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Abstract. – OBJECTIVE: Alterations in the 
activity of the transcription factor 7-like 2 (TC-
F7L2) generate defects previously associated 
with neuropsychiatric disorders. We investigat-
ed the role of the TCF7L2 gene in major depres-
sive disorder (MDD), type 2 diabetes (T2D), and 
MDD-T2D comorbidity. We tested whether TC-
F7L2 is in linkage to and/or in linkage disequi-
librium (LD, namely association) with MDD, T2D, 
and MDD-T2D.

PATIENTS AND METHODS: In 212 families 
with T2D and MDD in the Italian population, 
we analyzed 80 microarray-based SNPs using 
Pseudomarker software for linkage to and LD 
with T2D and MDD under the recessive model 
with complete penetrance (R1). In a secondary 
analysis, we tested the variants under the dom-
inant models with complete penetrance (D1), re-
cessive with incomplete penetrance (R2), and 
recessive with incomplete penetrance (R2). 

RESULTS: We found several novel linkage sig-
nals and genetic associations. In addition, we 
found two new transcription-factor (TF) bind-
ing sites created by two risk variants found: 
the MDD-risk variant rs12255179 creates a new 
TF-binding site for the CCAAT/enhancer-bind-
ing protein α (C/EBPα), and the T2D-risk variant 

rs61872794 creates a new TF-binding site for the 
organic cation-uptake transporter (OCT1). Both 
new binding sites are related to insulin metab-
olism. 

CONCLUSIONS: These results highlight the 
cross-interactivity between T2D and MDD. Fur-
ther replication is needed in diverse ethnic 
groups.
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Introduction

Major depressive disorder (MDD) and type 2 
diabetes (T2D) are prevalent complex comorbid 
disorders that share many pathogenic mecha-
nisms1,2. MDD confers a 60% increased risk for 
T2D in antidepressant-naïve patients3. Converse-
ly, T2D is associated with a modest increase in 
MDD, with the latter appearing to be driving 
the increased MDD-T2D comorbidity risk3. It is 
possible that reciprocal association between de-
pression and T2D may be due to common molec-
ular determinants1. Also, it is hypothesized that 
depression may drive T2D risk based on shared 
genetic pathways4. 

The transcription factor 7-like 2 (TCF7L2), an 
essential component of the Wnt-signaling path-
way, is the first and strongest T2D-genetic risk 
factor to be identified by linkage studies5. The 
genetic association of TCF7L2 common variants 
with T2D is one of the most powerful discover-
ies in complex diseases. It has been consistently 
replicated in multiple populations with diverse 
genetic origins5. Furthermore, alterations in the 
activity of TCF7L2 generate defects previous-
ly associated with neuropsychiatric disorders2. 
Changes in the expression level of TCF7L2 mR-
NA are part of the module associated with de-
pression, and genetic analyses of TCF7L2 have 
shown that the gene is involved in pathological 
processes that cause mental disorders6 such as 
schizophrenia (SCZ)7,8 and bipolar disorder9,10. 
The molecular mechanisms involved in this pro-
cess are not well known11,12.

In a mouse model, Savic et al13 identified a 
role for TCF7L2 in anxiety-like behavior and a 
dose-dependent effect of TCF7L2 alleles on fear 
conditioning; when TCF7L2 was ablated, fear 
learning increased and when TCF7L2 was over-
expressed, it was impaired. Interestingly, these 
differences were observed prior to the onset of 
detectable glucose metabolism abnormalities13.

In this study, we aimed to test whether the 
TCF7L2 gene plays a role in familial MDD, T2D, 
and MDD-T2D and whether it confers a potential 
risk for the genetic comorbidity of these clinically 
associated disorders.

Patients and Methods

In 212 Italian families diagnosed with T2D 
with extended family history14,15 and phenotyped 
for MDD according to DSM-IV criteria16, we 
analyzed 80 microarray-based single nucleotide 
polymorphisms (SNPs) in the TCF7L2 gene, 
namely 76 intronic SNPs, 1 exonic SNP, 2 3’-
UTR SNPs, and 1 synonymous SNP. The data 
that we accessed were fully deidentified.

