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Abstract. – OBJECTIVE: Although highly 
successful, the medical R&D model is failing 
at improving people’s health due to a series of 
flaws and defects inherent to the model itself. 
A new collective intelligence, incorporating hu-
man and artificial intelligence (AI) could over-
come these obstacles. Because AI will play a 
key role in this new collective intelligence, it 
is necessary that those involved in healthcare 
have a general knowledge of how these technol-
ogies work. With this comprehensive review, we 
intend to provide it.

MATERIALS AND METHODS: A broad-rang-
ing search has been undertaken on institutional 
and non-institutional websites in order to identi-
fy relevant papers, comments and reports. 

RESULTS: We firstly describe the flaws and 
defects of the current R&D biomedical model 
and how the generation of a new collective in-
telligence will result in a better and wiser med-
icine through a truly personalized and holistic 
approach. We, then, discuss the new forms of 
data collection and data processing and the dif-
ferent types of artificial learning and their spe-
cific algorithms. Finally, we review the current 
uses and applications of AI in the biomedical 
field and how these can be expanded, as well as 
the limitations and challenges of applying these 
new technologies in the medical field.

CONCLUSIONS: This colossal common effort 
based on a new collective intelligence will ex-
ponentially improve the quality of medical re-
search, resulting in a radical change for the bet-
ter in the healthcare model. AI, without replac-
ing us, is here to help us achieve the ambitious 
goal set by the WHO in the Alma Ata declaration 
of 1978: “Health for All”.
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Introduction

Around 300 billion US dollars are invested 
every year in medical research worldwide. The 
result of this collective effort has been extraor-

dinary: in just 100 years, life expectancy has 
rocketed from approximately 45 to 72 years. 
However, there is still a lot of work to be done 
since the figure for all-cause mortality stands at 
almost 57 million. This figure includes 47 mil-
lions of adults with chronic, non-communicable 
diseases, and 6.5 millions of children, of whom 
5.6 million are under the age of five1. In spite of 
the massive economic efforts in R&D and inno-
vation, global health improvement seems to have 
reached a plateau. The current model of medical 
research is showing difficulties due to a series of 
limitations2. Firstly, its current framework mir-
rors a linear and sequential process, which has 
been the only paradigm accepted so far. In this 
linear approach, investment in R&D produces 
results that are, at best, only proportional to the 
level of investment. Furthermore, in the current 
R&D model the outcome information is usually 
stored in closed and sealed compartments with 
very limited access to outsiders, sometimes even 
within companies or institutions. These “Chinese 
walls” not only prevent innovation, they also in-
crease the time and cost of delivering new drugs 
or medical devices to patients. Additionally, the 
current model assesses “value” as the amount of 
“assets” an organization owns (patents, chemical 
entities, etc.) and the relevance of an organization 
in the market is measured based on these assets. 
However, the paucity of data encourages monop-
olization of resources and discourages the sharing 
of information, which in turn hinders innovation. 
Thus, the current model drives pharmaceutical 
and biotechnology industries to generate innova-
tion and value through the acquisition of assets 
and discoveries from other stakeholders, which 
results in overcrowding of companies within this 
sector. All these hurdles have led to a R&D model 
that no longer works as fast as wanted. 

A New Medical R&D Model Is Needed
Investing more financial and human resources 

is not enough to modify the current R&D model 
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in a way that would allow to achieve the ultimate 
goal of improving healthcare. A radical change is 
needed. This should be based on a new form of 
collective intelligence able to overcome the ob-
stacles of the current model. Since it appears that 
human intelligence is not enough, this new type 
of collective intelligence should include artificial 
intelligence (AI)3. We can use this new kind of 
collective intelligence to create smarter organiza-
tions, conduct smarter research and solve medical 
problems that, up to now, where thought to have 
no solution4. How and why will AI revolutionize 
medical research? It is known that when a process 
becomes digitized and powered by information 
flow, its rate of development jumps onto an ex-
ponential growth path, doubling every two years 
(Moore’s Law). Indeed, this system encourages in 
silico research, which exponentially reduces the 
research costs and promotes innovation, result-
ing in a wealth of information and a further cost 
reduction, thus generating a positive feedback 
loop where the output dramatically increases, 
since all unnecessary processes and expenditure 
on purposes other than the generation of val-
ue have been eliminated. This information-led 
environment represents a paradigm shift, as it 
promotes knowledge sharing and the discovery of 
innovative solutions. In this new model, the most 
benefited are those who share more knowledge 
and acquire new knowledge faster.

