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Abstract. – OBJECTIVE: Coronavirus dis-
ease 2019 (COVID-19) is a highly contagious in-
fectious disease caused by the newly discov-
ered severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2). Severe COVID-19 in-
fection causes complications in the respira-
tory tract, which results in pulmonary failure, 
thus requiring prolonged mechanical ventila-
tion (MV). An increase in the number of pa-
tients with COVID-19 poses numerous challeng-
es to the healthcare system, including the short-
age of MV facilities. Despite continued efforts 
to improve COVID-19 diagnosis and treatment, 
no study has established a reliable predictive 
model for the risk assessment of deteriorating 
COVID-19 cases. 

MATERIALS AND METHODS: We extract-
ed the expression profiles and clinical data of 
the GSE157103, GSE116560 and GSE21802 co-
horts from the Gene Expression Omnibus da-
tabase. Differentially expressed genes (DEGs) 
were identified as the intersection of the result-
ing differential genes as analysed via limma, 
edgeR and DESeq2 R packages. Gene Ontology 
(GO) and Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) analyses were performed using 
the R package ‘clusterProfiler’. Variables close-
ly related to MV were examined using univariate 
Cox regression analysis, and significant vari-
ables were subjected to least absolute shrink-
age and selection operator regression (LASSO) 
analysis for the construction of a risk model. Ka-
plan-Meier analysis and receiver operating char-
acteristic (ROC) curves were generated to verify 
the predictive values of the risk model.

RESULTS: We identified 198 unigenes that 
were differentially expressed in COVID-19 sam-
ples. Moreover, a five-gene signature (BTN3A1, 

GPR35, HAAO, SLC2A6 and TEX2) was con-
structed to predict the ventilator-free days of pa-
tients with COVID-19. In our study, we used the 
five-gene signature to calculate the risk score 
(MV score) for each patient. The results revealed 
a statistical correlation between the MV score 
and the scores of the Acute Physiology and 
Chronic Health Evaluation and Sequential Organ 
Failure Assessment of patients with COVID-19. 
Kaplan-Meier analysis revealed that the num-
ber of ventilator-free days was significantly re-
duced in the low-MVscore group compared to 
the high-MVscore group. The ROC curves re-
vealed that our model had a good performance, 
and the areas under the ROC curve were 0.93 
(3-week ROC) and 0.97 (4-week ROC). The ‘Lim-
ma’ package analysis revealed 71 upregulated 
genes and 59 downregulated genes in the high-
MV score group compared to the low-MV score 
group. These DEGs were mainly enriched in cy-
tokine signalling in immune system and cellular 
response to cytokine stimulus.

CONCLUSIONS: This study identified a five-
gene signature that can predict the length of 
ventilator-free days for patients with COVID-19.
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Introduction

Coronavirus disease 2019 (COVID-19) has re-
ceived a great deal of attention because it poses 
a huge threat to global public health. COVID-19 
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infection can range from mild to severe, which 
may ultimately result in respiratory failure and, 
in some instances, death1. 

Adult acute respiratory distress syndrome 
(ARDS) is the main consequence of COVID-19 
pneumonia, and mechanical ventilation (MV) re-
mains the cornerstone in the management of pa-
tients with ARDS2-4.

A large clinical study5 that dealt with CO-
VID-19 characterisation reported a high rate of 
MV in critically ill patients (88%). Moreover, it 
was also observed in previous studies5 that the 
average mortality rate of mechanically ventila-
ted patients with COVID-19 was approximately 
24.5%-28%. Although there are several novel 
promising treatments for COVID-19, MV is still 
considered the main control strategy for severe 
cases6. However, as the number of patients with 
COVID-19 continues to grow, there has been a 
major shortage of healthcare materials and equi-
pment, including mechanical ventilators7. Thus, 
early evaluation of disease severity and the po-
tential need for a mechanical ventilator is of great 
significance in clinical settings and will enable 
better patient care and allocation of medical re-
sources. 

