Effect of ambient air pollutants PM2.5 and PM10 on COVID-19 incidence and mortality: observational study

S.A. MEO¹, T. AL-KHLAIWI¹, C.H. ULLAH²

¹Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia ²Department of Orthopedics, College of Medicine, King Saud University, Riyadh, Saudi Arabia

Abstract. – OBJECTIVE: Environmental pollution is a leading global challenge affecting weather conditions and causing severe environmental, social, and public health problems. This study explores the impact of ambient air pollutants, particular matter (PM), PM2.5 and PM10 on morbidity and mortality of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) globally.

MATERIALS AND METHODS: In this study, initially 492 research articles were identified through seven search engines containing Web of Science, Medline, PubMed, EMBASE, Scopus, WHO COVID-19 literature, and Ovid databases by consuming keywords "Environmental pollution, Ambient air pollutants, particulate matter, PM2.5, PM10, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), and COVID-19 pandemic". Finally, 26 original research publications were included for the analysis, and the remaining were excluded. These studies were originated from the United States of America (9), China (5), Italy (3), India (1), worldwide (1), and one study each from England, Spain, Canada, Saudi Arabia, Singapore, Japan, and Iran.

RESULTS: The analysis based on a worldwide dataset assembled the information from the global literature from December 2019 to September 30, 2021. The assessment for the various regions to a global extent was based on air pollutants and COVID-19 cases and deaths. Twenty- six studies met the selection criteria representing almost all over the world. Based on the synthesis of scientific studies, it was identified that PM2.5 and PM10 are associated with 15.08%, 11.44 increased COVID-19 cases, and 9.26% and 0.75% COVID-19 deaths, respectively.

CONCLUSIONS: The evidence indicates that PM2.5 and PM10 can affect COVID-19 epidemiology in various geographical regions. The findings established an association and a possible causal link between increasing ambient air pollutants, particulate matter PM2.5 and PM10 with increased incidence and mortality of COVID-19. The global health authorities must take strict preventive measures to minimize air pollution and combat such challenging and threatening COVID-19 pandemic globally.

Key Words:

Environmental pollutants, PM2.5, PM10, SARS-CoV-2, COVID-19 pandemic.

Introduction

The interaction between humans and their physical surroundings has a significant role in the social, behavioral, neuropsychological developments, and the pattern of health and disease¹. The swift unplanned urbanization and industrialization disturb normal environmental proportions worldwide². Environmental pollution is a growing international public health issue and causes 4.2 million deaths per annum³. Environmental factors play a significant role in health, diseases, surveillance, prevention⁴, and climate and weather conditions. One of humanity's challenges is spreading infectious diseases, including the Severe Acute Respiratory Syndrome coronavirus 2 (SARS CoV-2).

Environmental pollution swiftly changes the climate and affects the geographical distribution of various bacterial and viral diseases. The SARS CoV-2, also known as the COVID-19 pandemic, has caused a highly threatening and challenging situation worldwide. It involved every corner of the globe, including urban, rural regions in developing and developed countries. The global prevalence of COVID-19 infection rates is variable; it is higher in the highly populated, large metropolitan cities^{5,6}. The SARS-CoV-2 is a respiratory virus transmitted mainly through droplet nuclei in the environment⁵.

Corresponding Author: Sultan Ayoub Meo, MD; e-mail: smeo@ksu.edu.sa; sultanmeo@hotmail.com 7553

The recent literature linked a relationship between weather conditions⁷, and air pollutants play a substantial part in the etiopathology of the SARS-CoV-2 disease⁸. The literature highlights that exposure to air pollutants is related to rising rates of COVID-19 occurrence, disease severity, and deaths⁹. In addition, pollutant sources such as wildfires¹⁰, sandstorms¹¹, and smoking have been linked with more significant risk factors of COVID-1912. Although the literature highlights the role of air pollutants, it lacks to establish the linkage between fine and coarse pollutants and SARS-CoV-2 morbidity and mortality. The present study investigates the impact of air pollutants PM2.5 and PM10 on daily SARS-CoV-2 cases and deaths. This study also highlights the possible evidence for a better understanding of mechanisms involved in air pollutants and SARS-CoV-2 cases and deaths.

Materials and Methods

This study employed an observational, descriptive approach to explore the impact of ambient air pollutants particulate matter PM2.5 and PM10 on SARS-CoV-2 morbidity and mortality.

Selection of Studies

In this study, we searched the literature related to "air pollutants, PM2.5, and PM10 and COVID-19" incidence and mortality in global databases: initially, the number of studies available based on the keywords were 492 and they focused on the environmental pollutants and morbidity; moreover, mortality of SARS-CoV-2 was identified from the various databases: PubMed, Medline, EMBASE, Web of Science, Scopus, Google Scholar, WHO COVID-19 literature and Ovid up to September 30, 2021 (Figure 1). The studies that were consistent with the selection criteria were thoroughly examined. The relevant studies were explored through the keywords and search terms, including "Environmental pollution, air pollutants, particulate matter, PM2.5, PM10, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection, COVID-19 pandemic". The publications were searched from December 2019 to September 30, 2021, without language restrictions on the search process. Finally, 26 original research articles on PM2.5, PM10, and SARS-CoV-2 cases and deaths were included for the analysis, and the remaining articles were excluded. The data were based on the 26 studies

that published the findings on PM2.5 PM10 and SARS-CoV-2 worldwide. These studies were originated from the United States of America (9), China (5), Italy (3), India (1), worldwide (1), and one study each from England, Spain, Canada, Saudi Arabia, Singapore, Japan, and Iran.

Suitability of the Studies

The suitability of articles was scrutinized and analyzed by the title and abstract of the study. Once eligible studies had been shortlisted, relevant characteristics and results were extracted by an investigator and verified by another investigator. The difference of opinion was resolved through the input of the third investigator, and the majority decision was upheld where the third investigator reviewed a publication. Extracted data included sample size, types of pollutants, SARS-CoV-2 cases, deaths, and risk estimates for each exposure category was determined. The articles were carefully analyzed for the SARS-CoV-2 occurrence and fatalities.

