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Abstract. – OBJECTIVE: Copy-number vari-
ation (CNV) is an important source of genetic 
diversity in humans. It can cause Mendelian or 
sporadic traits or be associated with complex 
diseases by various molecular mechanisms, in-
cluding gene dosage, gene disruption, gene fu-
sion and position effects. In clinical diagnostics, 
it is therefore fundamental to be able to iden-
tify such variations. The preferred techniques 
for CNV detection are MLPA, aCGH and qPCR, 
which have proven to be valuable, and they are 
complex, costly and require prior knowledge of 
the region to analyze. CNV calling from NGS da-
ta still suffers from data variability. Coverage 
can vary greatly from one region of the genome 
to another, depending on many factors like com-
plexity, GC content, repeated regions and many 
others. In this paper, we describe how we devel-
oped a method for CNV detection. 

MATERIALS AND METHODS: Our method ex-
ploits CoNVaDING to detect single- and multi-
ple-exon CNVs in targeted NGS data. 

RESULTS: We demonstrated that our CNV 
analysis has 100% specificity and 99.998% sen-
sitivity. We also show how we evaluated the per-
formance of this method based on internal anal-
ysis. 

CONCLUSIONS: The results indicate that the 
method can be used to screen prior to standard 
labs technologies, thus reducing the number of 
analyses, as well as costs, and increasing test 
conclusiveness.
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Introduction

Next Generation Sequencing (NGS), or mas-
sive parallel sequencing, is a DNA sequencing 
technology which has revolutionized genomic re-
search. NGS can detect single-nucleotide variants 
and small deletions and insertions, but detection 

of large rearrangements, such as copy-number 
variants (CNVs), remains challenging. The meth-
od has several intrinsic issues, including short 
read lengths and GC-content bias1. Germline 
CNVs are known to be a source of genetic di-
versity in humans but also the cause of various 
hereditary diseases, both common and complex2, 
influencing a variety of Mendelian and somatic 
genetic disorders.

To detect CNVs in genetic diagnostics, the 
methods used are usually multiplex ligation-de-
pendent probe amplification (MLPA)3, array 
comparative genomic hybridization (aCGH)4 and 
qPCR5. These methods have many drawbacks, 
being complex, costly and requiring prior knowl-
edge of the region to analyze. Thus, testing is 
usually only performed on a subset of genes.

Capacity to identify CNVs, in particular from 
NGS data, would be fundamental for increasing 
diagnostic yield and improving clinical manage-
ment6. The possibility of preliminary screening, 
prior to testing with more complex and costly 
techniques, could improve diagnostic conclusive-
ness for certain diseases, while reducing health 
expenditure due to late diagnosis and the use of 
standard techniques.

Since there are many tools for CNV detection 
in NGS data, we decided to search the literature 
to find the best tool for our purposes.

In 2020, Koboldt7 discussed several tools for 
CNV detection in NGS data, such as cn.MOPS8, 
CONTRA9, CoNVEX10, ExomeCNV11 and 
XHMM12. Zhao et al13 described CoNIFER14 
and XHMM as good tools for rare CNV detec-
tion. To choose the best tool for our purpose, we 
extracted the performances declared by the de-
velopers of each tool. We also considered other 
aspects, such as type of NGS data (WES or gene 
panels), the biological samples required to ob-
tain the data, and how the tools can be integrat-
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ed into our existing pipeline. Cn.MOPS, which 
is distributed as an R or Bioconductor package, 
declares a recall of 88% for gains and 96% for 
losses. CONTRA calculates its performance on 
exome capture data and declares 100% speci-
ficity and 96.4% sensitivity. CoNVEX reduces 
the variability of coverage ratios, and then, uses 
HMM to detect CNVs; it has been tested with 
tumor data vs. control WES data, obtaining a 
sensitivity of 92% and a precision of 50%. Ex-
omeCNV declares sensitivity and specificity of 
more than 90% on melanoma WES data, but it 
also declares that the tool does not perform opti-
mally when cases and controls have significantly 
different coverages. CoNIFER was tested on 
three or more consecutive exons using HapMap 
WES samples, obtaining a precision of 94% 
and an accuracy of 78%. XHMM was tested on 
WES data and reports a sensitivity of 79%.

A tool that can perform CNV detection for 
NGS panel data is CoNVaDING15. Its developers 
compared it with XHMM, CoNIFER, CONTRA 
and CODEX, using 320 gene panel data samples, 
achieving a sensitivity of 100% and a specificity 
of 99.998% and outperforming the other tools 
on the same samples. The four tools used for 
comparison considered control samples equally 
informative but differed in PCR and capturing ef-
ficiency. This increases the risk of low sensitivity 
and specificity for single-exon CNV detection or 
limits analysis to detection of variations that span 
multiple exons15. With stringent quality control 
and selection of samples based on coverage pat-
terns, CoNVaDING selects controls most similar 
to the sample, improving performance. Based on 
these characteristics, we chose this tool, which 
we tested it by including it in the pipeline we 
use for analysis of NGS data in our laboratory. 
Considering the high coverage standardization 
requirements of CNV detection, we added a prior 
PCA to identify control samples with variability 
most similar to the sample under analysis. This 
method was integrated in our diagnostic pipeline, 
as a screening test. Therefore, to be compliant 
with the stringent diagnostic requirements, we 
also evaluated the performance of this method 
using internal data. 