In this study, three gene expression data sets 
and bioinformatics tools were used to establish and 
verify a five-gene signature risk model, which can 
accurately estimate the length of ventilator-free 
days for patients with COVID-19. Therefore, this 
study provides a new strategy for allocating MV 
equipment and optimising COVID-19 treatment.

Materials and Methods

Data Acquisition
GSE157103 was prepared from the GPL24676 

cohort [Illumina NovaSeq 6000, (San Diego, 
CA, USA)], which included blood samples from 
patients with COVID-19 (COVID-19, n=100) 
and patients in the control group (patients wi-
thout COVID-19 admitted to the same hospital, 
n=26)8. Normalised gene expression (TPM) data 
and corresponding clinical information were ex-
tracted from the Gene Expression Omnibus da-
tabase (GSE157103, file: GSE157103_genes.tpm.
tsv’). The GSE157103 was used to construct the 
prediction risk model as the training set. To vali-
date the efficiency of the risk model, we downlo-
aded two additional gene expression profiles 
with information on MV usage extracted from 
the GSE116560 and GSE21802 cohorts from the 

same database9,10. Using the GSE116560 cohort, 
genome-wide transcriptional changes were mea-
sured on 68 patients with ARDS. Moreover, the 
number of ventilator-free days for each patient 
was also recorded. GSE21802 was prepared from 
the GPL6102 cohort, which included 40 blood 
samples from critical patients with positive H1N1 
(n=36) and the control group (healthy individuals, 
n=4). Among the critical patients, 20 were mecha-
nically ventilated.

Functional Enrichment Analysis of 
COVID-19-Related Genes

Using the data obtained in the GSE157103 
cohort, COVID-19-specific differentially expres-
sed genes (DEGs) were identified by comparing 
blood samples drawn from patients with CO-
VID-19 (n=100) with the remaining samples 
(n=26) using the R packages ‘limma’, ‘edgeR’ and 
‘DESeq2’11-13. Resulting genes with |log2FC| > 1.0 
and false discovery rate (FDR) < 0.05 were se-
lected as DEGs. Using an online Venn diagram 
tool (https://bioinfogp.cnb.csic.es/tools/venny/in-
dex.html), we identified the intersection of the re-
sulting differential genes from the three analyses 
and obtained the COVID-19-related genes.

The list of genes was subjected to Gene Ontolo-
gy (GO) enrichment analysis and Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathway 
enrichment using the R package ‘clusterProfiler’ 
(hypergeometric test, Q<0.1 following Benjami-
ni-Hochberg correction)14.

Construction of the Five-Gene 
Signature Model

In the GSE157103 cohort, blood samples obtai-
ned from patients with COVID-19 with complete 
records of MV status were extracted and included 
in the sampling data. 

Univariate Cox regression analysis of CO-
VID-19-related genes was performed to determi-
ne which genes were associated with MV proba-
bilities. COVID-19-related genes with p-values < 
0.05 were subjected to the Least Absolute Shrin-
kage and Selection Operator (LASSO) analysis 
using the ‘glmnet’ R package15. With this analy-
sis, an MV signature (MV score) was calculated 
to estimate the probability of patients with CO-
VID-19 requiring MV.

The risk score of each patient is calculated 
using the formula:
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where Coefi is the coefficient, and xi is the 
TPM expression value of each selected gene.

Statistical Analysis
Patients with COVID-19 were classified into 

high- and low-risk groups depending on their cal-
culated MV scores. Those with MV scores above 
the overall median (0.429) were considered to be a 
high-risk group, whereas those with scores below 
the median comprise the low-risk group. Kaplan-
Meier analysis was used to evaluate the MV pro-
babilities of the high- and low-risk groups16,17. A 
log-rank test was used to check for statistical si-
gnificance between the two groups. The predictive 
ability of MV score was evaluated by generating 
time-dependent receiver operating characteristic 
(ROC) curves18. The Kruskal-Wallis test was used 
to compare the data between the three groups and 
the Wilcox test was applied to analyse the diffe-
rences between the two groups19,20. Categorical 
data were tested using the Chi-square test. A 
nonparametric Spearman test was performed to 
evaluate the correlation21. All statistical analyses 
were performed using R (version 4.0.4) except for 
the Chi-square test, which was performed throu-
gh the GraphPad Prism 8 software (La Jolla, CA, 
USA). A p-value of less than 0.05 was considered 
significant.