A total of 26 original studies were included that explored the impact of "air pollutants, PM2.5, PM10 on COVID-19 morbidity and mortality". Twenty-six articles were analyzed for PM2.5 (Table I), and 11 articles were analyzed for PM10 (Table II). The analysis was based on the perspective, cross-sectional, case-cohort, longitudinal community-based studies and explored all possible relations between air pollutants and the SARS-CoV-2 cases and deaths.

Inclusion and Exclusion Criteria

For this study, the criteria for the selection of the studies were highly standardized. The studies had to be published in peer-reviewed, PubMed, and Web of Science indexed journals; human model; original research; including cross-sectional, case-control, cohort, observational studies that investigate the PM2.5, and PM10 exposure risks with SARS-CoV-2 mobility and mortality. However, the studies published in journals not indexed in PubMed or Web of Science were excluded. Moreover, animal model studies, non-original research, review, editorial, case reports, or meta-analysis were also excluded. Furthermore, preprint papers indexed in Medline (MedRxiv) were excluded as the literature was not peer-reviewed and unpublished. The study title, abstract, and detailed article information were evaluated and included for the analysis. Two investigators made the final selection of the study, and another research team member resolved the disagreement.

A .1	C 1 (C 1	c		
Author and study year	Study/Sample Collection site	Sample size during the study period	Time of study	PM2.5 and COVID-19 outcomes
Meo et al ⁸	London, United Kingdom (UK)	December 4, 2020, SARS-CoV-2 cases in London 161,626	February 24 to November 2, 2020	Each unit increase in PM2.5, SARS-CoV-2 cases & deaths increased by 1.1% & 2.3% respectively. PM2.5 has a positive linkage with cases and deaths.
Meo et al ¹⁰		cumulative cases 3939, deaths 0.45 cumulative deaths 43	September 16, 2020.	Each PM2.5 unit caused an increase in daily cases, cumulative cases, and cumulative deaths of SARS-CoV-2 by 0.5%, 0.9%, and 0.6%, respectively.
Meo et al ¹¹	Saudi Arabia	Mean cases before sandstorm 120, after sandstorm 161.	Feb 20 to Mar 12; Mar 13 to April 2, 2021.	After the sandstorm, PM2.5: increased by 76.71%, and SARS-CoV-2 cases increased by 33.87%.
Meo et al ¹³	LA, New Mexico, NY, Ohio & FL, USA	Median cases 25 th -75 th 1192(569-3183) deaths 25 (85-54	March 13 to December 31, 2020.	Each unit increase in PM2.5, SARS-CoV-2 infection increased by 0.1%
DeAngelis et al ¹⁵	Lombardy, Italy an industrial city	61,377 19 cases and 40,401 deaths	Feb 20-April 16; March 1 to April 30 2020	Each 10 µg/m3 PM2.5 linked to 58% rise in cases and 23% deaths. 1.28, (CI 1.16- 1.40; 1.16 (95 % CI 1.09-1.24
Solimini et al ¹⁷	Worldwide five continents	237,749 SARS-CoV-2 cases	May 30, 2020	Each 10- μ g/m ³ PM _{2.5} linked with 8.1% rise in cases (95% CI (5.4-10.5)
Zhu et al ²⁰	China, 120 cities, four metropolitans	About 58,000 cases	Jan-Feb-2020	Each 10 µg/m3 PM2.5 linked to 2.24% increased cases (95% CI 1.02–3.46)
Bianconi et al ²¹	Italy 110 regions	105,792 cases and 12,428 deaths	March 1-31, 2020	PM2.5 related to more COVID 19 cases β 0.71, and mortality β 0.68, <i>p</i> =0.004.
Adhikari & Yin ²⁵	New York, USA	42023 SARS-CoV-2 cases & 3221 deaths	March-April 2020	I unit rise in PM2.5 μ g/m3 linked to 33.11% (95% CI 31.04–35.22) decrease in SARS-CoVv2 cases.
Hadei et al ²⁶	Tehran, Tabriz & Mashhad, Iran	114,964 cases and 21,549 deaths	Feb 20, 2020 to Jan 4, 2021	PM2.5 showed significant associations for mortality. 1.06 (95% CI: 0.99, 1.13)
Stieb et al ²⁷	111 Canadian Health counties	73,390 cases	5/13/2020	1-µg/m ³ rise allied to 7% high COVID 19 cases. IRR 1.07 (CI 0.97-1.18 µg/m ³).
Meo et al ³¹	10 counties in California USA	Mean cases before wildfire 64.13 ± 2.65 100.62 ± 5.03 ; deaths: $0.89\pm0.05\ 2.21\pm$ 0.211.	March 19 to Au- gust 15, 2020; & August 15 to Sept 22, 2020	PM2.5 AOR=1.068; CI=1.059-1.077, cases, AOR 1.886; CI=1.427-1.997, deaths, AOR= 1.140; 95% CI =1.076- 1.209 cases and deaths increased by 56.9%, & 148.21%
Zhou et al ³²	USA		March 15 to Dec 16, 2020	COVID-19 cases raised by 11.7%; CI: 8.2-16.0; and deaths 8.4%; CI: 2.1-15.3
Konstantinoudis et al ³⁹	England	38,573 COVID-19 deaths	up to June 30, 2020	1 μg/m3 rise PM2.5 linked to 1.4% (CI: -2.1%-5.1%) high SARS-CoV-2 deaths.
Sahoo ⁴⁰	288 regions in India		Jan 23-April 23, 2020	10-µg/m ³ increase related to 2.21% cases (95% CI 1.13 to 3.29)
Valdés et al ⁴¹	Chile, South Amer- ica	4574 cases and 84 deaths per 100,000	2020	PM2.5 μg/m ³ increased 1.3% cases (CI 1.008-1.017. No link with mortality
Yao et al ⁴²	China 49 cities	82,214 cases	April 12, 2020	PM2.5 μg/m ³ increased case and fatality rate 0.24% (CI 0.01%–0.48%)
Zheng et al ⁴³	China	81,132 cases	12/31/19 to 3/6/20	10-µg/m ³ PM _{2.5} rise linked to 32.30% upsurge in cases (95% CI 22.5-42.4%)
Azuma et al ⁴⁴	28 areas in Japan	6529 cases	March 13 to April 6, 2020	The average number of cases per million people was 132.5 (IQR 67.3-171.1). PM2.5 has no linkage with COVID-19 cases.
Jiang et al ⁴⁵	Wuhan, Xiaogan, and Huanggang, China.	Jan 25, Feb 29, 2020	Jan 25 to Feb 29, 2020	PM2.5 has relative risk with COVID-19 incidences in China: "Wuhan 1.036 (95% CI: 1.032-1.039); Xiaogan 1.059 (95% CI: 1.046-1.072); and Huanggang 1.144 (95% CI, 1.12-1.169)".