However, AI elicits many fears, as it is thought 
that it has the potential to replace human intelli-
gence. Yet these fears are unfounded, for AI should 
be viewed as a tool rather than a replacement. 
Therefore, what can AI add to human intelligence? 
Nowadays, we are overwhelmed with information 
from different new sources (e.g., mobile phone 
technology, wearable devices, etc.). AI can integrate 
these vast amounts of data and identify relevant pat-
terns in a way that a human mind would be unable 
to do. On the other hand, AI cannot replace human 
judgment and wisdom. Therefore, human and ma-
chine intelligence can complement each other5. Be-
cause AI will play a key role in medical research, it 
is necessary that those involved in this field have a 
general knowledge of how these technologies work. 
Thus, the aim of this review is to offer a comprehen-
sive background on AI, as well as its current uses 
and applications in the medical field, and how these 
can be expanded in the future.

Almost Human: Artificial Intelligence
AI is the field of computer science dealing 

with the development of computers that can act 

“intelligently”4. Top applications in healthcare 
include drug discovery and development, auto-
mated devices, wearables, diagnostic and medical 
imaging devices, remote monitoring of patients, 
predictive medicine, robotics and management 
of healthcare systems6. There are two key factors 
that allowed progress in the development of AI 
(Figure 1). Firstly, in recent years, new sources of 
medical data, such as health monitoring devices, 
mobile apps or electronic health records (EHRs) 
have been developed, leading to the generation 
of vast data banks containing patient data. A 
second factor is the access to new analytical tools 
that can mine and process vast amounts of data. 
This allows to perform pattern recognition, data 
classification and predictions in a much shorter 
period of time.

Data Access
The success of AI relies on its ability to access 

the right kind of data in an appropriate volume. 
This represents an enormous challenge. It is cal-
culated that approximately a zettabyte (a trillion 
gigabytes) of medical data is generated each year. 
Due to the existence of different technologies that 
allow to collect data more easily, this amount is 
expected to double every two years7,8. 

New Forms of Data Collection
Wearables can deliver an unprecedented amount 

of data from millions of people. For example, smart-
phones are one of the most powerful devices for 
health monitoring. Indeed, these regular devices 
contain sensors, as well as processing and commu-
nication capabilities that allow data to be collected, 
analysed, and shared. Collecting daily measure-
ments with a smartphone may reveal nuances that 
are not evident in monthly clinic visits. Similarly, 
in recent years, increased attention has been giv-
en to patient-reported outcomes (PROs), which 
provide a direct indicator of a patient’s health 
condition without correction or interpretation by 
a clinician9-12. These data are complementary 
to those collected by the doctor as they provide 
additional information on other aspects that are 
important to the patient and that, perhaps, clini-
cians do not expect or take into account. PROs 
thus are essential components in high-quality, 
patient-centred care13,14. Collection and integra-
tion of ePRO into routine care is feasible, as 
demonstrated by different studies showing how it 
increases clinician awareness, resulting in an ear-
ly response to patient symptoms and ultimately, a 
better quality of life14,15. 
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Data Processing
The completeness and quality of the collected 

data will determine the actual usefulness of the 
database, since the performance of any model re-
lies on the data used to train it16. Thus, formatting, 
filtering, and normalizing the collected data is a 
first critical step, and represent most of the effort in 
building any analytical model17,18. Many different 
challenges arise when building a useful data-
base. A first problem is that the inputted dataset 
may be incomplete. The options for dealing with 
missing data include directly inferring the miss-
ing values or simply removing sparse features. 
Another challenge is that there can be thousands 
of potential predictor features in EHRs19. Tra-
ditionally, this problem was tackled by simply 
considering only a very limited number of com-
monly collected variables20. However, this poses 
a problem, since the resulting models may lead 
to inaccurate predictions21. Moreover, not every 
input feature in a given dataset will be relevant 
for predicting the output label. In fact, including 
irrelevant input features can compromise the per-
formance of the model derived by AI. A process 
called feature selection is often used to identify 
relevant input features. An example of a feature 
selection technique is to correlate all input fea-
tures with the output labels: only those features 
that meet a pre-defined threshold of relevance are 
kept. However, in healthcare there is an addition-

al hurdle: patient data must be anonymized and 
pooled. New developments, such as blockchain 
could be used to build data systems that allow 
people to easily and securely share their health 
data with researchers, while retaining control 
over the information supplied22. A second im-
portant step when preparing data for an AI model 
is transforming the input data into a language 
that a computer can understand (a process known 
as encoding). Encoding must be done in such a 
way that the semantic characteristics of the data 
are captured. Usually, data and categorical and 
scalar values are represented as binary vectors. 
Numerical features are typically zero-centered 
by a subtraction of the mean value from every 
data point or normalized to variance. Finally, log 
transformations are used when extreme values 
are altering a feature distribution. 