Results

Identification and Evaluation of 
COVID-19-Specific DEGs 

COVID-19-specific DEGs were harvested 
using the R packages ‘DESeq2’ [476 upregula-
ted and 263 downregulated genes, (Figure 1A)], 
‘edgeR’ [228 upregulated and 128 downregulated 
genes, (Figure 1B)] and ‘limma’ [4774 upregula-
ted and 733 downregulated genes, (Figure 1C)]. 
The Venn diagram presents the 198 upregulated 
and 122 downregulated DEGs defined as CO-
VID-19-related genes (Figures 1D, 1E; Supple-
mentary Table I).

Figure 1F presents the distribution of clini-
cal features and the differential gene expression 
between the COVID-19 and non-COVID-19 sam-
ples. Numerical clinical features [ferritin, procal-
citonin, D-dimer, C-reactive protein (CRP) and 
fibrinogen] were segregated into high (≥ median 
value) and low (< median value) level groups. 
Chi-square test revealed that the COVID-19 
group has a higher proportion of patients with 
high-level ferritin, procalcitonin, D-dimer, CRP, 

and fibrinogen than the non-COVID-19 group. 
Meanwhile, the proportion of patients with hospi-
tal-free days longer than 30 days was higher in 
the COVID-19 group than in the non-COVID-19 
group. The median hospital-free days of the CO-
VID-19 group (26 days) were lower than that of 
the non-COVID-19 group (38 days).

Functional Enrichment Analysis of 
COVID-19-Related Genes

To obtain biological insights from common 
COVID-19-related genes, we performed GO and 
KEGG enrichment analyses. The top 20 catego-
ries associated with Q values are presented in Fi-
gure 2.

Nine enriched KEGG pathways are summari-
sed in Figure 2A. The top three biological proces-
ses related to gene counts were nuclear division, 
organelle fission and mitotic nuclear division (Fi-
gure 2B). The top three cellular components in 
which COVID-19-related genes were mainly in-
volved were the chromosomal region, ribosome, 
and condensed chromosome (Figure 2C). Two 
molecular function categories are also enriched, 
namely the structural constituent of the ribosome 
and double-stranded RNA binding (Figure 2D).

Construction of a Mechanical 
Ventilation Signature 

Using MV as the endpoint, the number of ven-
tilator-free days of patients in the GSE157103 
cohort was recorded during the follow-up (28 
days) period. In this cohort, we excluded patien-
ts with (n=20) and without (n=26) COVID-19 
who have no ventilator-free day in the hospital. 
We used the expression levels of COVID-19-re-
lated genes for the univariate Cox analysis. 
From this, a total of 102 protective factors and 
28 risk factors for ventilator-free days were har-
vested (p<0.05); (Supplementary Table II). 
Through the LASSO Cox regression model, five 
COVID-19-related genes were obtained to con-
struct the MV signature (MV score). The MV 
score consisted of four protective factors and 
one risk factor and was calculated using the 
formula: MV score = BTN3A1*-0.002256919+-
GPR35*-0.061471029+HAAO*-0.275842159+SL-
C2A6*-0.00625967+TEX2*0.097399395; (Figures 
3A-C).

Kaplan-Meier analysis revealed that a lower 
MV score is associated with shorter ventila-
tor-free days (p<0.0001). We also observed that 
none of the patients in the low-MV score group 
received MV during the first 28 days of follow-up. 

https://www.europeanreview.org/wp/wp-content/uploads/SupplementaryTable-I.pdf
https://www.europeanreview.org/wp/wp-content/uploads/SupplementaryTable-I.pdf
https://www.europeanreview.org/wp/wp-content/uploads/SupplementaryTable-II.pdf
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Figure 1. Volcano diagrams depict the differential gene expressions (DEGs) in COVID-19 vs. non-COVID-19 samples 
identified through the (A) DESeq2, (B) edgR and the (C) Limma R Package. Venn diagrams present the number of (D) 
downregulated and (E) upregulated COVID-19-specific DEGs. F, A Heatmap of the correlation between the DEGs and the 
clinical phenotypes of COVID-19. *p<0.05 (Chi-square test); **p<0.01 (Chi-square test); ***p<0.001 (Chi-square test).
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The median ventilator-free time of patients in the 
high MV score group was 25.2 days (Figure 3D). 

