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terest because it has been shown that flavonoids 
have beneficial effects by modulating multiple 
signaling pathways involved in various diseases. 
For instance, it has been reported that flavonoids 
have antioxidant, anti-inflammatory, anti-aller-
gic, anti-thrombotic, analgesic, vasodilatory, and 
anti-bacterial effects1-10.

Quercetin (Qct) (Figure 2) is a member of fla-
vonols, which are subclass of flavonoids10. Qct is 
an aglycone that lacks an attached sugar. It is a 
brilliant citron-yellow needle crystal that is com-
pletely insoluble in cold water and poorly soluble 
in hot water. A Qct glycoside is formed when Qct 
is attached to a sugar moiety. In general, Qct gly-
coside is more water-soluble compared to Qct11-14.

Qct is a key member of the polyphenolic family 
found primarily in several fruits and vegetables, 
such as lovage, capers, cilantro, dill, onions, sev-
eral berries (e.g., cranberries, chokeberries, ling-
onberries), and apples. It is well known for its che-
mopreventive potential against different types of 
cancer, more specifically, prostate cancer. These 
chemopreventive properties of Qct are linked to 
several cell signaling mechanisms15,16.

The beneficial effect of Qct has been document-
ed in many studies because of its different pharma-
cological activities. Recently, it has been shown17,18 
that pro-inflammatory cytokine expression was 
suppressed through modulation of p38 mitogen-ac-
tivated protein kinase (MAPK) and NF-kB signal-
ing in a human mast cell line. Furthermore, it has 
been revealed that suppression of postmenopaus-
al osteoporosis in rats was mediated through the 
downregulation of MAPK signaling pathways19. 
In the PC-3, PC-12, CT-26, and LNCaP cancer cell 
lines, cell growth was inhibited due to the induc-
tion of Qct mediated apoptosis. Qct also decreased 
CT-26 and MCF-7 tumor volume in mice, which 
increased animal survival rates20.

Moreover, in other studies, Qct has shown 
modulatory effects on the Akt signaling pathway, 
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Introduction 

Flavonoids are naturally occurring substanc-
es with various phenolic structures found in tea, 
flowers, fruits, roots, grains, stems, and bark. 
The basic structure of flavonoids has a 15-carbon 
skeleton consisting of two benzene rings (A and 
B) linked through a heterocyclic pyran ring (C) 
(Figure 1). Flavonoids can be divided into several 
classes, including flavonols (e.g., fisetin, kaemp-
ferol, quercetin and myricetin), flavanones (e.g., 
hesperetin and naringenin), and flavones (e.g., 
luteolin flavone and apigenin). These classes of 
flavonoids differ in the level of oxidation and 
replacement pattern of the C ring, whereas com-
pounds inside a class differ in the replacement 
pattern of the A and B rings1. Over the past two 
decades, research on flavonoids has gained in-
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suppressing vascular endothelial growth factor 
(VEGF), and hence, angiogenesis. It was also docu-
mented that Qct has an anti-metastatic property, as 
evidenced in lungs and ovarian cancer models21-24. 
Furthermore, Qct appears to have an anti-diabetic 
activity, as documented in streptozotocin-induced 
diabetes in rats24. Therefore, it is crucial to compre-
hensively understand the beneficial and protective 
effects of Qct against different toxic agents to as-
sess the safety and efficacy of Qct.

In the current review, we discuss the car-
dio- and nephroprotective effects of Qct against 
various drug- and chemical-induced toxicities. 
Furthermore, we described the mechanisms of 
toxicity induced by different agents and the pro-
tective mechanism induced by Qct.

Protective effects of Quercetin against 
different drugs and toxic agents induced 
cardiotoxicity 

Doxorubicin (Dox) 
Dox is an effective and widely used chemother-

apeutic agent to treat breast cancer, solid tumors, 
soft-tissue sarcomas, and leukemia. However, its use 

is associated with cardiotoxicity, limiting its clinical 
application25,26. The mechanisms by which Dox in-
duces cardiotoxicity include production of the reactive 
oxygen species (ROS), mitochondrial dysfunction, 
inflammation, and alteration in the gene expression 
of different genes27,28. It has been reported that Qct 
induced protection against Dox-induced mitochon-
drial dysfunction, apoptosis, DNA damage, and ROS 
generation in H9C2 cells. In that study, Dong et al29 
indicated that the ameliorative effect of Qct against 
Dox-mediated cardiotoxicity was due to the decrease 
in the expression of Bid, p47, and Nox1 and the in-
crease in the expression of Bcl-2 and Bmi-1.