Over the last decade, we have witnessed a dra-
matic increase in the number of large, highly com-
plex databases being generated from wide-rang-
ing datasets, including human genome sequencing, 
gene expression profiles, proteomics, metabolomics, 
microbiome, high-resolution imaging, EHR, etc.23. 
Within a few years, we will have vast compre-
hensive information from millions of patients24. 
One key challenge would be encoding and com-
bining this diversity of data, stored in multiple 
sites across many different organizations within 
the health sector. Platforms are interfaces that allow 

Figure 1. Overview of the AI workflow. The first step is data collection. Data can be collected from different devices and data-
bases generated by universities, hospitals, and biotech and pharmaceutical companies. The second step comprises data processing 
and data modelling, including feature engineering, model training, evaluation and validation. During this stage, the system can 
process vast amounts of data and deliver an actionable output that can be a pattern, a classification and/or a prediction. 
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people to connect and share data and insights rap-
idly, simply and securely. In the healthcare arena, 
these platforms can help to connect very unrelated 
stakeholders (e.g., patients, practitioners, research-
ers and regulators), who can combine capabilities 
and share data to overcome the limitations of the 
current sequential approach. AI and data analytics 
combined have the potential to become “platform 
aggregators”.

Algorithms
AI involves different applications of advanced 

computer intelligence. Machine learning is a sub-
field of AI that includes a number of data ana-
lytics techniques aimed at building predictive 
models from multidimensional datasets; in other 
words, computers identify patterns from inputted 
data without being programmed16. The canonical 
machine learning workflow involves processing 
the input data, training the underlying model 
(which consists of a set of mathematical formulas 
and statistical assumptions defined by the learned 
rules), and then, using it to predict new data. The 
data inputted to a machine-learning algorithm 
typically consist of “features” and “labels” across 
a set of samples. Features are the measurements 
or characteristics, either raw or mathematically 
transformed, are used to classify the samples, 
while labels are the outputs that the algorithmic 
framework intends to predict. Features and la-
bels can be continuous or categorical. Data may 
require a primary pre-processing. During this 
stage, missing or spurious elements are identi-
fied and addressed while the remaining data are 
transformed into a format more adapted for an 
algorithm. This process is called featurization or 
feature engineering. The more appropriate the 
representation of the input data, the more precise-
ly an algorithm will map it to the output data25. 

Depending on the type of data and the question 
to be answered, a variety of machine learning 
algorithms can be applied. Naive Bayes classi-
fiers are classification algorithms based on the 
Bayes’ theorem that, given a set of existing data, 
calculates the probability of a hypothesis (or 
model) being true26. On the other hand, k-near-
est-neighbour methods calculate the distances 
between the test sample and the samples in the 
training data27,28. Nearest neighbour methods can 
be utilized for both classification and regres-
sion. Another approach is decision trees, which 
are flowchart-like diagrams used to determine 
an outcome29. Decision trees are often used in 
meta-algorithms or ensemble methods, which 

combine multiple trees into one predictive mod-
el to improve performance. Furthermore, ker-
nel methods are a class of algorithms, amongst 
which support vector machine and kernel ridge 
regression are the most familiar30. The name 
‘kernel’ is due to the use of a kernel or similarity 
function, that maps non-linear input data into a 
higher-dimensional space allowing its processing 
by linear classifiers. Finally, and differently from 
the other machine learning methods that focus 
mostly on pattern recognition, reinforced learn-
ing is oriented to experience-driven sequential 
decision-making. These algorithmic frameworks 
are capable of taking actions in a particular envi-
ronment to maximize cumulative reward. Since 
output labels can be continuous or categorical, 
many machine-learning tasks include regression 
or classification, respectively, where a regression 
task consists in the prediction of continuous out-
put variables and a classification task consists in 
the prediction of categorical output variables.

