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Abstract. – OBJECTIVE: We describe how to 
set up a custom workflow for the analysis of 
next generation sequencing (NGS) data suitable 
for the diagnosis of genetic disorders and that 
meets the strictest standards of quality and ac-
curacy. Our method goes from DNA extraction 
to data analysis with a computational in-house 
pipeline. The system was extensively validated 
using three publicly available Coriell samples, 
estimating accuracy, sensitivity and specificity. 
Multiple runs were also made to assess repeat-
ability and reproducibility.

MATERIALS AND METHODS: Three different 
Coriell samples were analyzed in a single run to 
perform coverage, sensitivity, specificity, accu-
racy, reproducibility and repeatability analysis. 
The three samples were analyzed with a cus-
tom-made oligonucleotide probe library using 
Nextera Rapid Capture enrichment technique 
and subsequently quantified using the Qubit 
method. Sample quality was verified using a 
4200 TapeStation and sequenced on a MiSeq 
personal sequencer. Analysis of NGS data was 
then performed with a custom pipeline. 

RESULTS: The workflow enabled an accurate 
and precise analysis of NGS data that meets all 
the requirements of quality and accuracy required 
by international standards such as ISO15189 and 
the Association of Molecular Pathology.

CONCLUSIONS: The proposed analysis/vali-
dation workflow has high assay accuracy, preci-
sion and robustness and can, therefore, be used 
for clinical diagnostic applications.
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Introduction

In the last 10 years, next-generation sequenc-
ing (NGS) technologies have acquired an in-
creasingly important role in disease research and 

diagnosis. The fast and affordable simultaneous 
interrogation of thousands of target regions for 
genetic variants is making a striking contribution 
to the discovery of gene-disease associations1, 
increasing our understanding of the molecular 
foundations of diseases in many different fields 
of medicine2-6. NGS is also responsible for in-
credible advances in the diagnosis of genetic dis-
orders1. Unlike previous diagnostic sequencing 
technologies, NGS can deliver a full qualitative 
and quantitative analysis of the DNA sequences 
of a sample in a single test, thus giving a better 
idea of the diagnosis. The ability to analyze mul-
tiple regions of the genome in a short time and its 
low costs and accuracy make NGS an excellent 
substitute for Sanger technology, reducing the 
time and consistently increasing the probability 
of a diagnosis7.

While NGS provides better methods for the 
diagnosis of genetic disorders, setting up an NGS 
workflow for clinical diagnosis involves various 
challenges. First of all, an NGS workflow is a 
multi-step procedure from DNA extraction to 
the clinical report, as shown in Figure 1. DNA 
extraction, library preparation, sequencing and 
data analysis can be done with a great variety of 
technologies and tools8. Choosing the right set of 
tools is not always straightforward, and the anal-
ysis pipeline can vary significantly depending 
on the final objective of the analysis. Moreover, 
in its transition from a new and experimental 
technology to a standard procedure for diagnosis, 
guidelines for validating NGS pipelines had to be 
designed to prevent inaccurate results that could 
be detrimental for patient management9. When 
using NGS for diagnostic purposes, the entire 
workflow therefore needs to be properly validated 
and well documented. Analysis of NGS data for 
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clinical diagnosis requires higher performance, 
quality standards, reliability, reproducibility and 
output robustness with respect to NGS for re-
search. Being able to generate a diagnostic report 
is strictly linked to the possibility of providing 
an NGS workflow that meets the highest quality 
standards. When validating an NGS workflow it 
is essential to estimate many quality parameters, 
like sensitivity, specificity and accuracy, along 
with extensive coverage analysis. Regarding the 
analytical part of the workflow, different check-
points need to be set up to ensure that the ana-
lytical part of the framework gives the expected 
results.

Here we describe a reliable, accurate and fast 
NGS analytical and computational approach for 
diagnosis of rare genetic diseases. It complies 
with the strictest quality standards. We demon-
strate our NGS workflow by analyzing multiple 
reference Coriell samples with a large custom 
panel used for the detection of causative germ-
line genetic variants. The samples are analyzed 
with a panel for the diagnosis of eye disorders, 
but the pipeline can be used for the analysis of a 
multitude of panels related to different rare ge-
netic disorders such as cardiovascular, infertility 
and lymphatic conditions. We also illustrate the 
steps designed to validate the entire process of 
NGS analysis, from DNA extraction to variant 

annotation. The results show that our method is 
accurate, reliable and designed to provide safe 
patient care according to the recommendations 
and standards of the Association of Molecular 
Pathology9; it also meets the latest international 
quality standards for diagnostics, like ISO15189.