Table continued

Author and study year	Study/Sample Collection site	Sample size during the study period	Time of study	PM2.5 and COVID-19 outcomes
Ma et al ⁴⁶	Shanghai, China	337 cases	Jan 21, 2020- Feb 29, 2020 lag days 0-14	10-μg/m ³ rise in PM2.5 significantly increase (7.8%) daily COVID-19 cases. 1.101 (95% CI: 1.034–1.210)
Lorenzo et al ⁴⁷	Singapore	1375 cases & 6 deaths during study	Jan 23, 2020-, April 6, 2020.	One-unit 1µg/m3 significantly increase 22.6% cases (95% CI: 12.0%-34.3%).
Bowe et al ⁴⁸	USA	25,422 hospitalized cases	March 2 2020 &Feb15,2021.	1.9 μg/m3 PM2.5 was linked to 10% (95% CI: 8%-12%) rise in the risk
Mendy et al ⁴⁹	USA	14,783 COVID-19 patients	March 13, 2 to Sept 30, 2020.	PM2.5 related to 18% high hospital rate, 1.18; 95% CI: 1.11-1.26).
Lie et al ⁵⁰	554, counties USA	2.1 million cumulative cases	March 1 and June 30, 2020	A 10μg/m3 PM2.5 rise, daily cases increase by 9.41% (CI: 8.77%-10.04%)

Table I. (Continued). Associations of ambient air pollutants particulate matter PM2.5 with COVID-19 incidence and mortality.

Data Extraction

All the selected original articles were carefully examined. The required information was recorded, including the authors' name, publication year, geographical location, pollutants exposure, lag days, study outcomes, incidence, mortality, effect size, the percentage increased, and 95% CI. The findings were recorded, and a third research team member resolved any difference in opinion.

Statistical Analysis and Ethical Approval

The studies and their outcome were gathered from the publicly available studies and did not involve the patients or their medical records directly; hence no ethical approval was obtained. The findings were entered into the computer, and their outcome was recorded and analyzed.

Results

In this study, based on the primary keywords and studies published from December 2019 to September 30, 2021, we have identified 492 articles in the different web engines and finally included 26 original studies (Figure 1). The studies assessed and displayed the impact of air pollutants, PM2.5, PM10, and SARS-CoV-2 cases and deaths in different countries worldwide. The outcome of the included studies is summarized in Tables I-IV. The primary analyses were based on cross-sectional, retrospective cohorts, and time-series studies.

All the 26 studies were original, published the findings on the impact of ambient air pollutants particulate matter PM2.5, and PM10 on SARS-CoV-2 cases and deaths worldwide. Twenty-six studies on PM2.5 and SARS-CoV-2 cases and deaths were originated from the United States of America (9), China (5), Italy (3), India (1), worldwide (1), and one study each from England, Spain, Canada, Saudi Arabia, Singapore, Japan and Iran (Table I).

Out of these studies 26 studies, 24 studies established a substantial relationship between PM2.5 and SARS-CoV-2 cases and deaths. It was also found that increased air pollutants PM2.5 was significantly linked with an increased number of SARS-CoV-2 cases and deaths (Tables I, II, III, Figures 2, 3).

Table II demonstrates the total of 11 studies that show the association between PM10 and SARS-CoV-2 cases and deaths. These studies on PM10 and SARS-CoV-2 originated from China (5), Italy (3), Spain (1), India (1), and one stuy's findings were based on the data five contents (Table II, Figure 3). Out of 11 studies, ten studies found a substantial positive association between PM10 and SARS-CoV-2 cases and deaths (Table II). It was recognized that increased air pollutants PM10 was significantly linked with an increased number of SARS-CoV-2 cases and deaths (Table II). It was also identified that PM2.5 and PM10 were associated with 15.08% and 11.44 increased COVID-19 cases, and 9.26% and 0.75% COVID-19 deaths, respectively.

Discussion

Environmental pollution is a most significant challenge and threat to this highly advanced and most modern world. Air pollution has an impact on climate change, weather conditions, and public health. Initially, the concept of toxic effects of air