Once the algorithm or set of algorithms have 
been selected, the trial model must be judged to 
allow its optimization. The learning process itself 
consists in finding the most relevant parameters 
for the model, i.e., those that make it possible 
to translate input data into accurate output data. 
These parameters are identified through a series 
of back-and-forth iterations, where parameters 
are tested, the performance of the model is eval-
uated, errors are identified and corrected, and 
then, the process is repeated again. This process 
continues until the performance of the model can 
no longer be improved, as determined by minimi-
zation of the model error. Once the most relevant 
parameters have been identified, the system can 
be tested by making predictions for new input 
data. If the model is accurate on both the training 
and the test data, then, we can say that the model 
has been properly trained. Machine-learning al-
gorithms can be trained using supervised, unsu-
pervised, semi-supervised or reinforced learning 
approaches31,32. Supervised learning is applied 
when there are labels available for the input 
data16. In this case, the training data consist of 
sets of input features and associated output la-
bels that are related. The labels are used to train 
the machine-learning framework through iden-
tification of patterns that can predict the output 
labels. The goal of the algorithm is to originate a 
function that, given a specific set of input values, 
predicts the output values to an acceptable de-
gree of accuracy. Subsequently, when new input 
data become available, the predictions using the 
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derived model can be directly made. Supervised 
learning includes classification algorithms (for 
categorical output variables; e.g., support vector 
machine) or regression algorithms (for continuous 
output variables; e.g., linear and logistic regres-
sion). By contrast, unsupervised approaches are 
utilized when the output labels for the input data 
are not known; these methods learn only from 
the patterns in the input data, i.e., they identi-
fy factors about input features without known 
output labels. Thus, the goal of unsupervised 
approaches is to cluster subsets of the data based 
on similar features and to identify the number of 
clusters present in the data. Unsupervised learn-
ing cannot produce an independent predictive 
model. Commonly used unsupervised methods 
include clustering algorithms (e.g., hierarchical 
clustering) and dimensionality reduction algo-
rithms (e.g., principal component analysis). Un-
supervised methods can be advantageous when 
output labels are missing or incorrect, as it can 
still identify patterns, since the clustering is per-
formed only on the input data. Of note, the output 
obtained by models built through unsupervised 
approaches can be used as input data for models 
built by supervised approaches. This is known as 
semi-supervised learning, which may be useful if 
there is a large amount of input data without the 
corresponding labels. The algorithm learns from 
labelled data to make a prediction for unlabelled 
data and identify patterns. Finally, reinforcement 
learning involves a set of dynamic algorithmic 
frameworks that continuously learns from the en-
vironment in an iterative fashion using a system 
of reward and punishment. This type of learning 
is limited to a particular context because what 
may produce a maximum reward in one situation 
may be directly associated with punishment in 
another. Algorithms learn to predict the flawless 
behaviour within a specific context, to maximize 
its performance and recompense. Thus, learning 
occurs via a reward feedback, known as rein-
forcement signal.

A machine-learning method is selected de-
pending on the task, the characteristics of the da-
ta, and the labelled or unlabelled nature of the da-
ta. As stated above, if the data are labelled, then, 
a supervised method can be applied to generate a 
predictive model by either regression or classifi-
cation of the data. If the data are unlabelled, then, 
learning must be conducted by an unsupervised 
approach. After building a model by the appropri-
ate machine learning method, the outputs must be 
validated. New data can be generated, collected 

and used to refine the derived model, improve 
its accuracy, and develop new hypotheses. How-
ever, the reliability of machine-learning meth-
ods can be compromised by various elements27. 
Excessive variance (“overfitting”) or excessive 
bias (“underfitting”) is always associated to a 
deficient performance of a model. Overfitting ap-
pears when the parameters of the training data 
are fit so specifically to the model that they do 
not have predictive power outside this particular 
dataset; typically, this occurs when the number of 
parameters is important, and the model becomes 
too complex. The issue of overfitting can be ad-
dressed by expanding the size of the training set 
or by decreasing the model complexity. On the 
other hand, underfitting occurs when the model 
cannot detect an accurate relationship between 
input and output data, or when the available da-
ta are inadequate to permit an accurate pattern 
identification. Underfitting can be addressed by 
increasing the model’s complexity33. The main 
way to test the accuracy of a machine-learning 
model is to check whether it can successfully pre-
dict unknown output data. This is usually done 
by setting aside a randomly selected portion of 
the dataset during the model’s training. When the 
training is finished, this set-aside data (also called 
validation dataset) are inputted to the model. The 
degree to which the output data in the validation 
set is accurately predicted by the derived model 
provides a measure of its quality. 