Materials and Methods

Custom Panel Design
For panel design and library preparation we 

used a method already described in our pre-
vious paper10. A custom-made oligonucleotide 
probe library was designed to capture all cod-
ing exons and flanking exon/intron boundaries 
(±20 bp) of 290 genes and some intronic posi-
tions (hg19 chr12:88494955-88494965 CEP290; 
chr4:15989855-15989865 PROM1; chr1:216247471-
216247481 USH2A; chr1:216064535-216064545 
USH2A; chr1:216039716-216039726 USH2A; 
chr1:215967778-215967788 USH2A) known from 
the literature or databases [Human Gene Muta-
tion Database (HGMD Professional)11-13, Online 
Mendelian Inheritance in Man (OMIM)14, Or-
phanet NCBI GeneReviews, NCBI PubMed and 
specific databases] to be associated with a large 
group of eye diseases. The DNA probe set com-
plementary to the target regions (GRCh38/hg38) 

Figure 1. Typical workflow for analysis 
of NGS data. The procedure can be di-
vided into three main steps: A, data col-
lection in which the sample is prepared 
and sequenced with the chosen technol-
ogy; B, data processing in which the raw 
output of the sequencer is used to deter-
mine variants in sequenced samples; C, 
data interpretation associating clinical 
significance with the variants called.
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was designed using a specific online tool provid-
ed by Illumina DesignStudio (http://designstudio.
illumina.com/Home/SelectAssay/) with dense 
probe spacing and at least two probes per target. 
To improve coverage of low-performance target 
regions, the design was optimized with the sup-
port of design experts (Illumina Concierge). The 
first design produced a total of 8688 probes. The 
final design optimized by the Illumina Concierge 
service generated a total of 11065 capture probes 
over 3921 targets and 861029 bp of cumulative 
target design size.

Library Preparation, Targeted 
Capture and Sequencing

As described in our previous paper10, in-solu-
tion target enrichment was performed according 
to the manufacturer’s protocol “Nextera Rap-
id Capture Enrichment Guide, September 2014 
(Illumina Inc., San Diego, CA, USA)”, except 
for the quantity of Tagment DNA Enzyme (5 
μl instead of 15 μl specified in the protocol). 5 
ng of genomic DNA was simultaneously frag-
mented and tagged by Nextera transposon-based 
shearing technology. Limited cycle PCR was 
carried out to incorporate specific index adap-
tors in each sample library. 500 nanograms of 
each indexed DNA library was combined with a 
12-plex library pool and then hybridized with tar-
get-specific biotinylated probes and subsequent-
ly captured using streptavidin magnetic beads. 
A second round of hybridization, capture, PCR 
amplification and PCR clean-up was performed. 
The final enriched pooled libraries, with sizes 
mainly between 500 and 600 bp, were quantified 
using the Qubit method (Invitrogen, Carlsbad, 
CA, USA) and sample quality was verified using 
a 4200 TapeStation (Agilent Technologies, Palo 
Alto, CA, USA). Each pool (12-plex library) was 
sequenced on a MiSeq personal sequencer (Illu-
mina Inc, San Diego, CA, USA) according to the 
manufacturer’s instructions (150 bp paired-end 
(PE) reads sequencing, kit MiSeq V3).

Pipeline Environment
Analysis of NGS data was performed with a 

custom pipeline (PipeMagi) that runs in Ubuntu 
16.04. The pipeline is written in Python 2.715,16 
and requires several modules. The main packag-
es are: 1) Numpy17; 2) Pandas18; 3) Matplotlib19; 
4) Mygene20,21; 5) Biopython16. PipeMagi also 
requires the following software: 1) BWA22,23; 2) 
Fastx-toolkit24; 3) FastQC25; 4) Samtools26; 5) 
GATK27,28; 6) Variant Effect Predictor (VEP)29 

and several datasets such as the latest assembling 
GrCh38 for alignment; APPRIS30 for detection of 
the principal transcripts and HGMD professional 
2014 to match for deleterious variants13.

Validation Algorithm
The workflow validation process was com-

pletely automatized. For this purpose, we devel-
oped an algorithm, written in Python 3.6 and run-
ning in IPython31 with Jupyter Notebook32, that 
use the following packages. Numerical computa-
tions are performed with Numpy17 and Pandas18 
and the statistic module. Graphs are generated 
by Matplotlib19. MD5 hashes for file identifica-
tion are generated with the hashlib module. The 
final reports are generated with openpyxl and 
pixiedust modules. All numeric data is stored in 
binary files with the help of pickle library.