Author and study year	Study location	Sample size	Time of Study	PM 10 and COVID-19 outcomes	
DeAngelis et al ¹⁵	Lombardy, an industrial city, Italy.	61,377 COVID-19 cases and 40,401 deaths	Feb 20-April 16, 2020; Mar 1-April 30,2020	10 μg/m ³ PM10 linked to 34% increased cases; IRR 1.23, (CI 1.13-1.33, SMR 1.22 (95 % CI 1.14-1.32	
Solimini et al ¹⁷	5 continents, 730 regions	237,749 SARS- CoV-2 cases	May 30, 2020	10 μg/m ³ PM10 allied with 11.5% rise (CI 7.8-14.9%) cases	
Zhu et al ²⁰	120 cities, 4 munici- palities in China	About 58,000 cases	Jan-Feb-2020	PM10 10μg/m3 linked to 1.76% rise in cases (95% CI 0.89 to 2.63%) lag 0-14 days	
Bianconi et al ²¹	Italy 110 provinces	105,792 cases and 12,428 deaths	March 1, to March 31, 2020	PM10 related to more COVID -19 cases β 0.61, <i>p</i> =0.031 and mortality β 0.61 <i>p</i> =0.029.	
Sahoo ⁴⁰	288 regions in India	21,700 cases	Jan 23-April 23, 2020	10 µg/m ³ PM10 increase linked to 2.67% bigger cases (95% CI 0.33 to 5.01%) Lag 0-14	
Yao et al ⁴²	China 49 cities	82,214 cases	Up to April 12, 2020	PM10 μg/m3 increase cases and fatality rate 0.26% (CI 0.00%-0.51%)	
Zheng et al ⁴³	China 324 cities	81,132 COVID-19 cases 50,783 cases in mainland, China	Dec 31, 2019- March 6, 2020	Each 10 µg/m ³ PM10 increase linked to 14.2% rise cases (95% CI 7.9 to 20.5%).	
Jiang et al ⁴⁵	Wuhan, Xiaogan, and Huanggang, China.	Jan 25, Feb 29, 2020	Jan 25 to Feb 29, 2020	PM10 has negative association with COVID-19 incidences 0.915 (95% CI, 0.896-0.934).	
Ma et al ⁴⁶	Shanghai, China	337 COVID-19 cases	Jan 21, 2020- Feb 29, 2020. lag days 0-7 & 0-14 days	PM,10 10-μg/m3 rise was linked to 13.9% increase in cases (95% CI: 1.005-1.314)	
Setti et al ⁵¹	110 Italian provinces	17660 of the 60.4 million inhabi- tants in Italy	February 24 to March 13	Low polluted regions had a median of 0.03 cases, while in high polluted areas, 0.26 cases over 1000 residents	
Saez et al ⁵²	Catalonia Spain 178 counties		February 25 to May 16, 2020.	1 μm/m3 PM10 had positive link with 3.0% (95% ICr: -1.4%,7.44%) Increased cases	

Table II. Associations of ambient air pollutants particulate matter PM10 with COVID-19 incidence and mortality.

pollutants was limited to the respiratory system. However, literature acknowledges that air pollutants are harmful to every cell of the human body. During the present pandemic of COVID-19, the community concerns are significantly increased once the studies highlighted that those environmental pollutants are the primary source for the spread of the SARS-CoV-2 diseases globally¹³. The present study identified that PM2.5 and PM10 positively linked with increased SARS-COV-2 daily cases and deaths.

The particulate matter PM10 particles have an aerodynamic diameter equal to or more than 10 (PM10 μ m), and PM2.5 are fine inhalable elements with an aerodynamic diameter of 2.5 μ m or less. The fine PM particles are the leading envi-

ronmental risk factor, as they can penetrate deep into the human body (Figure 2). After the initial outbreak of SARS-CoV-2 in China, SARS-CoV-2 spreaded very fast across the globe. Among various factors, in such geographical differences, a possible role for environmental pollution has been hypothesized. This study provides evidence that PM2.5 and PM10 cause the spread of the SARAS-CoV-2 disease in different regions. The literature supports the hypothesis and offers favorable context between air pollutants and spreading the SARS-CoV-2 illness¹⁴.

De Angelis et al¹⁵ described the relationship of PM2.5 and PM10 pollutants with SARS-CoV-2 incidence and mortality. A $10-\mu g/m^3$ upsurge in PM2.5 caused a 58% amplified risk of COVID oc-

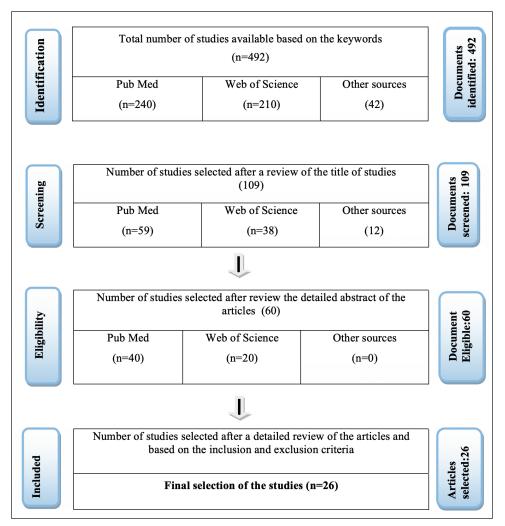


Figure 1. PRISMA Flow diagram for the selection of studies.

currence in Lombardy, Italy¹⁵. Sharma et al¹⁶ 2021 published a study in 10 nations and found that PM2.5 was allied with the growing amount of SARS-CoV-2 cases and deaths. Similarly, Solomini et al¹⁷ performed a sizeable sample-sized study of 237,749 patients from sixty-three countries in five continents and found a 10- μ g/m³ increase in PM_{2.5} was allied with an 8.1% rise in COVID-19 cases.

While considering the studies from the US, Wu et al¹⁸ performed a sizeable sample-sized study of 3,000 counties and reported that 1 μ g/m³ rise in PM2.5 was correlated to an 8% increase in COVID-19 deaths. Another study from Mexico, USA, demonstrated that one unit rise in μ g/m³ PM2.5 caused a 7.4% high risk of COVID-19 deaths¹⁹. Similar to these studies, Zhu et al²⁰ completed a survey in about 120 towns in China. The authors found that 10 μ g/m³ upsurge in PM2.5 caused a 2.24% rise in COVID-19 mortality. A similar association has been established between PM2.5 and increased COVID-19 morbidity and mortality in a couple of Italian studies²¹⁻²³.