Statistical Analysis 
We excluded genotyping and Mendelian errors 

by PLINK (Available at: https://zzz.bwh.harvard.
edu/plink/). We used Pseudomarker to analyze 
TCF7L2-variants for linkage to and linkage dis-
equilibrium (LD, namely linkage + association) 
with T2D and MDD under the recessive model 
with complete penetrance (R1). In a secondary 
analysis, we tested the variants under the dom-
inant models with complete penetrance (D1), 
recessive with incomplete penetrance (R2), and 
recessive with incomplete penetrance (R2). We 
then tested statistically significant SNPs (p ≤ 
0.05) for the presence or absence of LD blocks in 
the Tuscany Italian population from the 1,000 Ge-
nomes Project (Available at: https://www.inter-
nationalgenome.org/data-portal/population/TSI). 
SNPs were either “independent” or linked in a 
specific designated LD block (set01, set02, etc.). 
The Bios Ethical Committee approved the study.

Results

Based on our analysis, we identified the risk 
variants with statistical significance (p ≤ .05) 
in MDD and/or T2D (Table I). In all, we found 
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that 10 unique variants conferred MDD risk; 10 
unique variants conferred T2D risk; and 4 vari-
ants were comorbid (i.e., conferred MDD-T2D 
risk). The MDD risk variants 10-112996282-A-T 
and rs7903146 appeared within the same and sole 
MDD LD block (set01). The T2D risk variants, 
rs7904519 and rs10787472 appeared within the 
same and sole T2D LD block (set02). Variants 
within the same LD block function as replicates 
of one another. 

Figure 1 shows the SNPs in linkage and/or 
LD with MDD, and Figure 2 shows the SNPs 
in linkage and/or LD with T2D. Figure 3 shows 
the MDD- and T2D-risk variants and the MDD-
T2D comorbid variants. Several significant SNPs 
overlapped across the models (Table I). Venn dia-
grams show the overlapping MDD risk (Figure 4) 
and T2D risk (Figure 5) SNPs. 

 
In Silico Analysis

We used the following tools to analyze the non-
coding intronic variants for transcription factor 
(TF) binding: TFsearch (Available at: http://diyh-
pl.us/~bryan/irc/protocol-online/protocol-cache/

TFSEARCH.html), SNP Function Prediction20 
(Available at: https://snpinfo.niehs.nih.gov/snpin-
fo/snpfunc.html), RegulomeDB20 (Available at: 
https://regulomedb.org/regulome-search/), and 
SNPnexus21 (Available at: https://www.snp-nex-
us.org/v4/). Predictions of splicing and miRNA 
binding were performed using SpliceAI22 (Avail-
able at: https://spliceailookup.broadinstitute.org) 
and mirSNP23 (Available at: https://ccb-compute.
cs.uni-saarland.de/mirsnp), respectively. We 
found that the risk allele (C) of the MDD-risk 
variant rs12255179 creates a new TF-binding site 
for the CCAAT/Enhancer-Binding Protein α (C/
EBPα), which regulates genes involved in lipid 
and glucose metabolism. C/EBPα is associat-
ed with elevated triglycerides24, which might be 
mediated by insulin resistance. We also found 
that the risk allele (G) of the T2D-risk variant 
rs61872794 creates a new TF-binding site for 
the organic cation-uptake transporter (OCT1). 
OCT1 is a sensor of metabolic and stress signals 
and regulates insulin secretion in pancreatic beta 
cells25. These results highlight the cross interac-
tivity between T2D and MDD.