Data Processing
Our pipeline accepts raw-read data in fastq 

format, generated by the Ilumina MiSeq reporter 
software (version 2.5), as input. The process of 
data analysis can be divided in two main parts.

In the first part we transform raw reads from 
the sequencing platform into data that can be 
used for variant calling. A scheme illustrating 
all the steps of the process is shown in Figure 2.

First the raw reads undergo a series of quality 
controls to check if the overall process of base 
calling went well. For this purpose, we use a 
common tool named FastQC (https://www.bioin-
formatics.babraham.ac.uk/projects/fastqc/). This 
program creates a report that can be inspected to 
ensure that base calling went as expected and that 
there are no issues with sequencer output, such 
as quality drops or bias in the GC content length 
distribution and many other parameters. Next, 
we discard all reads that did not reach a certain 
quality score. Reads that do not reach a minimum 
Phred score of 20 on at least 97% of reads length 
are filtered using the FASTX toolkit24. Quality fil-
tering of data reduces the number of error-prone 
reads, improving alignment results, accuracy of 
variant calling and throughput. This is essential 
to reduce alignment artifacts and incorrect data 
coverage when using enrichment systems like 
Nextera that do not provide stringent design 
capture analysis of low complexity and repeated 
regions. In fact, in these regions we can have up 
to 100% of reads with quality below the thresh-
old33. Reads filtering is followed by trimming of 
Illumina adapters. Since these adapters are syn-
thetic, they do not occur in the human genome, 
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so they need to be removed before mapping our 
reads. Both filtering and trimming are performed 
with the FASTX-toolkit (http://hannonlab.cshl.
edu/fastx\_toolkit/).

Since we opted for paired end sequencing, we 
perform a process called reads re-synchronization. 
It can happen that during quality score analysis, 
one read of a pair does not reach the threshold 
score, and as a consequence is discarded, disrupt-
ing the pair. Thus there may be regions of the 
genome covered only by single reads. This may 

create problems during alignment, since it is more 
difficult to map single-end than double-ends reads 
to the genome. This is especially true in structural 
rearrangements like gene insertions, deletions, du-
plications or low complexity and repetitive regions. 
Since correct mapping is fundamental for variant 
calling, to minimize the probability of misplaced 
reads we chose to exclude from analysis all reads 
that did not have both ends. To do so, read re-syn-
chronization checks that every read is present in 
two copies, forward and reverse.  Before alignment 

Figure 2. Scheme of the first part of the NGS data processing pipeline. A, In the pre-alignment phase we perform quality con-
trol and prepare data for alignment by trimming adapters and performing read re-synchronization. B, Reads are aligned with 
the genome by BWA. C, Files are sorted to improve performance. D, Duplications are removed to avoid bias during variant 
calling. E, To correct sequencer errors in the assignment of scores to bases, we perform base score recalibration.
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we also checked that all read-pairing information 
was still intact after mapping. This was done with 
the samtools function “fixmate”.

We then proceed with the alignment phase 
where we map our reads on the human genome 
in order to reconstruct the genotype of the sam-
ples. For the alignment (build hg38) we use the 
Burrows-Wheeler Aligner (BWA)22. The SAM 
file with all the reads mapped onto a region of 
the human genome is then converted into a bina-
ry compressed format (BAM) with SamTools26. 
We then proceed to sort our data according to 
position on a reference sequence. The final step 
of the sorting phase is duplicate removal to mit-
igate potential bias during variant calling: this 
is done with the sambamba markdup function34.
Base quality scores are corrected to mitigate er-
rors made by the sequencer when estimating the 
quality score of each base call. This is achieved 
using GATK BaseRecalibrator and applyBQSR27.

The second part of the workflow consists in 
variant annotation and interpretation. A scheme 
of the procedure is shown in Figure 3. 

