future 
is intended.

Conclusions

The results of this study suggest inflamma-
tion in cartilage tissue and the cellular stress 
response play crucial roles in how OA pro-
gresses. Bioinformatical analysis and validation 
suggest ATF3, FOSL2, and GADD45B may be 
genes of diagnostic and therapeutic value in 
osteochondropathy, but further molecular biol-
ogy experiments are required for more rigorous 
verification of this.

Conflict of Interest
The author declare that the research was conducted in the 
absence of any commercial or financial relationships that 
could be construed as a potential conflict of interest.

Funding
This work was supported by the Youth Program of the Na-
tional Natural Science Foundation of China (82104897); 
the Traditional Chinese Medicine Science and Technolo-
gy Development Plan Project of Shandong (2019-0084); 
and the Natural Science Foundation of Shandong Province 
(ZR2020QH312, ZR2020MH099).

Authors’ Contribution
Study design: WSQ, XWP; Statistical Analysis: WSQ, 
XWP, YL; Manuscript writing: WSQ; Manuscript modi-
fication: WSQ, YL. All authors read and approved the fi-
nal manuscript.

Availability of Data and Materials
The datasets used and/or analyzed during the current study 
are available from the corresponding author on reasonable 
request.

Consent for Publication
All the authors approved the publication of this manuscript.

Ethics Approval
These experiments conformed to the Guide for the Care and 
Use of Laboratory Animals published by the National In-
stitutes of Health. All animal experiments were approved 
by the Animal Ethics Committee of the Affiliated Hospi-
tal of Shandong University of Traditional Chinese Medi-
cine (AWE-2021-04).

References

  1)	 Pereira D, Ramos E, Branco J. Osteoarthritis. Ac-
ta Med Port 2015; 28: 99-106. 

  2)	 Hunter DJ, Bierma-Zeinstra S. Osteoarthritis. 
Lancet 2019; 393: 1745-1759.

  3)	 Hunter DJ, March L, Chew M. Osteoarthritis in 
2020 and beyond: a Lancet Commission. Lancet 
2020; 396: 1711-1712. 

  4)	 Lin W, Wang Y, Chen Y, Wang Q, Gu Z, Zhu Y. 
Role of Calcium Signaling Pathway-Related Gene 
Regulatory Networks in Ischemic Stroke Based 
on Multiple WGCNA and Single-Cell Analysis. 
Oxid Med Cell Longev 2021; 2021: 8060477. 

  5)	 Langfelder P, Horvath S. WGCNA: an R package 
for weighted correlation network analysis. BMC 
Bioinformatics 2008; 9: 559. 

  6)	 Liu K, Chen S, Lu R. Identification of important 
genes related to ferroptosis and hypoxia in acute 
myocardial infarction based on WGCNA. Bioengi-
neered 2021; 12: 7950-7963. 

  7)	 Lin W, Wang Y, Chen Y, Wang Q, Gu Z, Zhu Y. 
Role of Calcium Signaling Pathway-Related Gene 
Regulatory Networks in Ischemic Stroke Based 
on Multiple WGCNA and Single-Cell Analysis. 
Oxid Med Cell Longev 2021; 2021: 8060477.

  8)	 Zhang X, Cui Y, Ding X, Liu S, Han B, Duan X, 
Zhang H, Sun T. Analysis of mRNA lncRNA and 
mRNA lncRNA-pathway co expression networks 
based on WGCNA in developing pediatric sepsis. 
Bioengineered 2021; 12: 1457-1470.

  9)	 Tan R, Zhang G, Liu R, Hou J, Dong Z, Deng C, Wan 
S, Lai X, Cui H. Identification of Early Diagnostic and 
Prognostic Biomarkers via WGCNA in Stomach Ad-
enocarcinoma. Front Oncol 2021; 11: 636461.

10)	 Hu RW, Liu C, Yan YY, Li D. Identification of 
hub genes and molecular subtypes in COVID-19 
based on WGCNA. Eur Rev Med Pharmacol Sci 
2021; 25: 6411-6424.

11)	 Haase F, Gloss BS, Tam PPL, Gold WA. WGCNA 
Identifies Translational and Proteasome-Ubiquitin 
Dysfunction in Rett Syndrome. Int J Mol Sci 2021; 
22: 9954.

12)	 Voigt A, Almaas E. Assessment of weighted to-
pological overlap (wTO) to improve fidelity of 
gene co-expression networks. BMC Bioinformat-
ics 2019; 20: 58.