Figure 1. Linkage and linkage disequilibrium (i.e., association) of TCF7L2-risk single nucleotide polymorphisms (SNPs) 
in major depressive disorder using different inheritance models. For each TCF7L2-risk SNP in major depressive disorder 
(MDD), we presented the -log10 (p) as a function for each significant test statistic (Linkage, LD - Linkage, LD- No Linkage, 
Linkage - LD, and LD+Linkage). The most significant model is underlined. Per the inheritance model: D1: dominant, complete 
penetrance; D2: dominant, incomplete penetrance; R1: recessive, complete penetrance; R2: recessive, incomplete penetrance 
(*variant predicted to affect transcription-factor binding).
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Discussion

Intronic variants in the Wnt-signaling pathway 
effector TCF7L2 were reported17 to be associ-
ated with the risk of T2D more than a decade 
ago. The contribution of TCF7L2 to T2D risk 

was then confirmed via association studies5 in 
numerous follow-up reports involving different 
ethnic groups. The rs7903146 variant is the most 
replicated T2D risk variants17. In addition, it ap-
pears to contribute to several diseases and diverse 
metabolic phenotypes5,26.

Previously, two TCF7L2 variants have been 
variably associated with schizoid disorders and 
T2D in SCZ (e.g., rs7903146, rs12573128) in Af-
rican-Americans, Arab-Israeli families, and Dan-
ish populations7,8,27. In this study, among the pub-
lished TCF7L2 risk variants, we replicated only 
the T2D and SCZ risk intronic variant rs7903146 
and in depression only8,17. We found it in linkage 
with depression (p = .048/R1, C allele, p = .033/
R2, C allele). This finding indicates an intricate 
molecular cross section between MDD and T2D.

In addition to SCZ and T2D in SCZ pa-
tients, the MDD-rs7903146 risk variant report-
ed in our study has also been associated with 
several other diseases, including type 1 diabe-
tes28-31, obesity32-34, gestational diabetes35, met-
abolic syndrome36-38, diabetic nephropathy39,40, 
diverse types of cancers41-50, cystic fibrosis51,52, 

Figure 2. Linkage and linkage disequilibrium (i.e., association) of TCF7L2-risk single nucleotide polymorphisms (SNPs) 
in type 2 diabetes using different inheritance models. For each TCF7L2-risk SNP in type 2 diabetes (T2D), we presented 
the -log10 (p) as a function for each significant test statistic (Linkage, LD - Linkage, LD- No Linkage, Linkage - LD, and 
LD+Linkage). The most significant model is underlined. Per the inheritance model: D1: dominant, complete penetrance; 
D2: dominant, incomplete penetrance; R1: recessive, complete penetrance; R2: recessive, incomplete penetrance (*variant 
predicted to affect transcription-factor binding).

Figure 3. TCF7L2 major depressive disorder (MDD) and 
type 2 diabetes (T2D) risk single nucleotide polymorphisms 
(SNPs) and MDD-T2D comorbid risk SNPs.
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Table I. TCF7L2-risk single nucleotide polymorphisms for major depressive disorder risk and type 2 diabetes.

 Disease Model1 SNP Chr10 Position  Ref Alt Risk Allele Consequence LD Block Reported in MDD or T2D

MDD D1, D2, R1, R2 rs10885398 112956171 A G G Intronic Independent 
 D1, R1, R2 rs11196181 112989259 G A G Intronic Independent 
 D2, R1, R2 - 112996282 A T A Intronic Set01 
 R1, R2 rs7903146 112998590 C T C Intronic Set01            T2D17
 D1 rs74825300 113030349 C T C Intronic Independent 
 D2, R1, R2 rs11592706 113039227 C T C Intronic Independent 
 R1 rs4918788 113061202 G A G Intronic Independent 
 D1, R1 rs7919409 113065217 C T T Intronic Independent 
 D1, R1 rs12255179 113069936 T C C Intronic Independent 
 D1, R1, R2 rs79805154 113083531 A G A Intronic Independent 
 D1, R1, R2 rs3814572 113087964 A G G Intronic Independent 
 D2, R1, R2 rs75351685 113095273 G A A Intronic Independent 
 D1 rs7084875 113110033 G A A Intronic Independent 
 D1, D2, R1, R2 rs176632 113151320 T C C Intronic Independent 
T2D D1 rs10885398 112956171 A G G Intronic Independent 
 D1, D2, R1, R2 rs10885401 112986915 T C C Intronic Independent 
 D1, R1 rs7904519 113014168 A G A Intronic Set02          T2D18
 D1, R1 rs10787472 113021538 A C A Intronic Set02          T2D19
 R2 rs74825300 113030349 C T C Intronic Independent 
 R1, R2 rs11592706 113039227 C T C Intronic Independent 
 R1, R2 rs77795162 113049390 C T C Intronic Independent 
 R1 rs61872787 113053201 A G A Intronic Independent 
 D2, R1, R2 rs61872794 113070646 A G G Intronic Independent 
 R2 rs6585205 113099405 G T G Intronic Independent 
 R1 rs6585206 113099492 A G A Intronic Independent 
 R1, R2 rs7081841 113099657 C G C Intronic Independent 
 R1 rs7084875 113110033 G A A Intronic Independent 
 D1, D2, R2 rs112775103 113153279 T G T Intronic Independent 