Furthermore, Qct offered cardioprotection through 
the depletion of the lipid peroxidation and ROS lev-
els and the elevation in the levels of superoxide dis-
mutase (SOD)29. Chen et al30 reported that Qct pre-
treatment in primary cardiomyocyte cells prevented 
the injury induced by DOX by producing antioxidant 
enzymes, inhibition of apoptosis, lipid peroxidation, 
and ROS generation30. In another study, it has been 
shown that Qct with Losartan synergistically atten-
uated the elevated serum levels of creatine kinase 
(CK), tumor necrosis factor-α (TNF-α), lactate dehy-
drogenase (LDH), and lipid peroxidation and restored 
the enzyme activities of catalase (CAT) and SOD. In 
that study, they suggested that Qct and Losartan can 
help reduce myocardial injury and leukocyte infiltra-
tion induced after Dox administration31.

Cyclophosphamide (CYP)
CYP is an effective chemotherapeutic drug used 

to treat lupus erythematosus, rheumatoid arthritis, 
multiple sclerosis, bone marrow transplantation, 
neuroblastoma, and some other types of cancers. 
However, CYP also has various highly toxic side 
effects. Dose-dependent cardiotoxicity is one of the 
most important toxic effects32-35. The exact mech-
anism by which CYP induces cardiotoxicity is still 
not clear. However, it has been shown that the toxic 
metabolite of CYP, acrolein, leads to excess ROS pro-
duction, which in turn increased oxidative stress and 
decreased the antioxidant defense mechanism that 
causes CYP-induced cardiotoxicity. Furthermore, ex-
cess ROS production hampers the oxygen radical de-
toxifying ability of the mitochondria, having harmful 
effects on cardiomyocytes36,37. In addition, CYP-in-
duced cardiotoxicity was found to be associated 
with the poor activity of Krebs cycle enzymes due 
to increased permeability of the inner mitochondrial 
membrane to calcium, resulting in the uncoupling of 
mitochondrial ATP synthesis36. In cardiac tissues, it 
has been demonstrated38-40 that CYP reduced GSH 
levels and increased lipid peroxidation led to severe 

Figure 1.  Structure of flavonoids.

Figure 2. Structure of Quercetin (Qct).
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cardiac damage. Furthermore, it has been reported 
that CYP-induced oxidative stress activated the nu-
clear factor-κB (NF-κB), which induced the release of 
numerous cytokines38-40. In another study, Sekeroğlu 
et al41 reported that CYP increased the serum levels 
of LDH, which indicates cardiotoxicity41. However, 
Sekeroğlu et al41 documented that Qct administration 
mitigated the increase in the LDH levels, as demon-
strated also by Ikizler et al39. 

It is reported that the heart is susceptible to injury 
induced by ROS mainly because protective enzymes, 
such as GSH, CAT, and SOD, are present at a lesser 
value compared to other tissue42. SOD converts the 
toxic oxygen free radicals to H2O2, then H2O2 is con-
verted to H2O by CAT, hence, protects the cell from 
damage due to oxidative stress43. Many studies44-48 
have reported that xanthine oxidase (XO) catalyzes 
the conversion of hypoxanthine to xanthine through 
the oxidative process. Consequently, that generates 
uric acid and superoxide, which is considered one 
of the main sources of ROS generation enzymatical-
ly in the in-vivo system. Sekeroğlu et al41 reported a 
significant increase in the XO activity in the heart 
of CYP-treated mice, which could be because of in-
creased production of free radicals and decreased an-
tioxidant enzymes41. Besides, they reported increased 
antioxidant enzyme activity in pretreated Qct ani-
mals, which may be attributed to an enhanced antiox-
idant status indicated by a rise in GSH and a decrease 
in LPO levels41.

Additionally, inhibition of the XO activity in Qct 
treated mice in Sekeroğlu and colleagues’ study41 
might be explained by its direct scavenging of the su-
peroxide anion (O2-) or inhibition of O2 -generating 
enzymes, XO41,49. Furthermore, Sekeroğlu et al41 doc-
umented nitrite levels in the myocardial tissue treated 
with Qct and Viscum album (VA) along with CYP 
indicated higher levels of NO41. This could be due to 
the ROS scavenging property of Qct and VA. 

Moreover, published literature50,51 has indicated 
that CYP administration enhances MPO activity in 
bladder and heart tissue. Furthermore, Qct and VA 
inhibits the MPO activity, hence restricting neutro-
phil infiltration41,52. It is proposed that the dominant 
mechanism for such protection is related to the in-
crease in NO levels by Qct41,52. 

