Editorial – Coronavirus disease 2019 and people living with HIV: clinical considerations

M. CECCARELLI¹, G. NUNNARI², B.M. CELESIA¹, G.F. PELLICANÒ³, E. VENANZI RULLO², M. BERRETTA⁴, B. SANTI CACOPARDO¹

Coronavirus disease (COVID)-19 pandemic temporarily overshadowed other health problems. However, it revealed the extreme fragility of our health system in protecting those who had the highest risk during the pandemic^{1,2}. Elders, people residing in long-term healthcare facilities and nursing homes and people affected by other chronic diseases were the categories most at risk during this pandemic³.

A particular subset of people affected by chronic diseases are people living with HIV (PLWH). PLWH are at risk for a high number of comorbidities, such as cancers, chronic inflammatory disorders, chronic kidney failure⁴⁻¹². Therefore, at the beginning of the pandemics, a huge concern surrounded this special population.

However, PLWH were not hugely affected by COVID-19. Literature reports only few patients around the world of co-infected individuals, and most of them recovered (Table I). Zhu et al¹³ presented an interesting thought about immunocompromised patients, which was at a later time questioned by Joob et al¹⁴ on the basis of the fact that no identified inter-relationship between the two viruses had emerged at the time.

However, a subtle link between the two viruses could be hypothesized. First of all, it has been shown that SARS-CoV-2 is able to infect T-lymphocytes, even though it is not able of active replication inside this type of cells¹⁵. This fact partially provides an explanation to the severe lymphopenia we see in most of the patients affected by COVID-19. Moreover, it might explain why just a few cases of co-infection have been seen, as the two viruses might compete for the infection of T-lymphocytes.

Secondly, it has been shown that SARS-CoV-2 elicits a T helper $(T_H)17$ response at a later time since the onset of symptoms, especially in recovering patients¹⁶. Literature reports that subsets of T_H17 contribute to the establishment and persistence of HIV reservoir during combined antiretroviral therapy (cART)¹⁷. Therefore, a persistent activity, even at a low level, of T_H17 cells might help fighting a SARS-CoV-2 infection.

Third, the natural history of HIV-infection is characterized by a persistently increased level of interferon (IFN)- γ^{18} . SARS-CoV-2 shares a lot of pathogenetic characteristics with SARS-CoV¹. SARS-CoV has been demonstrated to be able to impair the production of IFN type I and II through its nucleocapsid (N) protein. Similarly, it has been shown that SARS-CoV-2 does not elicit any kind of IFN response¹⁹. As a result, the persistent inflammatory state with persistently high levels of IFN- γ characterizing HIV infected patients, might contribute to a quicker response to SARS-CoV-2. This hypotheses agree with those presented by other authors²⁰.

Another interesting point to discuss is the use of antiretroviral drugs (ARVs) for the treatment of COVID-19. Some might discuss that PLWH might have been protected by the use of drugs active on SARS-CoV-2. However, Riva et al²¹ and Gervasoni et al²² showed that their patients were not protected by the use of particular ARVs, such as darunavir (DRV). Moreover, in agreement with Härter et al²³

¹Department of Clinical and Experimental Medicine, Unit of Infectious Diseases, University of Catania, Catania, Italy

²Department of Clinical and Experimental Medicine, Unit of Infectious Diseases, University of Messina, Messina, Italy

³Department of Human Pathology of the Adult and Developmental Age "G. Barresi", Unit of Infectious Diseases, University of Messina, Messina, Italy

⁴Department of Medical Oncology-Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy

Table I. Cases of SARS-CoV-2 – HIV co-infection reported in literature (up-to-date 14 May 2020).

Reference	#Of patients	Age (years)	Sex	Symptoms	HIV-RNA (cps/mL)	CD4+ (cells/µL)	Treatment	Outcome
Riva et al ²¹	3	62	M	Dry cough Fever Respiratory failure	< 20	441	DRV/c switched to LPV/r	
		63	M	Fever	< 20	743	DRV/c switched to LPV/r	Recovery
		57	F	Fever Cough			DRV/c	Recovery
Zhu et al ¹³	1	61	М	Fever Dry cough Dyspnea		266	LPV/r	Recovery
Gervasoni et al ²²	47	51 ± 11 (28 proven, 19 probable)	M (76%)	Fever F (24%) Respiratory failure	< 20 Cough 72 (1 case) 134 (1 case)	> 350 52 (1 case)	Various treatment	45 recovery 2 death
Härter et al ²³	33	44 33 38 53 60 51 42 65 82 53 32 31 37 37 36 68 42 35 55 55	M F M M M M M M M M M M M M M M M M M M	Mild Mild Mild Mild Mild Mild Mild Mild	< 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50	754 619 1187 810 892 402 1087 1122 379 285 731 1000 946 402 718 499 613 538 780 69	Various treatment	Recovery

Table continued

Table I *(Continued).* Cases of SARS-CoV-2 – HIV co-infection reported in literature (up-to-date 14 May 2020).