Before proceeding with variant calling, we 
have two intermediate steps. First we generate 
a BED file containing the target regions of the 
diagnostic suspicions for which the sample needs 
to be analyzed. As required by the guidelines, 
the BED file is composed of the whole coding 
region of a selected list of genes and all neigh-
boring bases (15 for each coding region). This 
phase ensure that we only analyze the regions of 
interest, minimizing the possibility of incidental 
findings, a current ethical problem for which a 
clear solution still needs to be found35,36. After 
generation of the BED file, extensive coverage 
analysis is performed on the selected regions. In 
the diagnostic environment, it is critical to know 
whether a region of a gene has been sequenced 
with sufficient quality and depth, so that geneti-
cists can be confident about the results of variant 
calling. To do this, Samtools has a convenient 
command that generates a text file indicating the 
depth measured on each base. This file is, then, 
processed to estimate per-base coverage.

Once the base scores are recalibrated, we per-
form variant calling and annotation (Figure 3). For 
variant calling we use two main tools. The first is 
Samtools mpileup26 in association with bcftools37. 
Mpileup collects summary information in the fil-
tered input BAM, computes the likelihood of the 
reference genome and stores them in a BCF file. 
The samtools mpileup call command is used to 
make the calls. The second tool for variant call-

ing is GATK HaplotypeCaller. The two VCF files 
produced are united in a single file. To determine 
the effect of each variant we annotate it with a tool 
called variant effect predictor (VEP)29. For each 
variant we annotate the gene and transcript affect-
ed, along with their location. We also retrieve the 
predicted protein sequence, SIFT and POLYPHEN 
scores, Minor allele frequency (MAF), and known 
variants. The APPRIS30 database is used to filter 
annotations on each variant. Based on RefSeq 107, 
we use APPRIS to keep the annotation that is only 
associated with the principal transcript, excluding 
all the other annotations (i.e. annotations on model 
organisms).

Sanger Validation and Sequencing 
of Poorly Covered Target Regions

Each predicted pathogenic variant is con-
firmed by conventional Sanger sequencing using 
genomic DNA from different aliquots of the 
sample. Target regions with coverage less than 
10 reads were additionally analyzed by Sanger 
sequencing according to the manufacture’s pro-
tocols (CEQ8800 Sequencer, Beckman Coulter)10.

Validation Process
Coverage analysis

Coverage analysis provides information on 
the sequencing performance of each gene in 
the panel, highlighting regions of the panel that 
perform poorly. Identification of these regions 
is fundamental in diagnostics, since no variant 
analysis can be performed on low coverage re-
gions. Identifying holes is also useful since the 
panel can be re-designed during a revision phase 
to improve performance. Coverage analysis starts 
by analyzing the overall coverage of each sample, 
estimating the following parameters:
  •	 mean coverage
  •	 standard deviation
  •	 median
  •	 5th percentile
  •	 95th percentile

Since under optimal condition coverage will 
have a Poisson-like distribution, a comparison of 
the mean and median values is a quick way to 
check whether coverage is correctly distributed. 
Very different values indicate a skewed distribu-
tion, and are therefore a symptom of problems 
during the run. It is also important to ensure that 
there is low variability between samples of the 
same run, and those of the second run. Too much 
variability may indicate a problem during library 
preparation or base calling.
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Assay accuracy
Three different Coriell samples were analyzed 

in a single run to perform coverage, sensitiv-
ity, specificity and accuracy analysis. Sample 
NA20509 was loaded twice during the first run 
to assess reproducibility, while the same sample 
was analyzed on a separate run to address repeat-
ability. To perform validation, we wrote a custom 
algorithm that requires three files as input for 
each sample to analyze:

  •	 the BED file of the panel 
  •	 the depth file generated with the Samtools 

function “depth”
  •	 the VCF file produced by the pipeline.

The output of the analysis consists of two reports 
(supplementary material S1 and S2): a validation 
report, which is a summary of all the validation pa-
rameters, and a technical report containing detailed 
information about every step of the validation, 
which can also be used for troubleshooting.

Figure 3. Scheme of the second part of the NGS data processing pipeline. A, First we perform variant calling using Samtools 
mpileup call and GATK UnifiedGenotyper. The calling is only focused on target regions and not on the entire genome. To 
filter called variants, we design a BED file containing the coordinates of target regions. Prior to variant calling the BAM file 
is filtered with the BED file so as only to report findings in regions of interest. B, The called variants are then annotated by 
VEP. Since a variant can overlap multiple transcripts, it may end up with multiple annotations. This is why we use the APPRIS 
database to determine the principal transcript and we filter all annotations that do not belong to the principal transcript.
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Panel design validation
During validation we perform a quality check 

on the panel design to ensure that what we de-
signed matches what we are really sequencing. In 
this section we check:

  •	 cumulative target length
  •	 number of targeted regions
  •	 numbers of probes
  •	 number of genes.