Daunorubicin (Dnr)
Dnr is an anthracycline antibiotic that is mostly 

used to treat solid tumors and leukemia. However, 
clinical use of Dnr is limited due to various unde-
sirable effects, the most severe of which is cardio-
toxicity associated with the production of highly 
reactive free radicals53-56. Guzy et al57 reported the 

protective effect Qct against Dnr-induced cardiac 
changes57. In their study, they documented that 
Dnr treatment led to a significant increase in AT-
Pase and glutathione reductase (GR) with a sig-
nificant decrease in glutathione peroxidase (GPx). 
Conversely, Qct treatment restored these abnor-
malities and protected cardiomyocytes against the 
toxicity induced by Dnr57.

Lindane
Solvents, pesticides, and heavy metals are the envi-

ronmental toxins that cause most health-related prob-
lems. Lindane (γ-hexachlorocyclohexane) is a chlo-
rinated pesticide used to control malaria, eliminate 
insects from crops, and treat louse infections in hu-
mans, livestock, and poultry58. Humans are exposed 
to lindane by various routes, such as dietary intake, 
dermal contact, drinking water, and breathing59,60.

Overproduction of ROS leads to oxidative stress 
and mitochondrial dysfunction in the heart in re-
sponse to disease and toxic processes, leading to 
the induction of lipids peroxidation and reactive al-
dehydes production61. During the normal physiolog-
ical function, most of the generated ROS are elimi-
nated by the antioxidant enzymes system present in 
our body54. However, low ROS levels are required 
to maintain several physiological functions, such 
as host defense, proliferation, gene expression, and 
signal transduction62. Lindane interacts with the cell 
membrane and triggers ROS generation leading to 
oxidative stress59. Ananya et al63 reported that lindane 
treatment induced peroxidation of lipids and attenuat-
ed the activity of antioxidants enzymic, which led to 
oxidative stress in rats’ hearts63. 

Recently, Padma et al64 reported that Qct and Gal-
lic acid (GA) improved the altered biochemical pa-
rameters and histopathological alteration in the heart, 
which suggested that Qct and GA can protect the 
heart64. In their study, they demonstrated that the lev-
els of lipid peroxidation, CK, and LDH were signifi-
cantly increased in the lindane treated group, which 
was linked to the cellular leakage due to necrotic 
damage in the cardiac membrane64. Furthermore, 
they demonstrated decreased CAT and SOD activity 
in the lindane-treated group, consistent with previous 
reports63-66. However, these abnormalities were re-
stored in the group co-treated with lindane and Act, 
suggesting that Qct and GA have a preventive effect 
against lindane-induced cardiac damage. These find-
ings were similar to a previously published report by 
Woo et al66. 

GSH, in conjunction with GPx, play an import-
ant role in protecting cells against various inju-
ries by scavenging ROS67. It has been shown64 
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that oral lindane administration led to decrease 
in GSH levels in rats. In that study, Padma et al64 
reported an increase in GSH levels and GPx and 
GST activities in the Qct co-treated groups com-
pared to the lindane alone group suggesting the 
protective effect of Qct64.

According to Hazarika and Sarkar68, perox-
idation of membrane phospholipids alters the 
lipid milieu and the structural and function-
al integrity of cell membrane and affects the 
activities of numerous enzymes bound to the 
membrane, like Na+/K+-ATPase, Mg2+-ATPase, 
and Ca2+-ATPase68. In one study, Padma et al64 
reported that in the lindane treated group, the 
activities of Ca2+-ATPase increased, while the 
activities of Mg2+-ATPase and Na+/K+-ATPase 
decreased64. However, co-treatment with Qct 
restored the activities of these membrane-bound 
enzymes64.  Their finding suggests that the Qct 
and GA have the membrane-stabilizing ability, 
and they can act as protective agents against 
lindane-induced cardiotoxicity64.  

Protective Effects of Quercetin Against 
Different Drugs and Toxic Agents 
Induced Nephrotoxicity

Methotrexate (MTX)
MTX is a folic acid antagonist with antiprolif-

erative and anti-inflammatory effects; therefore, 
it is frequently used to treat different autoimmune 
disorders and malignant tumors69-71. MTX is an 
antimetabolite that hampers folic acid metab-
olism. Since it is polyglutamated, it can bind to 
dihydrofolate reductase (DHFR) with an affinity 
that is multiple folds higher than that of folate; 
hence, competitively inhibits tetrahydrofolate for-
mation from dihydrofolate72. Tetrahydrofolate is 
essential for the biosynthesis of bases required for 
DNA synthesis and inhibiting cell proliferation72. 

Although MTX is used to treat several dis-
eases and toxicity associated with its use limits 
its clinical application73. MTX sensitizes cells 
to ROS by decreasing NADPH, which plays an 
important role in the cellular antioxidant defense 
mechanism; hence, it is responsible for oxidative 
damage to the tissue74,75. It has been reported74-78 
that ROS mediated oxidative injury is associated 
with nephrotoxicity and hepatotoxicity. 