Another large sample-sized study²⁴ based on the 107 Italian regions showed that the COVID-19 cases and deaths were higher in areas closest to Lodi, Lombardy, and the impact was most probably due to high ozone levels. In contradiction to all these studies, Adhikari and Yin²⁵ reported that increased PM2.5 was related to a lower risk of COVID-19 cases and mortality.

Hadei et al²⁶ demonstrated that PM2.5 has a rising risk for SARS-CoV-2 incidence and mortality in three different cities in Iran. In another study, Stieb et al²⁷ found that one μ g/m³ growth of PM2.5 has been linked with a 7% increase in COVID-19 cases. Liu et al²⁸ studied various global nations, including USA, Canada, Korea, China, Japan, Russia,

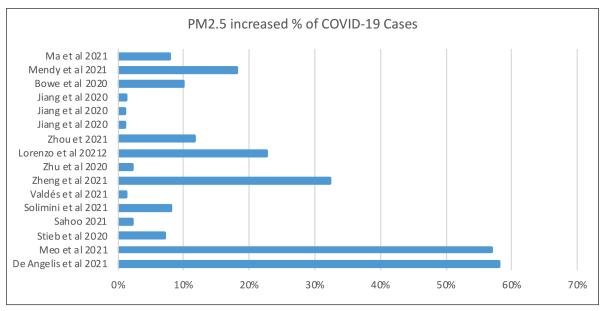


Figure 2. Association of PM2.5 with an increasing percentage of COVID-19 cases.

England, France, and Germany, and found high environmental levels of PM2.5 PM10 related to increased rates of SARS-CoV-2 cases. The authors noticed that the impact of PM2.5 on COVID-19 incidence was more in England, Germany, France, the USA, Canada, and Russia. However, PM10 linkage with COVID-19 occurrence was more in Russia, England, Germany, and France²⁸.

Kolluru et al²⁹ performed a study in five metropolitan cities, Delhi, Kolkata, Mumbai, Bangalore, and Chennai, and reported that high PM2.5 and PM10 were related to the significantly increased COVID-19 cases and deaths. Another study³⁰ based on about 11 million COVID-19 cases from six South Asian countries, including Afghanistan, Bangladesh, India, Nepal, Pakistan, and Sri Lanka demonstrated that PM2.5 was linked with rising rates of COVID-19 cases and death.

Meo et al⁸ published a study associated with air pollutants and SARS-CoV-2 cases and deaths in London, England. The study findings suggested that high air pollutants were related to the high number of COVID-19 cases and deaths. Moreover, each 1 μ g/m³ upsurge in PM2.5 increases 2.3% SARS-CoV-2 cases and deaths. Meo et al³¹

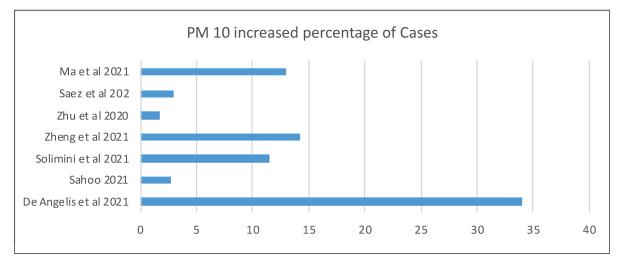


Figure 3. Association of PM10 with an increasing percentage of COVID-19 cases.

		Increased	PM _{2.5} cases and 95% CI			
Author & Study Year	Study Region	percentage of COVID-19 Cases	Minimum		Maximum	Average
PM2.5 and COVID 19 cas	ses (%)	1				
Bowe et al 48	USA	10	8		12	10
De Angelis et al ¹⁵	Lombardy, Italy	58	1.16		1.4	1.28
Jiang et al45	Wuhan, China	1.04	1.023		1.039	1.031
Jiang et al45	Xiaogan, China	1.06	1.046		1.039	1.042
Jiang et al ⁴⁵	Huanggang, China	1.14	1.12		1.69	1.405
Lorenzo et al ⁴⁷	Singapore	22.60	12		34.3	23.15
Ma et al ⁴⁶	Shanghai, China	7.80	1.034		1.21	1.122
Mendy et al49	USA	18.00	1.11		1.26	1.185
Meo et al ³¹	California, USA	56.90	1.427		1.997	1.71
Sahoo ⁴⁰	India	2.21	1.13		3.29	2.21
Solimini et al ¹⁷	Worldwide	8.10	5.4		10.5	7.95
Stieb et al ²⁷	Canada	7.00	0.97		1.18	1.075
Valdés et al ⁴¹	Chile	1.30	1.008		1.017	1.012
Zheng et al ⁴³	China	32.30	22.5		42.4	32.45
Zhou et al ³²	USA	11.70	8.2		16	12.1
Zhu et al 20	120 Cities, China	2.24	1.02		3.46	2.24
PM10 and COVID-19 cas	es (%)					
De Angelis et al ¹⁵	Lombardy, Italy	34	1.16	1.4		1.28
Ma et al ⁴⁶	Shanghaie, China	13	22.5 42.4			32.45
Saez et al ⁵²	Spain	3	1.008 1.017		7	1.0125
Sahoo ⁴⁰	India	2.67	1.427 1.997		7	1.712
Solimini et al ¹⁷	Worldwide	11.5	0.97 1.18			1.075
Zheng et al ⁴³	China	14.2	1.13 3.29			2.21
Zhu et al ²⁰	120 Cities, China	1.76	5.4 10.5			7.95

Table III. Association of PM2.5 and PM10 with COVID-19 cases.

Table IV. Association of PM2.5 with COVID-19 deaths.