All these statistics need to match what was 
defined during the panel design phase.

Sensitivity, specificity, accuracy
To validate the workflow, we calculated the 

following parameters:

1.	 Sensitivity: a measure of the capacity to cor-
rectly identify variants that really exist in the 
samples. In our analysis sensitivity is calculat-
ed as:
True Positive (TP) / TP+False Negative

2.	 Specificity: quantification of the capacity to 
avoid calling variants that are not really pres-
ent in the samples. Specificity is measured as:
True Negative (TN) / TN+False Positive (FP)

3.	 Accuracy: measure of how well the pipeline 
correctly identifies or excludes a variant. It is 
calculated as:
TP+TN / TP+TN+FP+FN

4.	 Reproducibility: measure of the capacity of 
the workflow to reproduce the same result on 
a sample in the same run.

5.	 Repeatability: measure of the capacity of the 
workflow to reproduce the same result on a 
sample in successive runs.

Results

Validation was needed to ensure that the per-
formance of the NGS approach was in line with 
the standard required for clinical diagnosis. The 
following tests confirmed that the pipeline was 
robust and minimized the probability of errors 
during analysis.

Assay Robustness
During the validation process, we defined the 

acceptability thresholds of the NGS analytical 
performance parameters. Limitations on critical 
parameters ensured assay success and the desired 
level of precision (Internal Quality Control – 
Q/C).

1.	 Genomic DNA sample quality threshold: To-
tal genomic DNA (gDNA) of the samples 
analyzed for genetic testing was extracted 
using Magpurix Extraction Kit (Resnova) 
by ZINEXTS MagPurix 12 System. DNA 
extraction from peripheral blood leucocytes 
and tissue samples was performed accord-
ing to the manufacturer’s recommendations. 
MagPurix Forensic DNA Extraction Kit was 
used for saliva samples according to the 
manufacturer’s instructions with only a few 
exceptions in the sample preparation step  to 
adapt the protocol to the sample collection 
method used (Isohelix Genefix Saliva DNA 
Collection kit – GFX-01). The collectors are 
designed to collect 2 ml saliva in 2 ml lysis 
buffer pre-filled in 10 ml collection tubes. 
The optimized protocol included the follow-
ing changes: 3:1 saliva and BL2 Buffer vol-
ume ratio instead of the 1:4 ratio specified in 
the manufacturer’s instructions; incubation 
time at 56°C in the lysis step, modified to 45 
min instead of 15 min. Note that 300 μl of 
sample solution collected (saliva + lysis buf-
fer) was mixed with 200 μl Buffer BL2 and 
20 μl proteinase K and incubated at 56°C for 
45 min.

2.	 gDNA input quality threshold
•	 gDNA ≥50 ng
•	� 260/280 absorbance ratio of 1.7-2.0

	 •	� Only for DNA from saliva samples (Iso-
helix Genefix Collection): 260/230 absor-
bance ratio ≥1. DNA samples that did not 
meet these criteria showed poor clustering.

	 •	� DNA integrity. Degraded DNA samples 
resulted in library preparation failure (they 
generated inserts of a shorter length) and 
poor clustering.

3.	 Enriched library quality threshold: Library 
DNA fragments in the size range ~200 bp to 
~1 kbp. Average fragment size not less than 
300 bp. Incorrect DNA fragmentation resulted 
in suboptimal data.

4.	 Post-run/pre-analysis read quality threshold: 
more than 80% of bases higher than Q30 at 
2x 150 bp

5.	 Post-analysis targeted region coverage thresh-
old: Optimal coverage of target regions: at 
least 98% of bases with at least 10x coverage, 
while 95% of bases with at least 10x coverage 
is considered the minimum acceptable thresh-
old of the subpanel of genes associated with 
the sub-phenotype, except for problematic re-
gions (e.g. GC-rich or repetitive regions).
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Sample, algorithm and diagnostic 
suspicion identification

While this is not part of the validation proce-
dure itself, one of the points that we address when 
doing validation is that the analysis needs to be 
repeatable at any time. In the report it is therefore 
essential to keep track of the location of all the files 
used for validation, which are normally stored on 
a proprietary server. Unfortunately, knowing the 
location of the files does not ensure that we are 
always able to find and identify them unequivo-
cally. Files may change location, migrating during 

systems updates or simply by accident. We there-
fore implemented a second step of identification to 
recognize the files used in a particular validation 
run. This step consists in calculating the MD5 
hash for each file used (Figure 4).