Reference	#Of patients	Age (years)	Sex	Symptoms	HIV-RNA (cps/mL)	CD4+ (cells/µL)	Treatment	Outcome
		58	M	Mild	< 50	573		Recovery
		30	M	Mild	< 50	608		Recovery
		26	M	Mild				Recovery
		59	M	Critical	< 50	718		Death
		31	M	Mild	< 50	647		Recovery
		62	M	Mild	< 50	692		Recovery
		53	M	Mild	< 50	717		Recovery
		54	M	Mild	< 50	437		Recovery
		70	M	Mild	< 50	336		Recovery
		48	M	Mild	< 50	1715		Recovery
		35	M	Mild	< 50	490		Recovery
		45	F	Mild	< 50	234		Recovery
		66	M	Mild	< 50	1250		Recovery
Blanco et al ²⁴	5	40	Т	Fever	4 cases TND	4 cases	Various treatments	Recovery
				Cough		> 450		
				Malaise	1 case ART naïve			
				Headache	and	1 case ART naïve		
					very late presenter	and		
						very late presenter		
		49	M	Fever				Recovery
				Cough				_
		29	M	Fever				Recovery
				Cough				
				Malaise				
				Headache				
		4.0		Dyspnea				-
		40	M	Fever				Recovery
				Cough				
				Malaise				
				Headache				
		21	T	Dyspnea				
		31	T	Fever				Recovery
				Cough				
				Dyspnea				

Table continued

Table I (Continued). Cases of SARS-CoV-2 – HIV co-infection reported in literature (up-to-date 14 May 2020).

Reference	#Of patients	Age (years)	Sex	Symptoms	HIV-RNA (cps/mL)	CD4+ (cells/µL)	Treatment	Outcome
Haddad et al ²⁶	1	41	М	Fever Dry cough Encephalopath	TND	604	DTG/3TC	Recovery
Chen et al ²⁵	1	24	М	Fever Dry cough			EFV/3TC/TDF plus LPV/r	Recovery
Aydin et al ²⁷	4	34	М	Fever Dry cough Dyspnea	434.782	3	LPV/r plus FTC/TDF	Recovered
		44	М	Fever Dry cough Dyspnea	TND	1385	DTG + FTC/TDF	Death
		35	М	Dry cough Malaïse Diarrhea		448	EVG/c/FTC/TAF	Recovery
		36	М	Fever Dry cough	TND	396	EVG/c/FTC/TAF	Recovery
Wang et al ²⁸	1	37	М	Fever Dry cough Chest pain		34	Naïve to treatment	

Abbreviations: cps = copies; M = male; F = female; T = transgender; TND = target not detected (if the lower limit of detection was not clarified); DRV/c = darunavir/cobicistat; LPV/r = lopinavir/ritonavir; DTG = dolutegravir; 3TC = lamivudine; FTC = emtricitabine; TDF = tenofovir disoproxil fumarate; EVG = elvitegravir; TAF = tenofovir alafenamide fumarate.

and Blanco et al²⁴ they showed that no particular regimen had a protective role against the infection or a negative outcome, even though tenofovir has been shown to be effective on SARS-CoV-2 RNA-dependent-RNA-polymerase (RdRp)²⁵.

Despite being a low number of cases, they show that co-infection is possible, and it is the most probable for those PLWH with a viral and immunological control. On the other hand, the cases reported in literature show that COVID-19 might not be as dangerous for PLWH that does not have any comorbidity.

However, the number of patients reported until now and those that will be presented in future will be not able to provide sufficient information about the dimension of the problem. Therefore, it is desirable to determine the seroprevalence of SARS-CoV-2 in PLWH to ascertain the real dangerousness of COVID-19 for HIV-infected individuals.

Conflict of Interest

The Authors declare that they have no conflict of interests.