		PM2.5 link with	PM2.5 Deaths and 95% Cl			
Author & Study year	Study Region	COVID-19 deaths (%)	Minimum	Maximum	Average	
De Angelis et al ¹⁵	Lombardy, Italy	23	1.09	1.24	1.165	
Konstantinoudis et al ³⁹	England	5.4	2.5	8.4	5.45	
Meo et al ³¹	California USA	148.21	1.076	1.209	1.1425	
Yao et al ⁴²	China, 49 cities	0.24	0.01	0.48	0.245	
Zhou et ³²	USA	8.4	2.1	15.3	8.7	

conducted another study in ten counties in California, which were affected by the wildfires. The authors reported that during the wildfire, the PM2.5 levels amplified by 221%; and during the same wildfire period, COVID-19 cases ascended by 57%, the deaths increased by 148%³¹. On the other hand, Meo et al¹⁰ reported that high PM2.5 levels significantly linked to elevated rates of COVID-19 cases in San Francisco during the same wildfire period.

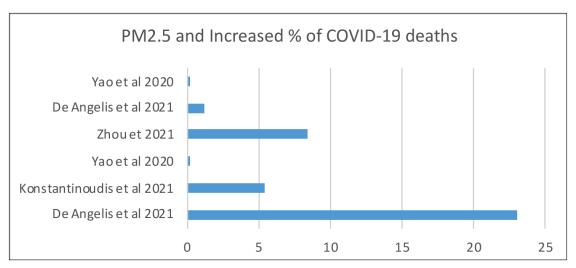


Figure 4. Association of PM2.5 and PM10 with a rising percentage of COVID-19 deaths.

Zhou et al³² executed a study on the four-week impact of air pollutants on COVID-19 cases and deaths. The authors identified that out of 92 counties, 52 counties in the US had a positive association with PM2.5 and a high risk of COVID-19 cases and deaths. It was found that a day-to-day increase of 10 µg/m³ in PM2.5 for about one month period was linked with a 12.0% increase in COVID-19 cases. However, in the few counties, an enormous impact of a rise of 10 μ g/m³ in PM2.5 was related to a 65.3% and 71.6% increase in COVID-19 cases. While about deaths, the research team members reported that 17 counties had a positive relationship between PM2.5 and COVID-19 deaths. The everyday increase of 10 $\mu g/m^3$ in PM2.5 for about one month was linked to an 8.4% rise in COVID-19 deaths. However, Calaveras, CA, and San Bernardino, CA had the maximum death rate of 52.8% and 65.9%³². Curtis³³ conducted a well-designed analysis of many studies on air pollutants, PM2.5, PM10, NO₂, O₃, SO₂, and their outcome on SARS-CoV-2 cases and deaths. The conclusion was based on the global data that each µg/m³ rise in PM2.5 was projected to increase COVID-19 by as much as 0.22 to 8%. All these pieces of evidence demonstrated an association and a possible causal link between fine and coarse particulate matter PM2.5 and PM10 and incidence and mortality of COVID-19.

Biological Plausibility for SARS-CoV-2 and Air Pollutants

The present study's convincing findings have biological plausibility that air pollutants increase the risk for COVID-19 cases and deaths. Air pollutants predispose people to develop COVID-19 associated enhancing virus-induced tissue inflammation, immunopathology, oxidative stress, and lung damage^{34,35}. The air pollutants PM can provide an appropriate atmosphere for transporting the SARS-CoV-2 virus at greater distances, and PM2.5 can cause lung inflammation, increase vulnerability, and COVID-19 disease severity³⁶⁻³⁸. The increasing evidence supports the hypothesis that ambient air pollutants PM2.5 and PM10 provide a suitable platform for carrying the SARS-CoV-2 virus and its transport at the lung levels.

Moreover, SARS-CoV-2 has an affinity for the ACE2 receptor and upregulates ACE2 expression to pollutant allied oxidation and inflammation of the lungs. These facts support the hypothesis that PM can increase the risk of SARS-CoV-2 *via* ACE2 expression and worsen lung injury by increasing inflammation. The available points propose that exposure to air pollutants PM2 causes alveolar ACE-2 receptor overexpression, increases the viral load, depletes ACE-2 receptors, and impairs the host defense mechanism, resulting in a poor outcome³⁸.

Conclusions

The air pollutants PM2.5 and PM10 increase SARS-COV-2 day-to-day incidence and mortality in various geographical regions worldwide. The study findings can strengthen the hypothesis that air pollution is a leading cause of the COVID-19 pandemic. The health authorities handle this challenging global pandemic through public cognizance and a multidisciplinary scientific approach. The health officials, national and international environmental protection organizations should address the role of air pollution in the spread of SARS-CoV-2 cases and deaths. Moreover, strict policies should be developed to minimize air pollution and combat global health issues like the COVID-19 pandemic.

Acknowledgments

We thank the Researchers supporting project number (RSP-2021/47), King Saud University, Riyadh, Saudi Arabia.

Conflicts of interest

The authors declare no conflicts of interest.

References

- Meo S, Abukhalaf AA, Alomar AA, Al-Beeshi I., Alhowikan A, Shafi KM, Meo AS, Usmani AM, Akram J. Climate and COVID-19 pandemic: effect of heat and humidity on the incidence and mortality in world's top ten hottest and top ten coldest countries. Eur Rev Med Pharmacol Sci 2020; 24: 8232-8238.
- Manisalidis I, Stavropoulou E, Stavropoulos A, Bezirtzoglou E. Environmental and Health Impacts of Air Pollution: A Review. Front Public Health 2020; 8: 14.
- World Health Organization. Air Pollution. Available at: https://www.who.int/health-topics/air-pollution#tab=tab_1. Cited date August 20, 2021.
- Musoke D, Ndejjo R, Atusingwize E, Halage AA. The role of environmental health in One Health: A Uganda perspective. One Health 2016; 2: 157-160.
- Brandt EB, Mersha TB. Environmental determinants of coronavirus disease 2019 (Covid-19) Curr Allergy Asthma Rep 2021; 21: 15.
- Phillips N, Park IW, Robinson JR, Jones HP. The perfect storm: COVID-19 health disparities in US blacks. J Racial Ethn Health Disparities 2020; 23: 1-8
- Meo SA, Abukhalaf AA, Alomar AA, Sumaya OY, Sami W, Shafi KM, Meo AS, Usmani AM, Akram J. Effect of heat and humidity on the incidence and mortality due to COVID-19 pandemic in European countries. Eur Rev Med Pharmacol Sci 2020; 24: 9216-9225.
- Meo SA, Adnan Abukhalaf A, Sami W, Hoang TD. Effect of environmental pollution PM2.5, carbon monoxide, and ozone on the incidence and mortality due to SARS-CoV-2 infection in London, United Kingdom. J King Saud Univ Sci 2021; 33: 101373.