13)	 Xu M, Ouyang T, Lv K, Ma X. Integrated WGC-
NA and PPI Network to Screen Hub Genes Sig-
natures for Infantile Hemangioma. Front Genet 
2021; 11: 614195.

14)	 Wang Y, Chen L, Ju L, Qian K, Liu X, Wang X, 
Xiao Y. Novel Biomarkers Associated with Pro-
gression and Prognosis of Bladder Cancer Iden-
tified by Co-expression Analysis. Front Oncol 
2019; 9: 1030.

15)	 Farhadian M, Rafat SA, Panahi B, Mayack C. 
Weighted gene co-expression network analysis 
identifies modules and functionally enriched path-
ways in the lactation process. Sci Rep 2021; 11: 2367.



S.-Q. Wang, W.-P. Xie, L. Yue, Y.-L. Cai

8246

16)	 Luo X, Feng L, Xu W, Bai X, Wu M. Weight-
ed gene co-expression network analysis of hub 
genes in lung adenocarcinoma. Evol Bioinform 
Online 2021; 17: 11769343211009898. 

17)	 McEligot AJ, Poynor V, Sharma R, Panangadan 
A. Logistic LASSO Regression for Dietary Intakes 
and Breast Cancer. Nutrients 2020; 12: 2652.

18)	 Jayadev C, Hulley P, Swales C, Snelling S, Collins 
G, Taylor P, Price A. Synovial fluid fingerprinting 
in end-stage knee osteoarthritis: a novel biomark-
er concept. Bone Joint Res 2020; 9: 623-632.

19)	 Kim Y, Kang JW, Kang J, Kwon EJ, Ha M, Kim 
YK, Lee H, Rhee JK, Kim YH. Novel deep learn-
ing-based survival prediction for oral cancer by 
analyzing tumor-infiltrating lymphocyte profiles 
through CIBERSORT. Oncoimmunology 2021; 
10: 1904573.

20)	 Cao GM, Xuan XZ, Dong HL. Low expression of 
integrin signaling pathway genes is associated 
with abdominal aortic aneurysm: a bioinformat-
ic analysis by WGCNA. Eur Rev Med Pharmacol 
Sci 2022; 6: 847-2860.

21)	 Hawker GA. Osteoarthritis is a serious disease. 
Clin Exp Rheumatol 2019; 37 Suppl 120: 3-6.

22)	 Bai KH, He SY, Shu LL, Wang WD, Lin SY, Zhang 
QY, Li L, Cheng L, Dai YJ. Identification of can-
cer stem cell characteristics in liver hepatocellular 
carcinoma by WGCNA analysis of transcriptome 
stemness index. Cancer Med 2020; 9: 4290-4298.

23)	 Conaghan PG, Cook AD, Hamilton JA, Tak PP. 
Therapeutic options for targeting inflammatory 
osteoarthritis pain. Nat Rev Rheumatol 2019; 15: 
355-363.

24)	 Zhang H, Lin C, Zeng C, Wang Z, Wang H, Lu 
J, Liu X, Shao Y, Zhao C, Pan J, Xu S, Zhang Y, 
Xie D, Cai D, Bai X. Synovial macrophage M1 po-
larisation exacerbates experimental osteoarthri-
tis partially through R-spondin-2. Ann Rheum Dis 
2018; 77: 1524-1534.

25)	 Li X, Li Y, Yang X, Liao R, Chen L, Guo Q, Yang 
J. PR11-364P22.2/ATF3 protein interaction medi-
ates IL-1β-induced catabolic effects in cartilage 
tissue and chondrocytes. J Cell Mol Med 2021; 
25: 6188-6202.

26)	 Iezaki T, Ozaki K, Fukasawa K, Inoue M, Kitajima 
S, Muneta T, Takeda S, Fujita H, Onishi Y, Horie 
T, Yoneda Y, Takarada T, Hinoi E. ATF3 deficien-
cy in chondrocytes alleviates osteoarthritis devel-
opment. J Pathol 2016; 239: 426-437.

27)	 Blom AB, van den Bosch MH, Blaney Davidson 
EN, Roth J, Vogl T, van de Loo FA, Koenders 
M, van der Kraan PM, Geven EJ, van Lent PL. 
The alarmins S100A8 and S100A9 mediate acute 
pain in experimental synovitis. Arthritis Res Ther 
2020; 22: 199.