The predictive accuracy of the MV score was 
evaluated using time-dependent ROC analysis on 
the 7th, 14th, 21st and 28th days where the corre-
sponding area under the curve (AUC) values were 
0.88, 0.91, 0.93 and 0.97, respectively (Figure 3E).

As presented in Figure 4, patients who have 
been mechanically ventilated are observed mostly 
in the high-MV score group. Furthermore, TEX2 
expression was observed to increase with a higher 

MV score. MV score was observed to correlate 
negatively with SLC2A6, HAAO, GPR35 and 
BTN3A1 expression.

Statistical Analysis of the 
Correlations Between the MV 
Score and COVID-19 Phenotypes

Significantly positive associations were obser-
ved between the MV score and the APACHE II 
and SOFA scores (Figures 5A, 5B, 4C, 5D; Sup-
plementary Table III). The APACHE II and 

Figure 2. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of 
DEGs in COVID-19 vs. non-COVID-19 samples, including the (A) enriched KEGG pathways, (B) the GO biological processes, 
(C) cellular components and (D) molecular functions.

https://www.europeanreview.org/wp/wp-content/uploads/SupplementaryTable-III.pdf
https://www.europeanreview.org/wp/wp-content/uploads/SupplementaryTable-III.pdf
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Figure 3. A, Forest plot of the univariate analysis of the five genes selected for the construction of the risk model. B, 
Tuning parameter (and lambda;) selection in the Least Absolute Shrinkage and Selection Operator (LASSO) model using 
10-fold cross-validation with minimum criteria. C, LASSO coefficient profiles of the 130 texture features. D, Kaplan-Meier 
estimates the ventilator-free time in both the high (red) and low (blue) MV score group. E, Time-dependent receiver operative 
characteristics (ROC) curves predict the mechanical ventilation (MV) rate at the 7th, 14th, 21st and 28th days of follow-up. 
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SOFA scores in the high- MV score group were 
significantly higher (p<0.05) than those in the 
low-MV score group. Spearman’s analysis indi-
cated similar results (Spearman Rho of APACHE 
II = 0.77; Spearman Rho of SOFA = 0.64). Fur-
thermore, MV score indicated an inverse relation-
ship with hospital-free days 45 days post-follow-
up (Spearman Rho = -0.54). The high-MVscore 
group exhibited fewer hospital-free days than the 
low-MV score group (Figures 5E, 5F).

In the blood tests, the high-risk group revea-
led higher levels of procalcitonin and D-dimer 
(p<0.05). Meanwhile, in the Spearman correla-
tion analysis, procalcitonin and D-dimer levels 
were positively associated with MV scores (Fi-
gures 6A-D). The median CRP level was higher 
in the high-MV score group. Furthermore, CRP 
levels were also observed to be positively corre-
lated with MV score. However, the differences 

between the two were not statistically significant 
(Figures 6E, 6F).

To determine if the MV score also predict the 
probabilities of MV in patients with pneumonia 
in other independent data sets, we validated the 
model by calculating the MV score of patients 
with records of MV in the GSE116560 (n=68) 
and GSE21802 (n=36) cohorts. The MV score of 
each patient in the validation set is summarised in 
Supplementary Table IV.

Both cohorts were subdivided into high- and 
low-MV score groups using the same median va-
lue as the cut-off. 