References

- 1) CECCARELLI M, BERRETTA M, VENANZI RULLO E, NUNNARI G, CACOPARDO B. Differences and similarities between Severe Acute Respiratory Syndrome (SARS)-CoronaVirus (CoV) and SARS-CoV-2. Would a rose by another name smell as sweet? Eur Rev Med Pharmacol Sci 2020; 24: 2781-2783.
- 2) PAVONE P, CECCARELLI M, TAIBI R, LA ROCCA G, NUNNARI G. Outbreak of COVID-19 infection in children: fear and serenity. Eur Rev Med Pharmacol Sci 2020; 24: 4572-4575.
- 3) Perrella A, Carannante N, Berretta M, Rinaldi M, Maturo N, Rinaldi L. Novel Coronavirus 2019 (Sars-CoV2): a global emergency that needs new approaches? Eur Rev Med Pharmacol Sci 2020; 24: 2162-2164.
- 4) ZANET E, BERRETTA M, MARTELLOTTA F, CACOPARDO B, FISICHELLA R, TAVIO M, BERRETTA S, TIRELLI U. Anal cancer: focus on HIV-positive patients in the HAART-era. Curr HIV Res 2011; 9: 70-81.
- 5) DI BENEDETTO F, DE RUVO N, BERRETTA M, MASETTI M, MONTALTI R, DI SANDRO S, QUINTINI C, CODELUPPI M, TIRELLI U, GERUNDA GE. Don't deny liver transplantation to HIV patients with hepatocellular carcinoma in the highly active antiretroviral therapy era. J Clin Oncol 2006; 24: e26-e27.
- 6) CECCARELLI M, VENANZI RULLO E, FACCIOLÀ A, MADEDDU G, CACOPARDO B, TAIBI R, D'ALEO F, PINZONE MR, PICERNO I, DI ROSA M, VISALLI G, CONDORELLI F, NUNNARI G, PELLICANÒ GF. Head and neck squamous cell carcinoma and its correlation with human papillomavirus in people living with HIV: a systematic review. Oncotarget 2018; 9: 17171-17180.
- 7) D'Andrea F, Ceccarelli M, Venanzi Rullo E, Facciolà A, D'Aleo F, Cacopardo B, Iacobello C, Costa A, Altavilla G, Pellicanò GF, Nunnari G. Cancer screening in HIV-infected patients: early diagnosis in a high-risk population. World Cancer Res J 2018; 5: e1130.
- 8) PINZONE MR, CECCARELLI M, VENANZI RULLO E, MARESCA M, BRUNO R, CONDORELLI F, DI ROSA M, MADEDDU G, FOCÀ E, CALCAGNO A, CELESIA BM, CACOPARDO B, NUNNARI G, PELLICANÒ GF. Circulating angiopoietin-like protein 2 levels are associated with decreased renal function in HIV+ subjects on cART: a potential marker of kidney disease. Biomed Rep 2019; 10: 140-144.
- 9) Venanzi Rullo E, Ceccarelli M, Condorelli F, Facciolà A, Visalli G, D'Aleo F, Paolucci I, Cacopardo B, Pinzone MR, Di Rosa M, Nunnari G, Pellicanò GF. Investigational drugs in HIV: pros and cons of entry and fusion inhibitors (review). Mol Med Rep 2019; 19: 1987-1995.
- 10) Ceccarelli M, Venanzi Rullo E, Vaccaro M, Facciolà A, D'Aleo F, Paolucci IA, Cannavò SP, Cacopardo B, Pinzone MR, Pellicanò GF, Condorelli F, Nunnari G, Guarneri C. HIV-associated psoriasis: epidemiology, pathogenesis, and management. Dermatol Ther 2019; 75: e12806.
- 11) FACCIOLÀ A, CECCARELLI M, VENANZI RULLO E, D'ALEO F, CONDORELLI F, VISALLI G, CACOPARDO B, PINZONE MR, DI ROSA M, NUNNARI G, PELLICANÒ GF. Prostate cancer in HIV-positive patients-a review of the literature. World Cancer Res J 2018; 5: e1136.
- 12) SPINA M, BERRETTA M, TIRELLI U. Hodgkin's disease in HIV. Haematol Oncol Clin North Am 2003; 17: 843-858.
- 13) ZHU F, CAO Y, XU S, ZHOU M. Co-infection of SARS-CoV-2 and HIV in a patient in Wuhan city, China. J Med Virol 2020; 92: 529-530.
- 14) JOOB B, WIWANITKIT V. SARS-CoV-2 and HIV. J Med Virol 2020: 10.1002/jmv.25782. Doi: 10.1002/jmv.25782. Epub ahead of print.
- 15) Wang X, Xu W, Hu G, Xia S, Sun Z, Liu Z, Xie Y, Zhang R, Jiang S, Lu L. SARS-CoV-2 infects T lymphocytes through its spike protein-mediated membrane fusion. Cell Mol Immunol 2020; 579: 270-273.