Deep Neural Networks
Deep Neural Networks (DNNs) is one of the 

principal algorithmic frameworks in machine 
learning. These are algorithms based on inter-
connected artificial neurons that execute trans-
formations on non-linear data to identify relevant 
predictive features based on examples34,35. DNNs 
are excellent gears for identifying patterns in 
extremely large and complex datasets. A classical 
DNN architecture include a number of layers. 
The first ones mine relevant features from the in-
put data, and the last ones correlate the extracted 
features to outputs. The width of a DNN relates 
to the maximum number of artificial neurons in a 
layer while its depth, to the number of hidden lay-
ers it comprises. A neuron (also known as a node 
or perceptron) is a computational unit with one or 
more connections receiving the inputs, a transfer 
function associating the inputs, and an output 
connection. The neurons in the input layer take 
the raw data and transfer it to the neurons in the 
hidden layers, where computation happens. The 
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hidden layers are sequentially connected such 
that each of them learns properties about the data 
by taking as input the transformed input or repre-
sentation produced by the previous hidden layer. 
Once this representation is fed to the next layer, 
this is transformed into a new representation. 
Indeed, in each neuron, input data are combined 
with a set of coefficients that amplify or quench 
it so, assigning weights to inputs within the con-
text of the model being built. These weighted 
inputs are summed, and the result is run through 
a non-linear activation function, to conclude 
whether that signal should progress any further 
through the DNN. If the signal is transferred, is 
said that the neuron has been “activated”. Max-
Out, Sigmoid, rectified linear unit (ReLU) or 
Softmax are some of the most common activation 
functions. Depending on the activation function 
being used, the properties of the activation for 
the DNN can be quite different. Errors originat-
ed from the training labels are back propagated 
across the DNN and the model tuned to achieve 
a higher performance. Learning is the process 
of tuning the weights so that the training data 
are represented as exactly as possible. Finally, 
the output layer generates a prediction based on 
the weighted inputs from hidden layers25. Once 
trained, DNNs can be used over new datasets to 
accurately generate output values. DNNs provide 
considerable advances compared to conventional 
machine learning methods. Indeed, DNNs can 
be utilized to attack extremely complex prob-
lems and identify patterns in datasets that are 
just too large and complex for a human brain to 
process. Similar to conventional machine learn-
ing, DNNs can be used with supervised, unsu-
pervised, semi-supervised or reinforced learning 
methods36. 

DNNs can have a variety of architectures. 
The simplest of all has three layers: an input, a 
middle (hidden) and an output (prediction) layer. 
Common DNN architectures often incorporate 
additional functions and connections to the typ-
ical architecture to permit training using deep-
er networks. Nowadays, DNNs can be simply 
build from pre-existing modules, such as Caffe, 
Theano, PyTorch and TensorFlow. These frame-
works differ principally in easiness of use and 
manipulability. One of the principal challenges 
in deep learning is how to select the proper 
DNN architecture for a given task. The ideal 
architecture should be able to achieve truthful 
results with the fewest parameters. Therefore, the 
number and size of the hidden layers needs to be 

defined based on the purpose of the model to be 
trained. Convolutional Neural Networks (CNNs) 
are one of the most common architectures used 
for deep learning37. They are normally comprised 
of numerous convolutional and pooling layers. 
This structure favours learning abstract features 
at increasing scales going from object edges up 
to entire objects. That is why CNNs are well 
suited for image recognition and computer vision 
tasks38,39. CNNs use weight sharing by sliding a 
tiny, trainable filter of weights across the input 
vector and convoluting each overlapped region 
of inputs with the filter. This differs from ful-
ly connected neural networks where activation 
units are bound to all inputs of a feature vector. 
For example, CNN’s “hidden layers” frequently 
comprise a series of convolution operations that 
extricate feature maps from the input image and 
pooling actions that perform feature aggregation. 
The “hidden” layers output is then input into 
“fully connected” layers that delivers high-level 
analysis. Finally, the “output” layer produces 
predictions. Labelled data and thereby supervised 
learning methods are frequently used to train 
CNNs end-to-end.