Yuksel et al75 explored the protective effects of 
Qct against MTX-induced kidney injury75. They 
found that Mtx treatment was associated with se-
vere kidney damage, as validated by histopatho-
logical studies compared to the control group. In 

addition, MTX treatment induced the expression 
levels of caspase-3, MDA, and SOD. However, in 
the Qct group, these alterations were significantly 
restored, suggesting the antioxidant property of 
Qct75. Another study76 showed that MTX treat-
ment was associated with alterations in the renal 
architecture described as tubular dilation and 
degeneration. In addition to that, they also doc-
umented that MTX caused an increase in oxida-
tive stress, as indicated by a significant elevation 
in MDA levels and reduction in GPx, CAT, and 
SOD activities. However, these alterations were 
restored significantly when MTX was given along 
with Qct.

Doxorubicin (Dox)
Dox is a highly effective chemotherapy agent for 

malignant neoplasms, including solid tumors, such 
as the cervix, breast, ovary, uterine and pulmonary 
cancer, and hematopoietic tumors because it shows 
remarkable efficiency and wide spectrum effects79,80. 
Nevertheless, its use is limited because of its toxic-
ity, especially the nephrotoxicity associated with its 
clinical use80,81. The important indicator of kidney 
damages is increased lipid peroxidation and protein 
oxidation81. Yagmurca et al82 evaluated the protective 
effect of Qct against Dox-induced kidney toxicity in 
rats82. They revealed significant tissue injuries in the 
Dox-treated animals. These injuries included inter-
stitial infiltration, renal tubular dilation, decreased 
bowman space, and glomerular vacuolization. Nev-
ertheless, these abnormalities were mitigated with the 
administration of Qct82. In another study, Kocahan et 
al83 also reported the protective action of Qct against 
Dox-induced hepato- and nephrotoxicity through its 
antioxidant effects83. Additionally, Heeba and Mah-
moud84 reported that Qct has both beneficial and 
harmful effects on the kidney in a dose-dependent 
manner84. Several other studies30,85-91 documented 
that Qct prevented Dox-induced damage in the liv-
er, kidney, and heart via its antioxidant property. At 
a low dose, Qct acted as a preventive agent against 
Dox-mediated nephrotoxicity via antioxidant, an-
ti-apoptotic, and anti-inflammatory actions84. Fur-
thermore, Qct at high doses significantly augmented 
the cytotoxic effects of Dox in several human cancer 
cell lines, HEPG2, PC3, MCF7, and HELA84. Allam 
et al92 reported the synergistic effect of Qct and ber-
berine (BER) against Dox-induced nephrotoxicity 
through antioxidant mechanism92. 

Gentamicin (GM)
GM-induced nephrotoxicity has been charac-

terized by direct tubular necrosis predominantly 
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located in the proximal tubule93. Although the ex-
act mechanism by which GM causes nephrotox-
icity is still unclear, several studies have demon-
strated that GM induced cellular generation of 
ROS, causing an imbalance in the intrinsic anti-
oxidant enzymes93-98. 

Abdel-Raheem et al95 showed that oxidative 
stress was mainly associated with GM-induced 
kidney injury as evidenced by a significant in-
crease in kidney toxicity markers, such as high 
total urinary protein excretion, serum creatinine, 
and blood urea nitrogen (BUN)95. Moreover, they 
found that induction of oxidative stress was re-
sponsible for the observed nephrotoxicity as they 
reported that GM treatment resulted in a signifi-
cant reduction in the activity of CAT, GSH, and 

SOD and a remarkable increase in lipid peroxi-
dation levels (LPO). Additionally, they demon-
strated progressive alterations in the tubules 
and glomeruli, as evidenced by histopathologi-
cal examination. These abnormal changes were 
restored when rats were co-treated with Qct95. 
These findings confirmed the antioxidant and the 
nephroprotective effect of Qct. 

Valproic Acid (VPA)
VPA is an antiepileptic drug that is most widely 

used to treat epilepsy worldwide99. Clinicians sup-
port the use of VPA as an anticonvulsant agent, 
but its adverse effects and toxicity limit its uses100. 
Although VPA is a relatively safe drug when used 
at low doses, at high doses, it can have serious un-