- Copat C, Cristaldi A, Fiore M, Grasso A, Zuccarello P, Signorelli SS, Conti GO, Ferrante M. The role of air pollution (PM and NO2) in Covid-19 spread and lethality: a systematic review. Environ Res 2020; 191: 110129.
- 10) Meo SA, Abukhalaf AA, Alomar AA, Alessa OM. Wildfire and COVID-19 pandemic: effect of environmental pollution PM-2.5 and carbon monoxide on the dynamics of daily cases and deaths due to SARS-COV-2 infection in San-Francisco USA. Eur Rev Med Pharmacol Sci 2020; 24: 10286-10292.
- Meo SA, Almutairi FJ, Abukhalaf AA, Alessa OM, Al-Khlaiwi T, Meo AS. Sandstorm and its effect on particulate matter PM 2.5, carbon monoxide, nitrogen dioxide, ozone pollutants, and SARS-CoV-2 cases and deaths. Sci Total Environ 2021; 795:148764.
- Salah HM, Sharma T, Mehta J. Smoking doubles the mortality risk in Covid-19: a meta-analysis of recent reports and potential mechanisms. Cureus 2020; 12: e10837.
- 13) Meo SA, Abukhalaf AA, Alessa OM, Alarifi AS, Sami W, Klonoff DC. Effect of Environmental Pollutants PM2.5, CO, NO2, and O3 on the Incidence and Mortality of SARS-CoV-2 Infection in Five Regions of the USA. Int J Environ Res Public Health 2021; 18: 7810.
- Fattorini D, Regoli F. Role of the chronic air pollution levels in the Covid-19 outbreak risk in Italy. Environ Pollut 2020; 264: 114732.
- 15) De Angelis E, Renzetti S, Volta M. COVID-19 incidence and mortality in Lombardy, Italy: An ecological study on the role of air pollution, meteorological factors, demographic and socioeconomic variables. Environ Re. 2021; 195: 110777.
- 16) Sharma GD, Bansal S, Yadav A. Meteorological factors, COVID-19 cases, and deaths in top 10 most affected countries: an econometric investigation. Environ Sci Pollut Res 2021; 28; 28624-28639.
- 17) Solimini A, Filipponi F, Fegatelli DA, Caputo B, De Marco CM, Spagnoli A, Vestri AR. A global association between Covid-19 cases and airborne particulate matter at a regional level. Sci Rep 2021; 11: 6256.
- 18) Wu X, Nethery RC, Sabath MB, Braun D, Dominici F. Air pollution and COVID-19 mortality in the United States: Strengths and limitations of an ecological regression analysis. Sci Adv 2020; 6: eabd4049.
- 19) López-Feldman A, Heres D, Marquez-Padilla F. Air pollution exposure and Covid-19: a look at mortality in Mexico City using individual-level data. Sci Total Environ 2021; 756: 143929.
- 20) Zhu Y, Xie J, Huang F, Cao L. Association between short-term exposure to air pollution and Covid-19 infection: evidence from China. Sci Total Environ 2020; 727: 138704.
- Bianconi V, Bronzo P, Banach M, Sahebkar A, Mannarino MR, Pirro M. Particulate matter pollu-

tion and the Covid-19 outbreak: results from Italian regions and provinces. Arch Med Sci 2020; 16: 985-992.

- 22) Cascetta E, Henke I, Di Francesco L. The Effects of Air Pollution, Sea Exposure, and Altitude on COVID-19 Hospitalization Rates in Italy. Int J Environ Res Public Health 2021; 18: 452.
- 23) Fiasca F, Minelli M, Maio D, Minelli M, Vergallo I, Necozione S, Mattei A. Associations between COVID-19 incidence rates and the exposure to PM2.5 and NO(2): a Nationwide observational study in Italy. Int J Environ Res Public Health 2020; 17: 9318.
- 24) Tripepi G, Plebani M, Iervasi G, Gori M, Leonardis D, D'Arrigo G, Fusaro M. Distance from the outbreak of infection, ozone pollution and public health consequences of SARS-CoV-2 epidemic: the HOPE method. Eur J Pub Health 2021; 31: 7-12
- 25) Adhikari A, Yin J. Short-Term Effects of Ambient Ozone, PM2.5, and Meteorological Factors on COVID-19 Confirmed Cases and Deaths in Queens, New York. Int J Environ Res Public Health 2020; 17: 4047.
- 26) Hadei M, Hopke PK, Shahsavani A, Raeisi A, Jafari AJ, Yarahmadi M, Farhadi M, Rahmatinia M, Bazazpour S, Bandpey AM, Zali A, Kermani M, Vaziri MH, Aghazadeh M. Effect of short-term exposure to air pollution on COVID-19 mortality and morbidity in Iranian cities. J Environ Health Sci Eng 2021; 28: 1-10.
- 27) Stieb DM, Evans GJ, To TM. Brook JR, Burnett RT. An ecological analysis of long-term exposure to PM(2.5) and incidence of Covid-19 in Canadian health regions. Environ Res 2020; 191: 110052.
- Liu Q, Xu S, Lu X. Association between air pollution and COVID-19 infection: evidence from data at national and municipal levels. Environ Sci Pollut Res Int 2021; 28: 37231-37243.
- 29) Kolluru SSR, Patra AK, Nazneen, Shiva Nagendra SM. Association of air pollution and meteorological variables with COVID-19 incidence: Evidence from five megacities in India. Environ Res 2021; 195: 110854.
- 30) Jain M, Sharma GD, Goyal M, Kaushal R, Sethi M. Econometric analysis of COVID-19 cases, deaths, and meteorological factors in South Asia. Environ Sci Pollut Res Int 2021; 28: 28518-28534.
- 31) Meo SA, Abukhalaf AA, Alomar AA, Alessa OM, Sami W, Klonoff DC. Effect of environmental pollutants PM-2.5, carbon monoxide, and ozone on the incidence and mortality of SARS-COV-2 infection in ten wildfire affected counties in California. Sci Total Environ 2021; 757: 143948.
- 32) Zhou X, Josey K, Kamareddine L, Caine MC, Liu T, Mickley LJ, Cooper M, Dominici F. Excess of COVID-19 cases and deaths due to fine particulate matter exposure during the 2020 wildfires in the United States. Sci Adv 2021; 7: eabi8789.
- Curtis L. PM2.5, NO2, wildfires, and other environmental exposures are linked to higher Covid