There are other commonly used DNN architec-
tures. Autoencoders are DNNs that learn how to 
efficiently compress and encode data, and then, 
reconstruct it into a representation that is as near 
as possible to the original input. These types of 
algorithms have been applied, for example, to 
the classification of cancer cases using gene ex-
pression profiles or for predicting the sequence of 
proteins. Restricted Boltzmann machine learning 
uses a stochastic recurrent neural network com-
posed of two layers, one made of visible units 
and another made of hidden units, with no lateral 
connections. This is one of the most relatively 
easy to train DNNs, and allows forming a com-
pact and high-level representation of objects36. 
Restricted Boltzmann machine learning is used 
for unsupervised pre-training of deep networks 
previous to the subsequent training of the super-
vised models, for example, of disordered protein 
regions or amino acid contacts40,41. Deep Belief 
Networks, used to build probabilistic generative 
models, are formed by several stacked hidden 
layers. Each layer is directly connected to the 
next layer. Recurrent Neural Networks (RNNs) 
are unsupervised or supervised deep learning 
architectures for identifying temporo-sequential 
patterns42,43. RNNs can predict the next data point 
in a sequence using the previous data. RNNs 
are well suited for analysing protein or DNA se-
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quences, as well as clinical databases. Generative 
adversarial networks (GANs) seek to synthesize 
new data indistinguishable from the training data. 
It opposes two neural networks against each oth-
er; one called generator that creates synthesized 
data (e.g., an image), and a discriminator that 
estimates the probability that a particular sample 
came from the training data rather than from the 
generator44. GANs have, for example, the poten-
tial to speed up preclinical development. Finally, 
streaming algorithms perform on-the-go calcu-
lations45. Because data are constantly being in-
putted at such volume, streaming algorithms try 
to record the essence of what it has been inputted 
while strategically ignoring the rest. Streaming 
algorithms are useful to monitor a database that 
is constantly being updated. As it happens with 
other machine learning techniques, deep learning 
models need to be trained and tested on different 
datasets to prevent overfitting and ensure that the 
model can be applied to accurately predict new 
data. 

Applications in Medical Research 
AI can be applied to improve a varied range of 

medical fields (Figure 2). A key advantage is that 
these new methods can screen volumes of data to 
identify patterns in complex biological systems 
that otherwise would be missed. 

Drug Discovery and Development
The ever-increasing computational power 

along with the abundance of extensive datasets 
have led the scientific community to develop 

learning algorithms that are capable of shorten-
ing time frames for drug discovery and devel-
opment, and enabling to explore the chemical 
space more effectively46-48. DNNs can be used 
to improve the prediction of chemical reac-
tions during the synthesis process. Instead, the 
pharmacological attributes of a molecule can 
be estimated using atomistic simulations. The 
generation of different molecules with precise 
chemical, physical and pharmacological char-
acteristics can be done by training GAN net-
works while reinforced learning can help the de 
novo design of chemical entities. Also, the es-
tablishment of structure-property relationships 
are estimated by machine learning algorithmic 
frameworks49,50. A large number of computa-
tional methods51,52 for in silico drug discovery 
and target extension have been established. One 
of these computational approaches is virtual 
screening, that is, the in silico screening of enor-
mous chemical libraries to identify small mole-
cules that bind to a specific protein (drug-target 
interaction)53. Virtual screening can also detect 
interactions with other non-specific proteins 
(off-target effects)54. Deep learning also allows 
to effectively assess compound toxicity based on 
its chemical structure55. In biological research, 
machine learning applications are becoming 
ubiquitous, encompassing not only genome 
annotation, but also interpretation of complex 
biological data comprising drug development, 
biomarker detection as well as recommendations 
on clinical targets56-58. Another interesting ap-
plication is the identification of new indications 
for existing drugs, a process known as drug re-
positioning or drug repurposing55,59. Other areas 
include the prediction of protein binding sites, 
identification of key transcriptional cancer driv-
ers or the prediction of metabolic functions in 
complex microbial communities60-63. 

Computer-Assisted Diagnosis
Digitalization of medical images (e.g., ultra-

sounds, computed tomography scans, medical pho-
tos, etc.) has promoted the development of automat-
ed image interpretation, as almost all image-related 
tasks involve the evaluation of image features, a field 
where AI excels. Numerous studies have demon-
strated the potential to help radiologists when eval-
uating a variety of radiological images, including 
CT scans for pulmonary nodules and pneumonias, 
mammograms for breast lesions, and magnetic res-
onance images for brain tumours64-67. AI methods 
can also use any type of image data and therefore, 

Figure 2. Principal applications of AI in medical research. 
AI can be applied to improve and accelerate both the pre-
clinical and clinical stages of any project, as well as to guide 
and support clinical decisions. NCE: new chemical entity; 
SAR: structure-activity relationship.
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it can be customized to other fields where images 
are used, such as pathology, dermatology and 
ophthalmology. In pathology, AI is emerging as 
a potent tool to assist pathologists when looking 
for microscopic lesions in tissue sections68-70. Dig-
ital histopathology images can be used as inputs 
for deep learning algorithms specifically profi-
cient, for example, in the discrimination between 
normal and abnormal tissues71. Deep-learning 
algorithms can also classify skin lesions with a 
level of competence equivalent to that of der-
matologists72-74. Similarly, using retinal images 
(fundus or optical coherence tomography), deep 
learning algorithms were able to discriminate 
between macular degeneration and diabetic ret-
inopathy with a performance comparable to that 
of experts75,76. Moreover, deep learning revealed 
additional traits in retinal images that allowed 
to better predict cardiovascular risk (e.g., high 
blood pressure, heart attacks, etc.)77,78. These fast, 
scalable methods can be implemented on mobile 
devices allowing low-cost universal access to 
important diagnostic care anywhere, positive-
ly affecting primary care practices72. All these 
studies show how to use AI to perform simple, 
cost-effective, and widely available studies that 
could help to identify at-risk patients requiring 
referral to a consultant. 