Figure 3. Schematic representation of the protective mechanisms of quercetin to mitigate cardiac toxicity. Qct; Quercetin; 
Dox; Doxorubicin, CYP; Cyclophosphamide, Dnr; Daunorubicin, CK-MB; Creatine kinase-MB, TNF-α; Tumor Necrosis 
Factor-alpha, NO; Nitric Oxide, ROS; Reactive Oxygen Species, Casp-3; Caspase-3, LDH; Lactate Dehydrogenase, MDA; 
Malondialdehyde, GR; Glutathione reductase, GSH; Glutathione, GPx; Glutathione Peroxidase, SOD; Superoxide dismutase, 
CAT; Catalase, LPO; Lipid Peroxidation, GST; Glutathione S-transferase.
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wanted effects on the biological system101. Many 
studies102,103 confirmed that VPA promotes ROS 
formation, which is mainly responsible for its 
unwanted effects. Chaudhary et al104 investigated 
the protective effects of Qct against the nephro-
toxic potential of VPA104. They measured the ox-
idative stress indices, such as LPO and protein 
carbonyl (PC), supporting their causative effect 
on VPA-induced neurotoxicity104. Furthermore, 
they reported that VPA treatment significantly al-
tered enzymatic and non-enzymatic antioxidants. 
Pretreatment with Qct, however, mitigated the 
toxic effect induced by VPA104. Therefore, based 
on these findings, they suggested that Qct should 
be considered an effective treatment for reducing 
the harmful effects of VPA.

Cadmium (Cd)
Cd is a natural toxic metal that affects most or-

gans. Cd, a well-known pollutant present in the en-
vironment, can induce kidney damage, as report-
ed elsewhere105-107. It has been reported105-107 that 
chronic exposure to Cd, found in drinking water, 
air, soil, animal products, and plants, damages dif-
ferent organs, primarily the kidney. Humans can 
get exposed to this metal through beverages, fish, 
and cigarette smoking. Cd cannot generate free 
radicals directly; however, several free radicals, 
including nitric oxide (NO) and superoxide radi-
cals, have been documented108 to be generated in-
directly. Oxidative stress is mainly responsible for 
Cd-induced renal damage105,106. In the cytosol, Cd 
indirectly produces ROS, which can deplete the 
endogenous antioxidant status of cells and trigger 
peroxidative damage to biological membrane lipids 
and number of proteins, including Na+/K+-ATPase, 
which has been reported to be reduced in response 
to Cd, suggesting that renal ATPase may be in-
volved in Cd-induced nephrotoxicity109.

Published studies have reported that Cd forms 
a complex with endogenous metal-binding protein 
metallothionein (MT) in the liver. This Cd-MT 
complex is released slowly from the liver and reach-
es the kidney through circulation. In renal cells, Cd 
is released from the Cd-MT complex and absorbed 
in proximal tubules. If the defense and detoxifica-
tion system of the kidney is suppressed, free Cd 
can damage renal tubules105,106,110.  Renugadevi and 
Prabu111 reported that oral administration of CdCl2 
significantly induced renal damage, which was ev-
ident by increased serum creatinine, uric acid, and 
urea levels and decreased creatinine clearance 111. 
They reported an increase in the levels of renal LPO 
and the protein carbonyl content with a significant 

reduction in non-enzymatic antioxidants (vitamin 
E, vitamin C, reduced GSH, and total sulfhydryl 
group) and enzymatic antioxidants (GR, GST, GPx, 
G6PD, CAT, and SOD) in rat treated with Cd111. 
Additionally, they also reported numerous abnor-
malities in the Cd-treated rats, ranging from tu-
bular dilation to necrosis. Qct treatment markedly 
mitigated the Cd-induced biochemical changes in 
urine serum and kidney tissue111.  In another study, 
Morales et al112 reported that induction of inflamma-
tion was associated with Cd-induced kidney toxicity 
and an increase in BUN levels, a well-documented, 
reliable, and important marker of nephrotoxicity. 
Moreover, they reported that Cd treatment altered 
the expression of iNOS and Cox2, a mediator of 
inflammation. Qct treatment, however, mitigated 
these alterations112. It can be assumed that Qct may 
have a protective effect against nephrotoxicity and 
oxidative stress induced by Cd administration. 

Potassium Dichromate (K2Cr2O7)
People working in textile manufacturing, spray 

paint, photography and photoengraving, cooling 
system, and stainless-steel industries can get ex-
posed to chromium (Cr) compounds113. Nephro-
toxic effects of K2Cr2O7 have been associated 
with the intracellular reduction of Cr (VI) to Cr 
(III). As a result, ROS and reactive nitrogen spe-
cies (RNS) are overproduced114-118.

Becerra et al118 reported that K2Cr2O7 pro-
duced a significantly increased systemic LPO and 
reduced renal removal of para-amino hippuric 
acid (PAH) and inulin one day after K2Cr2O7 ad-
ministration. Moreover, they reported Qct atten-
uated the damage caused by K2Cr2O7 probably 
due to free radical scavenging effects and syner-
gistic effects with endogenous antioxidants118. 