Materials and Methods

In this section we describe the CoNVaDING 
workflow, and the procedure used to obtain the 
coverage data of different samples. The method 

is composed of sequencing to capture target 
regions, bioinformatics analysis to obtain cover-
age data, and analysis of the coverage data with 
CoNVaDING.

Sequencing
We captured genomic regions of interest us-

ing Illumina Nextera Flex for Enrichment, a 
solution enrichment system, according to the 
supplier’s protocol. Briefly, 50 ng genomic DNA 
was fragmented by the enzyme method (Tag-
mentation), which uses the enrichment Bead-
Linked Transposomes (eBLT) system. This sys-
tem fragments the DNA in a single step and 
adds the adapters necessary for the subsequent 
amplification steps to the ends of fragments. 
The DNA library is then purified and amplified 
in nine PCR cycles. During amplification, the 
IDT for Illumina Nextera Unique Dual Indexes 
(sequences necessary for sequencing), and the 
common adapters (P5 and P7, fundamental for 
cluster generation and sequencing) were add-
ed. Subsequently, multiple libraries of differ-
ent samples (containing different indexes) were 
combined, and then, hybridized in solution with 
the probes (Ocular panel Id: 140115) to capture 
the target regions in a single hybridization and 
capture step. Finally, a second PCR step of 15 
cycles for enrichment of the captured DNA 
fragments is performed.

Bioinformatic Analysis
Bioinformatic analysis of the sequences gen-

erated to identify variants with a possible patho-
genic role involves the coding regions and splice-
site-flanking regions (±5 bp flanking each exon) 
of the specific subset of genes of the suspected 
diagnosis, as indicated by the test. The details of 
bioinformatics analysis are available in Marced-
du et al16. Briefly, the generated sequences are 
mapped against the reference sequence to obtain 
a list of variants. The position, amino acid change 
and predicted effect on protein function (SIFT, 
PolyPhen-2) of the variants identified are record-
ed. Other information on the variants is obtained 
from various public sources, including NCBI, 
PubMed and other specific databases. 

Once annotation is complete, the variants are 
filtered to distinguish common benign ones from 
rare, possibly pathogenic variants. Population fre-
quency data, such as dbSNP17, NHLBI Exome Se-
quencing Project18 and 1000 Genomes Project19, 
available on the web, is used to classify benign 
variants.
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The Magi APP Bioinformatics Pipeline uses 
assembly hg38 as reference genome. The posi-
tions of the variants selected from the public data 
are therefore converted from assembly hg19 to 
hg38, using UCSC lift over20, an online or com-
mand line tool that converts genome coordinates 
and genome annotation files from one assembly 
to another.

CoNVaDING
CoNVaDING15 is a tool that not only detects 

(single- and multiple-exon) CNVs in targeted 
NGS data but also provides a stringent quali-
ty control metric that distinguishes high-qual-
ity samples and targets from low-quality ones. 
Its workflow includes several steps: selecting 
controls, calculating average coverage, coverage 
analysis and CNV prediction.

For in-depth comparison, CoNVaDING uses 
control samples captured with the same panel and 
that went through the same bioinformatic anal-
ysis as the samples to analyze. The tool selects 
control samples with similar coverage patterns 
to the ones in analysis. Then, it calculates the 
average coverage for each target region and nor-
malizes it using two methods in parallel: average 
coverage of all autosomal targets and of the same 
gene. Based on the normalizations, ratio and 
distribution analysis using Z-scores is performed 
to obtain the relative differences in average cov-
erage of the targets of samples and controls, from 
which CNV is predicted15.

We decided to add a Principal Component 
Analysis (PCA) selection step on control samples 
before input to CoNVaDING in order to identify 
those with variability most similar to the samples 
in analysis (Figure 1). PCA is a technique for re-
ducing the dimensions of feature space, facilitat-
ing interpretation while minimizing information 
loss.

Implementation
Analysis of CNV in NGS gene panel data was 

performed by entering CoNVaDING, running in 
Ubuntu 16.04, in the existing PipeMAGI pipeline. 
We used CoNVaDING version 1.2.021, which is 
written in Perl22 and depends on specific Perl 
libraries, as well as on Samtools23 version 1.3 or 
higher. The method is written in Python 2.724 and 
requires several modules, such as Pandas25 for da-
ta manipulation, Matplotlib26 for data plotting and 
Scikit-learn27 for PCA selection. The code of our 
method can be found in our GitLab repository at 
https://gitlab.com/magieuregio2016/cnv_analysis.