Coverage analysis
In this study, we performed NGS analysis 

of 290 panel genes encompassing multiple eye 
disorders, including diseases affecting the retina, 
cornea and macula, as well as IOP and myopia 
(see Supplementary material S1). Ten gigabytes 

Figure 4. Identification of files needed for validation. We report the location of files used in validation on our internal server 
along with the MD5 hash. In this way, it is always possible to identify the files used in the validation, in case we need to repeat it.

https://www.europeanreview.org/wp/wp-content/uploads/Art.-8138-Supplementary-file-S1-pipeline.pdf
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(±0.6) of sequenced bases were generated per 
run, producing 2.5 (±0.2) million mappable reads 
per sample. The two runs were of high quality 
with a mean of 91.8% (±1.8) of sequenced bases 
and a Phred Q score ≥ 30. The mean coverage of 
targeted bases for the five reference samples (in-
cluding the two replicates) was 294.9× (±19.1) per 
sample, while 98.8% (±0.04), 98.3% (±0.1) and 
97% (±0.2) of all bases were covered at least 10×, 
20× and 40×, respectively (see Supplementary 
material S1). Our results (Tables I and II) show 
that the mean and median for each sample were 
indeed very close, with the biggest variation be-
ing NA20509, where mean and median differed 
by 3.16%. This is indicative of a Poisson-like 
distribution of all samples. The mean coverage 
gives us an overview of how well the targets 
in the panel were covered. The results with the 
samples indicated that we were well above the 
threshold required to perform variant calling. 
Moreover, the variability between samples was 
much reduced and sequencing data quality was 
high, indicating a robust analysis workflow.

Next, we analyzed the percentage of samples 
covered above a certain threshold (Table II). In 
our case we checked the percentage of the pan-
el covered at 10x, 20x, 40x, 100x, considering 
10x the minimum coverage necessary for variant 
calling. The sub-panel needs to reach 10x cov-
erage on at least 95% of the targets in order to 
proceed with the analysis, otherwise we repeat 
sample analysis. The results show that we were 
well above the threshold, since more than 98% 
of the targets were above the threshold of 20x in 

all samples. We also did analysis of coverage for 
each diagnostic suspicion (DS) (Supplementary 
material S1) to ensure that they were all above 
the coverage threshold of 10x for at least 95% of 
DSs, since a clinical report for a particular DS 
is only reliable if that DS reaches the minimum 
coverage on most of the genes, irrespective of 
the performance of the whole panel. Our results 
indicate very good results for almost all DSs: 91% 
were above the threshold of 10x. The target regions 
of the DS that did not reach the fixed thresholds 
are reported in Supplementary material S1 and 
Supplementary material S2 and used during 
panel revision to improve performance on poorly 
performing targets. Since coverage analysis is 
done not only during validation but on every sam-
ple analyzed, whenever the coverage of a region 
falls below the threshold, if the region contains 
variants that are significant for the DS for which 
the sample is analyzed, the clinician can have 
those regions sequenced by Sanger technology. 
Coverage analysis is concluded by two graphs 
that summarize the results (Supplementary ma-
terial S1). One histogram shows the mean cover-
age per gene. The other shows the percentage of 
each gene covered at 10× and 40×. These graphs 
make it easy to identify genes that perform poorly 
during sequencing. These genes become the focus 
of panel revision. If we have genes that perform 
poorly, we need to check whether performance is 
poor in all samples. If so, it indicates a problem in 
panel design. If the genes that do not perform well 
differ between samples, it may be symptomatic of 
a problem during the data collection phase.

Table I. Coverage analysis results of each sample.

Average depth

Sample	 Mean depth	 Standard deviation	 5th percentile	 Median 	 95th percentile

NA20509	 312.9x	 154.9	 74	 303	 587
NA20763	 267.3x	 131.7	 60	 262	 495
NA20828	 293.2x	 144.3	 67	 286	 546
Run	 291.1±18.7	 143.6±11.6	 67.0±7.0	 283.7±20.6	 542.7±46.1

Table II. Percentage of panel covered at different thresholds.