Fluoride
Drinking water and food are natural sources of 

fluoride for humans119. Recent studies120-124 have 
estimated that about 30-40% of agrochemicals 
and 20% of pharmaceuticals products are in the 
form of organofluorines. As the kidney plays an 
important role in fluoride metabolism, as mainly 
50-80% of the fluoride is removed via excretion 
through urine, the kidney is the major organ af-
fected by fluoride intoxication119,122. NaF has been 
shown119,125 to cause histological alterations in the 
kidney tissues and increased ROS generation and 
LPO production. Recently, Nabavi et al126 report-
ed an association of oxidative stress with Sodi-
um Fluoride-Induced toxicity in rat kidneys123,126. 
Moreover, they found that fluoride administration 
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resulted in a significant downregulation of antiox-
idant defenses coupled with increased serum lev-
els of glomerular damage markers (BUN, creati-
nine, and urea), consistent with a previous study 
by Yu et al127. Additionally, NaF caused kidney 
damage through increased oxidative stress, as ev-
idenced by decreased SOD activity, CAT activity, 
GSH levels, and elevated lipid peroxidation. How-
ever, the antioxidant-oxidant balance was normal-
ized to the control level when Qct administration 
was given before fluoride administration126. 

Mercury chloride (HgCl2)
Mercury (Hg) is one of the major environmen-

tal pollutants responsible for nephrotoxicity in 
animals and humans128-133. Mercury is a potent 
nephrotoxic substance commonly used to induce 
acute kidney injury (AKI) in animal models be-
cause the kidney is the main site of mercury ac-
cumulation following acute exposure129,134,135. It 
is important to comprehensively understand the 
biotransformation mechanism of Hg to induce 
protection against Hg-induced AKI. Several ne-
phroprotective mechanisms against Hg-induced 
toxicity have been proposed. Some reports136-139 
suggested that HgCl2 exposure induced oxidative 
stress in the proximal tubules because of distur-
bance in the antioxidant capacity.  

Recently, the protective effect of Qct against 
HgCl2-induced AKI was assessed140. In that study, 
Shin et al140 demonstrated that HgCl2 induced kid-
ney injury, as evidenced by the accumulation of 
HgCl2 in the kidney and increase in creatinine 
and BUN. Furthermore, HgCl2 treatment induced 
the urinary excretion of high mobility group box 1 
protein (HMGB1), neutrophil gelatinase-associat-
ed lipocalin (NGAL), tissue inhibitor of metallo-
proteinases 1(TIMP-1), kidney injury molecule-1 
(KIM-1), and netrin-1. However, Qct pretreatment 
mitigated these effects and protected the kidney 
against HgCl2 induced AKI140. 

Tetrachlorodibenzo-p-Dioxin (TCDD) 
TCDD is a dioxin formed by the burning of 

metals and waste materials during the production 
of herbicides and in several industrial processes, 
like plastics and paper manufacturing141,142. Hu-
mans are exposed to TCDD through food sources 
like bovine adipose tissue, milk, milk products, 
fish, and hen’s eggs143. TCDD is responsible for 
causing several toxicities, including wasting syn-
drome, reproductive toxicity, generalized car-
cinogenesis, immune dysfunction, nephrotoxic-
ity, and hepatotoxicity141-145. The mechanism of 

TCDD toxicity is mainly explained through its 
binding to the aryl hydrocarbon receptor (AhR), 
an intracellular ligand-dependent transcription 
factor146. Oxidative stress is an important mech-
anism of toxicity induced by TCDD, and many 
studies142,144,145,147,148 showed that exposure to 
TCDD leads to oxidative damage of many tissues, 
such as the liver, kidney, and testis. Published 
studies144,149,151 have confirmed the link between 
TCDD-induced kidney toxicity and oxidative 
stress. Lu et al144 reported that TCDD treatment 
increased lipid peroxidation and induced signifi-
cant alterations in the antioxidant enzymes in the 
kidney144. It has also been demonstrated151 that 
Qct and Chrysin (CH) showed antioxidant ac-
tivity against TCDD-induced nephrotoxicity. In 
this study151, they reported that Qct and CH suc-
cessfully protected the kidney from the injury in-
duced by TCDD, as they significantly attenuated 
Lipid peroxidation (TBARS) levels and induced 
the levels of SDO, CAT, GSH, and GPx enzymes 
activity. 