19 incidence, severity, and death rates. Environ Sci Pollut Res Int 2021: 1-19.

- 34) Navarro KM, Clark KA, Hardt DJ, Reid CE, Lahm PW, Domitrovich JW, Butler CR, Balmes JR. Wildland firefighter exposure to smoke and CO-VID-19: A new risk on the fire line. Sci Total Environ 2021; 760:144296.
- 35) Woodby B, Arnold MM, Valacchi G. SARS-CoV-2 infection, COVID-19 pathogenesis, and exposure to air pollution: What is the connection? Ann N Y Acad Sci 2021; 1486: 15-38.
- 36) Ali N, Islam F. The Effects of Air Pollution on CO-VID-19 Infection and Mortality-A Review on Recent Evidence. Front Public Health 2020; 8: 580057.
- 37) Comunian S, Dongo D, Milani C, Palestini P. Air Pollution and Covid-19: The Role of Particulate Matter in the Spread and Increase of Covid-19's Morbidity and Mortality. Int J Environ Res Public Health 2020; 17: 4487.
- Frontera A, Cianfanelli L, Vlachos K, Landoni G, Cremona G. Severe air pollution links to higher mortality in COVID-19 patients: The "double-hit" hypothesis. J Infect 2020; 81: 255-259.
- 39) Konstantinoudis G, Padellini T, Bennett J, Davies B, Ezzati M, Blangiardo M. Long-term exposure to air-pollution and COVID-19 mortality in England: A hierarchical spatial analysis. Environ Int 2021; 146: 106316.
- 40) Sahoo MM. Significance between air pollutants, meteorological factors, and COVID-19 infections: probable evidences in India. Environ Sci Pollut Res Int 2021; 28: 40474-40495.
- 41) Valdés Salgado M, Smith P, Opazo MA, Huneeus N. Long-Term Exposure to Fine and Coarse Particulate Matter and COVID-19 Incidence and Mortality Rate in Chile during 2020. Int J Environ Res Public Health 2021; 18: 7409.
- 42) Yao Y, Pan J, Wang W, Liu Z, Kan H, Qiu Y, Meng X, Wang W. Association of particulate matter pollution and case fatality rate of Covid-19 in 49 Chinese cities. Sci Total Environ 2020; 741: 140396.
- 43) Zheng P, Chen Z, Liu Y, Song H, Wu CH, Li B, Kraemer MUG, Tian H, Yan X, Zheng Y, Stenseth NC, Jia G. Association between coronavirus disease 2019 (COVID-19) and long-term exposure to air pollution: evidence from the first epidemic wave in China. Environmental Pollution 2021; 276: 116682.
- 44) Azuma K, Kagi N, Kim H, Hayashi M. Impact of climate and ambient air pollution on the epidemic growth during COVID-19 outbreak in Japan. Environ Res 2020; 190: 110042.
- 45) Jiang Y, Wu XJ, Guan YJ. Effect of ambient air pollutants and meteorological variables on CO-VID-19 incidence. Infect Control Hosp Epidemiol 2020; 41: 1011-1015.
- 46) Ma Y, Cheng B, Shen J. Association between environmental factors and COVID-19 in Shanghai, China. Environ Sci Pollut Res Int 2021; 28: 45087-45095.

- Lorenzo JSL, Tam WWS, Seow WJ. Association between air quality, meteorological factors, and COVID-19 infection case numbers. Environ Res 2021; 197: 111024.
- 48) Bowe B, Xie Y, Gibson AK, Cai M, van Donkelaar A, Martin RV, Burnett R, Al-Aly Z. Ambient fine particulate matter air pollution and the risk of hospitalization among COVID-19 positive individuals: Cohort study. Environ Int 2021; 154: 106564.
- 49) Mendy A, Wu X, Keller JL, Fassler CS, Apewokin S, Mersha TB, Xie C, Pinney SM. Air pollution and the pandemic: Long-term PM2.5 exposure and disease severity in COVID-19 patients. Respirology 2021; 26: 1181-1187.
- 50) Xu L, Taylor JE, Kaiser J. Short-term air pollution exposure and COVID-19 infection in the United States. Environ Pollut 2021 Nov 2: 118369.
- 51) Setti L, Passarini F, De Gennaro G, Barbieri P, Licen S, Perrone MG, Piazzalunga A, Borelli M, Palmisani J, Di Gilio A, Rizzo E, Colao A, Piscitelli P, Miani A. Potential role of particulate matter in the spreading of COVID-19 in Northern Italy: first observational study based on initial epidemic diffusion. BMJ Open 2020; 10: e039338.
- 52) Saez M, Tobias A, Barceló MA. Effects of longterm exposure to air pollutants on the spatial spread of COVID-19 in Catalonia, Spain. Environ Res 2020; 191: 110177.

7564