Clinical Applications
AI has also several applications at the clini-

cal level. Input data from a healthy cohort, can 
be used to train deep learning algorithms on 
the fundamental characteristics of healthy states. 
Subsequently, this algorithm could be fed by 
data from a patient cohort and used to predict 
differences between healthy and disease states, 
identifying differences in regulatory interactions 
and biomolecules that could be validated and 
explored further. Thanks to AI, physicians would 
also monitor their patients and check if they are 
likely to present a subsequent disease based on 
their clinical status, and potentially prevent it 
through a data-driven selection of interventions79. 
Likewise, AI algorithms could recognize patients 
at a high risk of developing certain clinical dis-
orders and send an alert to the patient’s doctor. 
AI also has the potential to identify non-evident, 
clinically relevant patterns and advice for timely 
interventions. This can also contribute to a sig-
nificant alleviation of side-effects, with less need 
for additional medications and less admissions to 
hospital. An overall change in clinical practice 
can also be induced by AI as these technologies 

can potentially identify patterns that distinguish 
fast-progressing patients from slow-progressing 
ones80. 

In addition, AI has the potential to transform 
recruitment in clinical trials, such as matching 
a patient to the most appropriate trial. Alterna-
tively, high-quality data collected in a clinical 
trial environment are ideal to train AI systems to 
accurately predict outcomes. The use of “exter-
nal” control arms exploiting real-world evidence 
(RWE) stored in vast clinical databases from rou-
tine clinical practice is of relevance to oncology, 
particularly in rare malignancies, where patient 
recruitment is quite difficult. In these cases, 
external control arms can be used as “in silico” 
comparators in early-phase clinical trials. RWE 
can also be of great value to analyse treatment 
efficiency in populations typically excluded from 
clinical trials (e.g., kidney or hepatic dysfunction, 
brain metastases, etc.) where the risk-benefit ratio 
is not known. Indication expansion is another 
area where RWE may be relevant, as it could 
provide a means of extracting data on clinical 
outcomes during off-label use, potentially broad-
ening indications for approved therapies. 

Healthcare Robotics
Although sometimes confused, AI and robot-

ics are different from each other. Robotics is a 
technology that deals with the design and imple-
mentation of robots. The most popular concept 
of robots is that of machines programmed to 
perform a specific task over and over without any 
“intelligence”. However, when combined with 
AI, the result is an artificially intelligent or smart 
robot that can be trained to carry out complex 
tasks that require more thought and adaptation. In 
smart robots, AI acts as the brain and the robotics 
acts as the body. Indeed, AI programs use data 
from the real world acquired through robotics to 
improve their performance; ergo, they help the 
robot strategize about future movements based on 
its prior motion. By doing so, the robot is learning 
how to interpret its own actions. Thus, automa-
tion, another subfield of AI, is concerned with 
how to train a robot to interact with the world 
around it in generalized and predictable ways, 
manipulate objects in interactive environments, 
and interact with people. Reinforced learning, 
which obviates the requirement of labelled data, 
is used to safely explore a policy space without 
committing errors that harm the system itself or 
others. Advances in reliable machine perception, 
including computer vision, force, and tactile sens-
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ing, much of which is driven by machine learn-
ing, will continue to be key enablers to advance 
the capabilities of robotics. Indeed, robotics can 
potentially enhance human abilities in healthcare 
in surprising ways. “Surgical” robots are, for 
example, capable of performing complex surgi-
cal interventions, including minimally invasive 
and “surgeonless” surgical procedures. The Da 
Vinci system is the standard of care in multiple 
laparoscopic practices and is used in nearly three 
quarters of a million procedures a year81,82. Ro-
botic surgery application strengthens and allows 
a higher productivity, accuracy, and efficiency of 
surgical procedures, favouring a faster recovery 
and improving patient outcomes. 