Titanium Dioxide Nanoparticles (NTiO2)
The microscopic particles with less than 100 

nm size in one dimension are known as nanopar-
ticles (NPs). Toxicological studies confirmed 
that some NPs, such as NTiO2, are potentially 
harmful because of their unique physicochem-
ical properties and the high surface-to-volume 
ratio152. Besides, these NTiO2 are commonly 
used in a wide range of consumer products, in-
cluding clothing, cosmetics, sunscreens, paints, 
electronics, and surface coating153. NTiO2 is also 
used in food colorants, nutritional supplements, 
and toothpaste. It has been reported154-157 that 
NTiO2 can induce nephrotoxicity due to their 
accumulation in the kidney. Hadis et al158 doc-
umented that Qct protected the kidney against 
NTiO2 through its antioxidant, anti-inflamma-
tory, and anti-apoptotic properties158. Moreover, 
they demonstrated that the induction of oxidative 
stress-mediated NTiO2-induced kidney damage, 
as indicated by increased levels of malondial-
dehyde (MDA) and reduced levels of SOD and 
CAT. When rats were pretreated with Qct, it at-
tenuated the infiltration of inflammatory cells, 
reduced the glomerular diameter, and restored 
the abnormalities induced by NTiO2

158.    

Gold Nanoparticles (GNPs)
GNPs’ shape and characteristics make them 

attractive materials for a wide range of biologi-
cal applications. Nonetheless, a thorough under-
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standing of their bioaccumulation and systemic 
toxicity is needed to apply GNPs in medicine and 
drug delivery159. The kidneys are extremely sus-
ceptible to xenobiotics because of the high vol-
ume of blood flow that passes through them and 
because they filter a considerable amount of tox-
ins. These toxins can accumulate in the kidney. 
Despite multiple beneficial effects of GNPs, many 
studies have found that smaller GNPs at the same 
mass concentration cause huge cytotoxic and in-
flammatory responses relative to larger GNPs be-
cause of their high reactivity with biological com-

ponents, the harmful effects of their huge surface 
area, and the large numbers of NPs159,160. 

Abdelhalim et al160 reported that Qct had ne-
phroprotective potential against GNPs160. They re-
ported that administration of GNPs compromised 
kidney functions, as evidenced by elevation in 
serum levels of toxic markers (creatinine, BUN, 
and uric acid), reduction in the levels of GSH, and 
induction of the lipid peroxides levels. When rats 
were co-treated with Qct, these alterations were 
attenuated significantly, protecting the kidney 
from the damage induced by GNPs160. 

Figure 4. Schematic representation of the protective mechanisms of quercetin to mitigate nephrotoxicity. Qct; Quercetin; 
MTX; Methotrexate, Dox; Doxorubicin, GM; Gentamicin, VPA; Valproic acid, K2Cr2O7; Potassium dichromate, NaF; Sodi-
um Fluoride, HgCl2; Mercuric Chloride, NTiO2; Titanium Dioxide Nanoparticles, GNPs; Gold Nanoparticles, TNF-α; Tumor 
Necrosis Factor-alpha, NO; Nitric Oxide, Casp-3; Caspase-3, LDH; Lactate Dehydrogenase, GR; Glutathione reductase, GSH; 
Glutathione, GPx; Glutathione Peroxidase, SOD; Superoxide dismutase, CAT; Catalase, LPO; Lipid Peroxidation, GST; Gluta-
thione S-transferase. IL-1β; Interleukin 1-beta, BUN; blood urea nitrogen, NGAL; Neutrophil gelatinase-associated lipocalin, 
KIM-1; Kidney Injury Molecule-1, MCP-1, Monocyte chemoattractant protein-1, TIMP-1; Tissue Inhibitor of Metalloprotein-
ases, VEGF; Vascular Endothelial Growth Factor.



Cardioprotective and nephroprotective effects of Quercetin against different toxic agents

7433

Cardiotoxicant, 
dose & duration 

Animal/Tissue/Cell Qct dose, duration Mechanisms 
of protection

Ref.

Dox: 1 μM for 24 hrs. Primary cardiomyocytes Qct: 10, 20, 40 & 80 μM 
for 22 hrs. before Dox 
treatment

Antioxidant 30

Dox: 2.5 mg/kg, i.p., 6 doses 
for 2 weeks, (accumulative 
dose of 15 mg/kg)

Wistar rats (male, 190-220 g) Qct: 10 mg/kg/day, oral, 
for 6 weeks, started with 
the 1st dose of Dox

Antioxidant 31

CYP: 40 mg/kg/day, i.p., for 
2 days

Swiss albino mice (male, 
30-45 g)

Qct: 50 mg/kg/day, oral, 
for 10 days

Antioxidant
Anti-inflammatory

41

Dnr: 15 mg/kg (single dose), 
i.g

Wistar rats (male, 190-200 g) Qct: 100 mg/kg, oral, for 
24 hrs.

Antioxidant 57

Lindane :100 mg/kg, oral for 
30 days

Wistar rats (male, 180-200 g) Qct: 10 mg/kg, oral, for 
30 days

Antioxidant 64

Table I. Cardioprotective effect of Quercetin (Qct).