Results

Data and Design
To test the method with CoNVaDING add-

ed to our pipeline, we performed a validation 
with 12 genotyped samples containing dele-
tions and duplications confirmed by MLPA or 
obtained from the NIGMS Human Genetic Cell 
Repository, a collection of well-characterized, 
high-quality human cells for use in biomedical 
research, made available by the Coriell Insti-
tute28. The specimens, equally from males and 
females, were acquired from individuals with 
inherited diseases, apparently healthy individ-
uals and individuals with different geographic 
origins.

Table I shows the validation design: of the 12 
samples analyzed, eight were confirmed with 
MLPA while four were Coriell samples. One 
sample had a mono-exon deletion while the 
others were known to have multi-exon deletions 
or duplications. We used 389 samples as control 
group.

Parameters
To evaluate the performance of our method, we 

chose the parameters sensitivity, specificity and 
accuracy. To calculate the parameters, we used 
two modes to measure the ability of the method 
to find deletions and duplications on single exons 
and entire duplications or deletions. Single exons 
or entire variants were divided into four class-
es: false positive (FP), false negative (FN), true 
positive (TP) and true negative (TN) in order to 
calculate the parameters.

Figure 1. Plot of the first two principal components of the 
control group.
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Sensitivity is the ability to correctly identify 
variants that really exist in the sample and its 
formula is:

TP
–––––––––––

TP + FN

Specificity is the ability not to call variants that 
do not exist in the sample; its formula is:

TN
–––––––––––

TN + FP

Accuracy is the ability of the method to iden-
tify or exclude the existence of a variant, and its 
formula is:

TP + TN
–––––––––––––––––––––
TP + TN + FP + FN

For variant-call analysis, we assigned a variant 
to the true positive group even if it was called 
partially. We assigned it to the false negative 
group if it was not called. Variants erroneously 
called were considered false positives and vari-
ants correctly not called were considered true 
negatives.

Figures 2 and 3 show the results of vali-
dation, reporting parameter calculations by 
the single-exon method and by calling of en-
tire duplications and deletions, respectively. 
The specificity and accuracy of the method 

reached 99% for both methods. Sensitivi-
ty reached 100% for entire variant calling 
and only 83% for single-exon variants. This 
performance makes the method suitable for 
multi-exon CNV screening.

Discussion

Copy number variation is an important source 
of genetic diversity in humans, and can cause 
Mendelian or sporadic traits, or be associated 
with complex diseases. It is therefore fundamen-
tal in clinical diagnostics to be able to identify 
such variations. The techniques of choice for 
CNV detection are complex, costly, and require 
prior knowledge of the region to analyze, while 
CNV calling from NGS data still suffers from the 
variability of such data.

Here we described how we integrated CoN-
VaDING in our bioinformatic pipeline. CoNVaD-
ING is a tool that detects single- and multiple-ex-
on CNVs in targeted NGS data, after performing 
stringent quality control.

As screening in a diagnostic setting requires 
good performance, we tested the performance 
of our method on internal data. We also de-
scribe how we tested the tool for single- and 
multiple-exon CNV detection. The method was 
tested on 12 samples (with 389 internal control 
samples), whose deletions and duplications were 
confirmed by standard techniques. We calculat-
ed the sensitivity, specificity and accuracy of the 
tool by two methods: one measured the ability 
of the method to find deletions and duplications 

Table I. Validation design of 12 samples analysed, eight were confirmed by MLPA and the other four were Coriell samples. One 
sample had a mono-exon deletion, while the others were known to have multi-exon deletions or duplications.

	 ID	 Origin	 Gene	 Indel

RX26.2019	 Internal MLPA	 EYS	 Deletion exons 16-19
RX27.2019	 Internal MLPA	 EYS	 Deletion exons 14-15
RX28.2019	 Internal MLPA	 USH2A	 Deletion exon 13
RX29.2019	 Internal MLPA	 EYS	 Deletion exons 14-22
RX30.2019	 Internal MLPA	 EYS	 Deletion exons 14-22
RX31.2019	 Internal MLPA	 USH2A	 Deletion exons 14-15
RX32.2019	 Internal MLPA	 ABCA4	 Deletion exons 1-5
R2325.2020	 NA00214	 CRB1	 Deletion of entire gene
R2326.2020	 HG01802	 LCA5	 Duplication of entire gene
R2327.2020	 HG02397	 CRX	 Duplication of entire gene
R2328.2020	 NA10946	 LCA5	 Deletion of entire gene
RE1628.2020	 Internal MLPA	 USH2A	 Deletion exons 5-10
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on single exons and the other the ability of the 
method to find deletions and duplications on 
multiple exons.

Conclusions

The results showed good performance for 
multi-exon CNV detection, qualifying the meth-
od for a screening phase, which will in any case 
be confirmed by a complementary diagnostic 
method. Our method reduces the number of anal-
yses necessary and therefore reduces costs while 
increasing test conclusiveness.
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