- 16) DE BIASI S, MESCHIARI M, GIBELLINI L, BELLINAZZI C, BORELLA R, FIDANZA L, TARTARO LO D, MATTIOLI M, PAOLINI A, MENOZZI M, MILIÐ J, FRANCESCHI G, FANTINI R, TONELLI R, SITA M, SARTI M, CLINI E, GIRARDIS M, GUARALDI G, MUSSINI C, COSSARIZZA A. Marked T cell activation, senescence, exhaustion and skewing towards TH17 in patients with Covid-19 pneumonia. Available on https://www.researchsquare.com/article/rs-23957/v1. Doi: 10.21203/rs.3.rs-23957/v1.
- 17) PLANAS D, ROUTY JP, ANCUTA P. New Th17-specific therapeutic strategies for HIV remission. Curr Opin HIV AIDS 2019; 14: 85-92.
- 18) Roff SR, Noon-Song EN, Yamamoto JK. The significance of interferon-γ in HIV-1 pathogenesis, therapy, and prophylaxis. Front Immunol 2014; 4: 498.
- 19) Chu H, Chan JF, Wang Y, Yuen TT, Chai Y, Hou Y, Shuai H, Yang D, Hu B, Huang X, Zhang X, Cai JP, Zhou J, Yuan S, Kok KH, To KK, Chan IH, Zhang AJ, Sit KY, Au WK, Yuen KY. Comparative replication and immune activation profiles of SARS-CoV-2 and SARS-CoV in human lungs: an ex vivo study with implications for the pathogenesis of COVID-19. Clin Infect Dis 2020: ciaa410. doi: 10.1093/cid/ciaa410. Epub ahead of print.
- MASCOLO S, ROMANELLI A, CARLEO MA, ESPOSITO V. Could HIV infection alter the clinical course of SARS-CoV-2 infection? When less is better. J Med Virol 2020: 10.1002/jmv.25881. Doi: 10.1002/jmv.25881. Epub ahead of print
- 21) RIVA A, CONTI F, BERNACCHIA D, PEZZATI L, SOLLIMA S, MERLI S, SIANO M, LUPO A, RUSCONI S, CATTANEO D, GERVASONI C. Darunavir does not prevent SARS-CoV-2 infection in HIV patients. Pharmacol Res 2020; 157: 104826.
- 22) Gervasoni C, Meraviglia P, Riva A, Giacomelli A, Oreni L, Minisci D, Atzori C, Ridolfo A, Cattaneo D. Clinical features and outcomes of HIV patients with coronavirus disease 2019. Clin Infect Dis 2020: ciaa579. doi: 10.1093/cid/ciaa579. Epub ahead of print.
- 23) HÄRTER G, SPINNER CD, ROIDER J, BICKEL M, KRZNARIC I, GRUNWALD S, SCHABAZ F, GILLOR D, POSTEL N, MUELLER MC, MÜLLER M, RÖMER K, SCHEWE K, HOFFMANN C. COVID-19 in people living with human immunodeficiency virus: a case series of 33 patients. Infection 2020: 1-6. doi: 10.1007/s15010-020-01438-z. Epub ahead of print.
- 24) Blanco JL, Ambrosioni J, Garcia F, Martínez E, Soriano A, Mallolas J, Miro JM; COVID-19 in HIV Investigators. COVID-19 in patients with HIV: clinical case series. Lancet HIV 2020; 7: e314-e316.
- 25) Chen J, Cheng X, Wang R, Zeng X. Computed tomography imaging of an HIV-infected patient with Coronavirus Disease 2019 (COVID-19). J Med Virol 2020. Doi: 10.1002/jmv.25879. Epub ahead of print.
- 26) HADDAD S, TAYYAR R, RISCH L, CHURCHILL G, FARES E, CHOE M, MONTEMURO P. Encephalopathy and seizure activity in a COVID-19 well controlled HIV patient. IDCases 2020; 21: e00814. doi: 10.1016/j.idcr.2020.e00814. Epub ahead of print.
- AYIDIN OA, KARAOSMANOGLU HK, YASAR KK. HIV/SARS-CoV-2 co-infected paitents in Istanbul, Turkey. J Med Virol 2020. In press. doi: 10.1002/jmv.25955.
- 28) Wang M, Luo L, Bu H, XIA H. One case of coronavirus disease 2019 (COVID-19) in a patient co-infected by HIV with a low CD4+ T-cell count. Int J Infect Dis 2020; 96: 148-150.