Sample	 Mean depth	 Target covered	 Target covered	 Target covered	 Target covered
		  at 10x	 at 20x	 at 40x	 at 100x

NA20509	 312.9x	 98.9%	 98.4%	 97.3%	 92.6%
NA20763	 267.3x	 98.8%	 98.2%	 96.8%	 89.8%
NA20828	 293.2x	 98.8%	 98.3%	 97.2%	 91.5%
Run	 291.1±18.7	 98.9%±0.1	 98.3%±0.1	 97.1%±0.3	 91.3%±1.4

https://www.europeanreview.org/wp/wp-content/uploads/Art.-8138-Supplementary-file-S1-pipeline.pdf
https://www.europeanreview.org/wp/wp-content/uploads/Art.-8138-Supplementary-file-S1-pipeline.pdf
https://www.europeanreview.org/wp/wp-content/uploads/Art.-8138-Supplementary-file-S1-pipeline.pdf
https://www.europeanreview.org/wp/wp-content/uploads/Art.-8138-Supplementary-file-S1-pipeline.pdf
https://www.europeanreview.org/wp/wp-content/uploads/Art-8138-Supplementary-file-S2.xlsx
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Assay Accuracy
All our workflow was developed with the 

aim of achieving elevated specificity, sensitiv-
ity and accuracy. Variant calling accuracy was 
assessed by in-house pipeline using reference 
samples NA20509, NA20763 and NA20828. The 
reference sample data was downloaded from the 
1000 genomes phase III project (http://www.in-
ternationalgenome.org/category/phase-3/). The 
datasets were filtered for SNVs and small indel 
variants in regions of interest. Since the genomes 
in phase III are in Hg19 version, and we are work-
ing with Hg38, prior to comparison between the 
reference genotype and what was generated by 
the pipeline, we had to do a liftover to convert 
the Hg19 reference genotype to Hg38 in order 
to work with the same assembly. The result of 
the liftover was hand curated since the passage 
from one version to another introduces different 
problems that need to be addressed, for example 
many variants are changed from REF to ALT 
between the two versions of the genotype. Once 
we obtained the reference genotypes they were 
used to make a comparison with our results from 
the pipeline, so that for each sample we were able 
to estimate the parameters needed for calculation 
of sensitivity, specificity and accuracy. For each 
sample we calculated (Table III):
  •	 true positives: variants in the reference sample 

that were correctly called by the pipeline.
  •	 true negatives: variants not detected by the pipe-

line and not expected in the reference sample.
  •	 false positives: variants detected by the pipeline 

that were not present in the reference sample.
  •	 false negatives: variants not called by the pipe-

line but present in the reference sample.
Variants within the 800 kbp target region 

were compared between our in-house pipeline 
and the reference variant list of SNVs and indels. 
Discrepancy between reference data sets was 
resolved by further examining the quality score 
of our pipeline data, variant context, and BAM 
file alignment.

Comparison of the reference data set with 
the in-house pipeline data showed on average 
39 (±5.50) putative false positives in the pipe-
line data set. Of these, six (±3.3) indel samtools 
calls were artifacts, showing misalignment in 
the .bam file, and 9.7 (±2.9) were variants in low 
complexity regions, such as homopolymer and 
repeat regions, indicating that the variants were 
unlikely to be true positives (see “FP” variants in 
Supplementary material S2, sheet FP).

Some variants in the public datasets of the 
three reference samples were putative false nega-
tives. Of these, SNVs not correctly called showed 
misalignment calls for reads falling in indel vari-
ant positions and indel calls in low complexity 
regions, indicated as true negatives. Intronic indel 
variants were correctly called by the pipeline but 
not selected by target filtering (indel first position 
off-target), resulting as false negatives (see “FN” 
variants in Supplementary material S2 sheet FN). 
In summary, more than 799,204 (±18) positions in 
the targeted regions were correctly called as true 
negatives and 533 (±14) variants were correctly 
called as true positives, resulting in 99% average 
analytical sensitivity and specificity for SNV and 
indel detection. The detailed results are reported 
in Supplementary material S1 and Table IV.

Assay Precision
Precision refers to the reproducibility or “ro-

bustness” of the assay, meaning the ability to 
obtain the same results from the same sample 
when the assay is performed repeatedly. For 
reproducibility, both intra-run and inter-run re-
producibility should be assessed. To evaluate 
intra-run precision (repeatability), two parallel 
libraries were prepared from reference sample 
NA20509, each with a unique index. An equim-
olar amount of each library was pooled and se-
quenced on the same Miseq flow cell. To evaluate 
inter-run precision (reproducibility), NA20509 
DNA was captured and sequenced in another 
independent run. Variants called for each sam-

Table III. Summary of variant calling for each sample. This table reports the number of false positives (FP), true positives (TP), 
false negatives (FN) and true negatives (TN) estimated in each sample. 