Dox; Doxorubicin, Qct; Quercetin, CYP; Cyclophosphamide, Dnr; Daunorubicin, hrs.; hours, i.p; Intraperitoneal injection, i.g; 
Intragastric injection.

Nephrotoxicant, 
dose, duration 

Animal/Tissue/Cell                                   Qct dose, duration                Mechanisms of 
protection               

Ref.

MTX: 20mg/kg, i.p, sin-
gle dose

Sprague Dawley rats 
(male, 200-250 g)

- Qct: 50 mg/kg, oral, for 8 days 
(2 days prior to MTX treatment 
and 6 days after it). 

Antioxidant                75

MTX: 20mg/kg, i.p Sprague Dawley rats 
(male, 8-10-week-old)

Qct: 5 mg/kg, i.p., for 6 days Anti-apoptotic                                                                      
Antioxidant           

76

Dox: 20 mg/kg (single 
dose), i.p

Wistar rats (male) Qct: 50 mg/kg, oral, for 10 days Prevented histologi-
cal alterations

82

GM: 80 mg/kg, i.p, for 
7 days

Wistar rats (female, 150-200 g) Qct: 50 mg/kg/day, oral, for 7 
days

Antioxidant 95

VPA: 20 mg for 2 hrs. PNS of kidney tissues from 
Wistar rats (male, 3-4-week-
old) weighing 100-120 g

Qct: 0.05 mM, for 1h prior to 
VPA treatment

Antioxidant 104

Cd: 5 mg/kg/day, oral, 
for 4 weeks

Wistar rats (male, 120-150 g) Qct: 50 mg/kg/day, oral, for 4 
weeks

Antioxidant 111

Cd: 1.2 mg/kg, s.c., 5 
times per week for 9 
weeks     

Wistar rats (male, 8-week-old, 
200 g)

Qct: 50 mg/kg/day, i.p., for 9 
weeks

Antioxidant 112

K2Cr2O7: 15 mg/kg, i.p. Wistar rats (male) Qct: 50 mg/kg, i.p., for 5 days Antioxidant 118

NaF: 600 ppm for 7 days Wistar rats (male, 200-250 g) Qct: 10 & 20 mg/kg/day, i.p., for 
7 days

Antioxidant 126

HgCl2: 20 mg/kg, oral, 
single dose

Sprague Dawley rats (male) Qct: 250 mg/kg/day, oral, for 3 
days

Anti-apoptotic
Antioxidant

140

NTiO2: 50 mg/kg, oral, 
for 2 weeks

Wistar rats (female, 180-200 g) Qct: 75 mg/kg, oral, for 3 weeks 
prior to NTiO2 treatment

Anti-apoptotic
Antioxidant

158

GNPs: 50 μL of 10 nm 
GNPs, i.p., for 7 days           

Wistar Kyoto rats (male, 
12-week-old, 220-240 g)

Qct: 100 mg/kg/day, i.p., for 7 
days

Anti-apoptotic
Antioxidant

160

Table II. Nephroprotective effect of Quercetin (Qct).

MTX; Methotrexate, Dox; Doxorubicin, GM; Gentamicin, VPA; Valproic acid, Cd; Cadmium, K2Cr2O7; Potassium dichro-
mate, NaF; Sodium Fluoride, HgCl2; Mercuric Chloride, NTiO2; Titanium Dioxide Nanoparticles, GNPs; Gold Nanoparticles, 
Qct; Quercetin, hrs.; hours, i.p; Intraperitoneal injection, S.c; Sub-cutaneous injection, PNS; Post-nuclear supernatant, ppm; 
Parts per Million.
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Discussion

This review summarized the findings report-
ed by different research teams regarding Qct and 
its protective effects against toxicities caused by 
various drugs and toxic agents (Tables I and II). 
According to the findings documented by several 
studies, Qct has a cardioprotective effect against 
Dox, CYP, Dnr, and lindane (Figure 3), and ne-
phroprotective effects against MTX, Dox, GM, 
VPA, Cd, K2Cr2O7, Fluoride, HgCl2, TCDD, 
NTiO2, and GNPs (Figure 4). Qct offered pro-
tection against various chemicals and toxicants 
through different mechanisms by acting as anti-
oxidants, modulating cardiac and renal enzymes, 
improving antioxidant defense mechanisms, and 
inhibiting apoptosis-mediated toxicities.

Conclusions

Qct has a broad spectrum of beneficial proper-
ties against different toxicants. However, most of 
these beneficial effects have not been verified on 
humans in a clinical trial. Although this review 
will help pharmacologists, toxicologists, and 
chemists to develop new safer pharmaceutical 
products in combination with Qct against dif-
ferent Cardio and nephrotoxicants, more studies 
are needed to confirm the protective properties 
of Qct against several toxicants in case of human 
toxicity. 
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