Figure 7A indicates that the MV scores of pa-
tients with no ventilator-free days (n=37) were 
significantly higher than that of patients with ven-
tilator-free days ≥7 (n=31) [GSE116560 cohort, 
p=0.036]. Patients with ventilator-free days ≥7 
accounted for a higher proportion in the low-

Figure 4. A, Patient risk score distribution according to the five-signature model. B, Distribution of mechanical ventilation 
(MV) status of both the low and the high-risk groups. C, Heat map of the five signature genes.

https://www.europeanreview.org/wp/wp-content/uploads/SupplementaryTable-IV.pdf
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Figure 5. A, Violin plots of the Acute Physiology and Chronic Health Evaluation (APACHE) II scores of the low-risk group 
(blue) and the high-risk group (red) (p=0.0034). B, Spearman correlations between the MV scores and the APACHE II scores. 
C, Violin plots of Sequential Organ Failure Assessment (SOFA) scores (p=0.0013) of the low-risk group (blue) and the high-
risk group (red). D, Spearman correlations between the MV scores and the SOFA scores. E, Violin plots of hospital-free days 
(p=0.0013) of the low-risk group (blue) and the high-risk group (red). F, Spearman correlations between the MV scores and the 
hospital-free days. The top panels exhibit the Spearman correlation coefficients and corresponding p-values.
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Figure 6. A, Violin plots of the D-dimer (p=0.00076) of the low-risk group (blue) and the high-risk group (red) (p=0.0034). 
B, Spearman correlations between the MV scores and the D-dimer. C, Violin plots of procalcitonin (p=0.038) of the low-risk 
group (blue) and the high-risk group (red). D, Spearman correlations between the MV scores and procalcitonin. E, Violin plots 
of CRP (p=0.09) of the low-risk group (blue) and the high-risk group (red). F, Spearman correlations between the MV scores 
and the CRP. The top panels exhibit the Spearman correlation coefficients and corresponding p-values.
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MV score group, whereas patients with no ven-
tilator-free days were mostly observed in the hi-
gh-MVscore group (Chi-square test p=0.0074); 
(Figure 7B).

Similar trends are observed in Figures 7C and 
7D. Most patients in the high-MV score group 
received MV, unlike the low-MV score group 
(72.2% vs. 38.9%). Further, the MV scores of the 
patients who received MV were significantly hi-
gher than those of the patients who did not receive 
MV (p=0.0083).

One hundred and thirty DEGs (71 up-regulated 
and 59 down-regulated) were obtained between 
the high- and low-MV score group (Supplemen-

tary Table V). The results of the gene enrichment 
analysis for these 130 DEGs are presented in Sup-
plementary Table VI. These DEGs were mainly 
enriched in cytokine signalling in the immune sy-
stem and cellular response to cytokine stimulus.

Discussion

The drastic growth of COVID-19 cases is ac-
companied by many other challenges, including 
the exhaustion of supplies and services in heal-
thcare systems22. Particularly, many hospitals 
worldwide do not have sufficient MV equipment 

Figure 7. A, Violin plots demonstrate the distributions of MV scores (p=0.036) between patients with ventilator-free days ≥7 
(blue) and patients with no ventilator-free days (red), with data extracted from the GSE116560 cohort. B, The low MV score 
group comprises patients with ventilator-free days ≥7 whereas the high MV score group mostly consists of patients with zero 
ventilator-free days (p=0.0074). C, Violin plots demonstrate the distributions of MV scores between patients who required 
mechanical ventilation (blue) and patients who did not (red) (p=0.0083), with data extracted from the GSE21802 cohort. D, 
Similarly, patients who did not require MV mostly had lower MV scores than those who required mechanical ventilation and 
mostly had relatively higher MV scores (p=0.0442).

https://www.europeanreview.org/wp/wp-content/uploads/SupplementaryTable-V.pdf
https://www.europeanreview.org/wp/wp-content/uploads/SupplementaryTable-V.pdf
https://www.europeanreview.org/wp/wp-content/uploads/SupplementaryTable-VI.pdf
https://www.europeanreview.org/wp/wp-content/uploads/SupplementaryTable-VI.pdf
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to satisfy the demands of patients with severe CO-
VID-19. This explains the need to better estimate 
the urgency of patients needing MV and prepa-
re the required equipment in advance. However, 
a suitable classifier has not been established 
previously. Our study proposed a signature risk 
model that can accurately assess the number of 
ventilator-free days in patients with COVID-19. 
Patients with a high-risk score are predicted to 
demand MV in the future as their disease pro-
gresses. The constructed model is therefore a pro-
mising tool that allows for the ample preparation 
of MV equipment.