28)	 Chan CM, Macdonald CD, Litherland GJ, Wilkin-
son DJ, Skelton A, Europe-Finner GN, Rowan 
AD. Cytokine-induced MMP13 Expression in Hu-
man Chondrocytes Is Dependent on Activating 
Transcription Factor 3 (ATF3) Regulation. J Biol 
Chem 2017; 292: 1625-1636.

29)	 Sarode P, Zheng X, Giotopoulou GA, Weigert A, 
Kuenne C, Günther S, Friedrich A, Gattenlöhner 
S, Stiewe T, Brüne B, Grimminger F, Stathopou-
los GT, Pullamsetti SS, Seeger W, Savai R. Re-
programming of tumor-associated macrophages 
by targeting β-catenin/FOSL2/ARID5A signaling: 
A potential treatment of lung cancer. Sci Adv 
2020; 6: eaaz6105.

30)	 Renoux F, Stellato M, Haftmann C, Vogetseder 
A, Huang R, Subramaniam A, Becker MO, Bly-
szczuk P, Becher B, Distler JHW, Kania G, Boy-
man O, Distler O. The AP1 Transcription Factor 
Fosl2 Promotes Systemic Autoimmunity and In-
flammation by Repressing Treg Development. 
Cell Rep 2020; 31: 107826.

31)	 Fan S, Yin Q, Li D, Ma J, Li L, Chai S, Guo H, 
Yang Z. Anti-neuroinflammatory effects of Eu-
commia ulmoides Oliv. In a Parkinson’s mouse 
model through the regulation of p38/JNK-Fosl2 
gene expression. J Ethnopharmacol 2020; 260: 
113016.

32)	 Wrann CD, Eguchi J, Bozec A, Xu Z, Mikkelsen 
T, Gimble J, Nave H, Wagner EF, Ong SE, Ros-
en ED. FOSL2 promotes leptin gene expression 
in human and mouse adipocytes. J Clin Invest. 
2012; 122: 1010-21.

33)	 He X, Ohba S, Hojo H, McMahon AP. AP-1 family 
members act with Sox9 to promote chondrocyte 
hypertrophy. Development 2016; 143: 3012-3023.

34)	 Svensson CI, Inoue T, Hammaker D, Fukushi-
ma A, Papa S, Franzoso G, Schett G, Corr M, 
Boyle DL, Firestein GS. Gadd45beta deficien-
cy in rheumatoid arthritis: enhanced synovitis 
through JNK signaling. Arthritis Rheum 2009; 
60: 3229-3240.

35)	 Ijiri K, Zerbini LF, Peng H, Otu HH, Tsuchimochi K, 
Otero M, Dragomir C, Walsh N, Bierbaum BE, Mat-
tingly D, van Flandern G, Komiya S, Aigner T, Liber-
mann TA, Goldring MB. Differential expression of 
GADD45beta in normal and osteoarthritic cartilage: 
potential role in homeostasis of articular chondro-
cytes. Arthritis Rheum 2008; 58: 2075-2087.

36)	 Tsuchimochi K, Otero M, Dragomir CL, Plumb 
DA, Zerbini LF, Libermann TA, Marcu KB, Komi-
ya S, Ijiri K, Goldring MB. GADD45beta enhances 
Col10a1 transcription via the MTK1/MKK3/6/p38 
axis and activation of C/EBPbeta-TAD4 in termi-
nally differentiating chondrocytes. J Biol Chem 
2010; 285: 8395-8407.

37)	 Shimada H, Otero M, Tsuchimochi K, Yamasaki 
S, Sakakima H, Matsuda F, Sakasegawa M, Seto-
guchi T, Xu L, Goldring MB, Tanimoto A, Komiya 
S, Ijiri K. CCAAT/enhancer binding protein β (C/
EBPβ) regulates the transcription of growth arrest 
and DNA damage-inducible protein 45 β (GAD-
D45β) in articular chondrocytes. Pathol Res Pract 
2016; 212: 302-309.

38)	 Zhang Z, Li M, Ma X, Zhou SL, Ren ZW, Qiu 
YS. GADD45β-I attenuates oxidative stress and 
apoptosis via Sirt3-mediated inhibition of ER 
stress in osteoarthritis chondrocytes. Chem Biol 
Interact 2018; 296: 76-82.