Virtual Medicine
The human body is one of the biggest data 

platforms. Computational models can be used as 
virtual substitutes or representations of a subset 
of the patient’s body or the whole (e.g. genetics, 
cell or tissue data, etc.)83,84. These virtual repre-
sentations can integrate data from EHRs, tele-
medicine, wearables, and other platforms, tools, 
or media85. Available information should include 
past medical history, genetics, environment, diet, 
lifestyle, behaviours, preferences, socioeconom-
ics, location, measurements from wearable tech-
nologies, and access and adherence to treatment, 
among others. MRI and CT scans can also be 
used to produce a virtual physiologic represen-
tation of the patient, reproducing the anatomy, 
tissue density, organ architecture and dynamic 
physiology of an individual patient. These virtual 
representations of a patient can then be used to 
develop a true personalized medicine for each 
individual patient19,86-88. In this sense, different 
systems are being created to represent clinical da-
ta in a reliable, ordered, and expandable formats, 
such as FHIR (Fast Healthcare Interoperability 
Resources), thereby simplifying data exchange 
across sites89. These virtual patients will therefore 
assist as a tool to support clinical decisions.

Limitations and Challenges
AI presents different challenges and limita-

tions that must be addressed in the future. One of 
the major limitations lies in the fact that machine 
or deep learning systems can be considered as 
“black boxes” focused on predicting outputs from 
data, without taking into account the reasoning 
or justification by which a particular outcome 
is obtained90. Because of this, AI is not immune 
to the “garbage in, garbage out” problem. Unde-

niably, data and algorithms can be both flawed. 
Data can certainly be skewed because of the in-
completeness and inaccuracy of existing datasets. 
Algorithms can be skewed, deliberately or not in 
ways that seek to achieve particular outcomes. 
Machines that learn on biased data will make 
biased decisions, posing new ethical problems 
and raising new questions. For example, how to 
prevent certain individuals or groups of people 
from using flawed automated systems to exploit 
them for their own benefit instead of maximiz-
ing their value for the public good? Ethics are 
the moral principles that govern an individual’s 
behaviour or activity. The medical community 
must agree on appropriate ethical principles and 
frameworks to respond to these new challenges. 
Those frameworks are valuable tools as they set 
a basis that has moral authority to build glob-
al standards which reduce the risks that come 
with new technologies. Another weakness is the 
necessity of enormous datasets that may not 
be readily accessible37. As described above, AI 
frameworks built on inaccurately or insufficiently 
large training datasets can result in erroneous es-
timations and perpetuate biases. Thus, massively 
large datasets are essential for building accurate 
models. However, the majority of datasets are 
orders of magnitude too small for deep learning 
algorithms. It should also be stressed that AI 
is different from human intelligence in diverse 
ways; outperforming in one assignment does 
not necessarily suggest excelling in others. One 
of the biggest challenges is related to regulatory 
bodies, which have started to unlock the gate to 
machine-learning algorithms. To effectively ap-
ply AI platforms in the wider clinical care, regu-
latory bodies request that AI applications achieve 
results at least as well as experienced physicians. 
As the field matures, expectancies for AI accura-
cy will unsurprisingly become higher and higher.

Conclusions

Although highly successful in the past, the 
current medical R&D model is failing at im-
proving health due to a series of flaws and 
defects inherent to the model itself. Therefore, 
we urgently need to generate a new collective 
intelligence, combining human and AI, to dra-
matically change the current model. Applying 
a global medical approach to the research flow, 
while incorporating the appropriate AI tools, will 
result in better disease prevention, earlier diagno-
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sis and improved, cost-effective drug discovery, 
enhancing patient care standards through a truly 
personalized and holistic approach. Moreover, in 
an information-based environment, such as the 
current world, pharma and biotechnology com-
panies, scientists and physicians will be able to 
share their skills and discoveries, contributing 
to the advancement of medical research. Even 
patients will have the chance of contributing to 
medical progress by voluntarily sharing their 
own anonymized medical records. Patients may 
stop being spectators and become main actors in 
the health arena. Thus, a “system-centric” model 
could become a “patient-centric model”. Finally, 
thanks to the new wealth of information and 
knowledge that will become available through 
this new collective intelligence, health policies 
would change, emphasizing prevention over 
treatment and promoting the democratization of 
diagnosis, which will allow to detect health is-
sues much earlier and therefore, treated at much 
lower costs with targeted drugs. The benefit could 
be greater in peripheral areas or in developing 
countries, without access to care centres of me-
dium/high complexity, as primary care doctors 
will be able to make difficult diagnoses earlier 
and determine which patients should be referred 
to other centres to receive specialized care. In 
summary, this colossal common effort based on 
a new collective intelligence will exponentially 
improve the quality of medical research, resulting 
in a radical change for the better in the healthcare 
model. AI, without replacing us, is here to help us 
achieve the ambitious goal set by the WHO in the 
Alma Ata declaration of 1978: “Health for All”91.
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