Using LASSO analysis, five genes (BTN3A1, 
GPR35, HAAO, SLC2A6 and TEX2) were inclu-
ded in the model construction. It has been pre-
viously reported that BTN3A1 can promote the 
activation and proliferation of Vγ9Vδ 2T cells 
in the peripheral blood, induced by the Myco-
bacterium tuberculosis heat resistant antigen23. 
In contrast, GPR35 is a class A, rhodopsin-like 
G protein-coupled receptor24. Previous studies25 
have demonstrated that the agonism of GPR35/
CXCR8 causes a significant decrease in interleu-
kin (IL)-4 as released by α-galactosylceramid-
e-activated human invariant natural killer T cells. 
SLC2A6, a lysosomal transporter regulated by 
inflammatory stimuli, affects the metabolic shi-
ft in macrophages to modulate the inflammatory 
response26. Macrophages are known to contribute 
to excessive inflammation and disease progres-
sion in some COVID-19 cases27. Increased levels 
of IL-2, IL-7, interferon-inducible protein (IP)-
10, granulocyte-colony stimulating factor (G-C-
SF), macrophage inflammatory protein (MIP)-1, 
monocyte chemoattractant protein (MCP)-1 and 
tumour necrosis factor (TNF) are also observed 
to be positively correlated with COVID-19 seve-
rity28. We, therefore, speculate that the signature 
is closely related to the immune response, and it 
may be the physiological basis of the constructed 
model. These results were supported by the enri-
chment analysis of the differential gene expres-
sion between high and low MV score groups 
(Supplementary Table VI).

Patients with COVID-19 with short ventila-
tor-free days had higher MV scores, with the 
AUC of the time-dependent ROC curves >0.8. 
This indicated that our signature was effective in 
estimating the need for MV. To further verify the 
robustness of the signature, we calculated the MV 
score for each patient in two separate validation 
sets. Since publicly available COVID-19 cohorts 
are limited, we selected cohorts of patients with 

ARDS and critical patients with positive H1N1 
as the validation sets. In severe cases, respiratory 
failure caused by COVID-19 fulfils the criteria 
for ARDS29. In addition, H1N1 infections may 
also cause ARDS and be included in the valida-
tion set. Furthermore, respiratory support in both 
COVID-19 and H1N1 cases should be according 
to the therapeutic strategies for ARDS30. Therefo-
re, this indicates that the choice of validation sets 
is reasonable enough to validate the risk model. 
Similarly, high MV scores revealed a strong cor-
relation with patients who used mechanical ven-
tilators. Aside from validating the robustness of 
the five-signature model, the test results also sug-
gested that the model has the potential to be ex-
trapolated to all patient populations with ARDS. 

MV scores revealed a strong positive corre-
lation with the APACHE II and SOFA scores. 
APACHE II and SOFA scores have been widely 
employed to estimate the outcome of critically ill 
patients31. Therefore, APACHE II and SOFA sco-
res usually indicate a more severe disease outco-
me and a worse prognosis32. In this study, it was 
observed that patients with higher MV scores had 
a higher elevation of D-dimer, procalcitonin and 
CRP in their blood. Previous studies33,34 have de-
monstrated that high levels of D-dimer, CRP and 
procalcitonin may be used as independent factors 
to predict the severity of COVID-19. These fin-
dings, thus, suggest that the MV score has the po-
tential to be an indicator of COVID-19 severity.

Conclusions

Through bioinformatics analysis, we establi-
shed a five-gene signature that successfully eva-
luates the risk of severe COVID-19 pneumonia. 
In addition, this signature demonstrates efficient 
predictive capability in two independent verifi-
cation sets. Hence, our study provides a reliable 
method for the efficient allocation of MV equip-
ment for patients with COVID-19 and has a sub-
stantial potential to optimise the clinical treat-
ment for COVID-19.
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