1Models: D1: dominant complete-penetrance, D2: dominant incomplete-penetrance, R1: recessive complete-penetrance, R2: recessive incomplete-penetrance. The SNPs in bold are 
comorbid MDD-T2D risk variants.  SNP, single nucleotide polymorphism; Chr, chromosome; Ref, reference; Alt, alternative; LD, linkage disequilibrium; MDD, major depressive 
disorder; T2D, type 2 diabetes.
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premature adrenarche53, polycystic ovarian syn-
drome54, and cardiovascular disease55-57. As the 
previously reported8,17 T2D and schizoid risk 
variant rs7903146 and the MDD-risk variant of 
chromosome 10, 10-112996282-A-T are within 
the same MDD-only LD block set01; we can infer 
that these variants across different populations 

might confer risk for T2D, schizoid disorders, 
and MDD. We can also infer that they may have 
a pleiotropic effect. These mentioned variants 
within the LD block set01 and T2D risk variants 
rs7904519 and rs10787472 within the T2D LD 
block set02 function as replicates of each other. 

We found 14 variants in linkage and/or as-

Figure 5. TCF7L2 type 2 diabetes (T2D) and risk variants across models in a Venn diagram.

Figure 4. TCF7L2 major depressive disorder (MDD) and risk variants across models in a Venn diagram.
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sociation with T2D. Of those, rs7904519 and 
rs10787472 recently have been reported18,19 in 
T2D to have novel pleiotropic effects with coro-
nary artery disease18 and obesity19, respectively.

It has been proposed58 that TCF7L2 impair-
ments disrupt neurogenesis, oligodendrogenesis, 
and the function of the thalamocortical circuitry 
and habenula. In vivo, during ventral habenu-
la formation, functional TCF7L2 activity is re-
quired, and in its absence, ventral habenular neu-
rons do not develop59. TCF7L2 is essential for 
lateralized fate selection by habenular neurons 
that can differentiate along two alternative path-
ways, thereby leading, if impaired, to major neu-
ral circuit asymmetries6. Of note, MDD is related 
to the disintegration of the left thalamus-right 
habenula tract function with the formation of an 
increased number of tracts as a compensational 
mechanism60. 

Conclusions

Using a familial study focused on families 
originating from Italy, we have discovered novel 
TCF7L2 T2D and depression risk variants and 
we have replicated in depression the T2D and 
SCZ risk rs7903146 variant. This is the first study 
reporting TCF7L2 variants in linkage to and LD 
with familial depression. 

It is necessary to replicate our study vari-
ants reported in LD, namely association, in 
an additional Italian and other ethnic groups, 
investigating their role in depression and other 
T2D-comorbid disorders (i.e., SCZ) in other 
ethnic groups.

Of note, the β-catenin-TCF7L2 pathway is 
related to various diseases, including SCZ. In the 
field of drug development, several efforts are cur-
rently underway to influence the β-catenin-TC-
F7L2 pathway61,62. If our findings are replicated, 
this pathway may be a target for intervention in 
individuals or families with T2D and/or schizoid 
diseases, and/or potentially depression. 
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