	 NA20509	 NA20763	 NA20828

	 FN	 TN	 FN	 TN	 FN	 TN
	 4	 799222	 2	 799203	 2	 799186

	 FP	 TP	 FP	 TP	 FP	 TP
	 10	 543	 14	 559	 22	 567
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ple/run were compared among intra-run library 
samples (ONA20509, bisONA20509) to assess 
intra-run repeatability, and between the inter-run 
library sample (ONA20509) and the intra-run 
sample (bis2ONA20509) to assess inter-run re-
producibility. Reproducibility was calculated by 
dividing the number of discordant calls by to-
tal variants in the reference sample; the results 
are shown in Table V. Regarding reproducibil-
ity (Table V and Supplementary material S1) 
(sample bisONA20509.2018), we observed close 
agreement between the two samples, with an 
identical percentage of target covered above 10x 
in the two samples. The target coverage was in 
close agreement between NA20509 sample rep-
licas (see Table V and Supplementary material 
S1), confirming high robustness of the method. 
For variant calling, we observed 99.28% identi-
ty between intra-run replicas (repeatability) and 
99.28% identity between inter-run replicas (re-
producibility), excluding indel misalignments.

Conclusions

The validation method presented in this paper 
was applied to a large panel of ~801 kb, and on all 
our panels used for diagnostic purposes. The NGS 
workflow was tested using three control samples 
from the Coriell Institute, in order to measure 
with high fidelity the detection rate performance 
of our method and to collect information useful 
for improving its analytical performance. The re-
sults showed a high mean coverage (291.1±18.7), 
and most of the target (98.8%±0.06) was covered 
by at least 10 independent reads, our estimated 
minimum threshold for variant calling in germ-

line samples. The quality of our workflow was 
also highlighted by the fact that we exceeded the 
chosen standard of coverage: in fact 98.3%±0.1 
and 97%±0.26 of the bases were covered at least 
20x and 40x, and we observed very close results 
between samples, indicating good coverage uni-
formity and high robustness of the method.

While an optimal coverage ensures a more re-
liable variant calling phase, it is known that low 
coverage increases the risk of false negatives, and 
can lead to assignment of wrong allelic states (zy-
gosity). It also lowers the probability of effectively 
filtering sequencing artifacts, increasing the number 
of false positives. The workflow was set up accu-
rately in order to minimize false positives/negatives. 
In particular, we tried to minimize the number of 
reads misaligned to homologous regions by adopting 
strategies like paired end sequencing, long reads and 
local realignment strategies after global alignment. 
Concerning the removal of artifacts, we underline 
the importance in the diagnostic context of applying 
quality filtering of data, so that variant calling is only 
performed on high quality reads, thus improving the 
alignment, accuracy and data coverage results. In our 
case, application of an appropriate filter increased 
the specificity by about 2% without affecting assay 
sensitivity (data not shown).

We confirmed the effectiveness of our strat-
egy by elevated assay accuracy, precision and 
robustness and good target coverage and unifor-
mity. Since the analytical parameters reported 
reflect the overall quality of the entire method, 
we conclude that the strategies used to develop 
our NGS targeted panel produced an in-house 
pipeline with very high quality standards and re-
producibility. The pipeline can therefore be used 
confidently for clinical diagnostic applications. 

Table IV. Summary of specificity, sensitivity and accuracy scores with mean and 95% confidence interval (CI).

Sample	 Specificity	 Sensitivity	 Accuracy

NA20509	 0.99	 0.99	 0.99
NA20763	 0.99	 0.99	 0.99
NA20828	 0.99	 0.99	 0.99
Mean and CI	 0.99 (0.99-1.00)	 0.98 (0.98-0.99)	 0.99 (0.99-1.00)

Table V. Summary of reproducibility (rep, sample bisONA20509) and repeatability (repe, sample bis2ONA20509) analysis.

	 Variants in 	 Variants in	 Variants unique	 Variants unique	 % overlap 
	 reference 	 rep/repe	 to rep/repe	 to reference	 in variant
	 sample	 samples	 samples	 sample	 calling	

Repeatability	 553	 553	 2	 2	 99.28
Reproducibility	 553	 547	 1	 3	 99.28
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Supplementary material
Supplementary file S1. The validation report generated by 
the algorithm which gives an overview of the main param-
eters estimated during validation.
Supplementary file S2. Technical report used for trou-
ble-shooting during validation.

Data availability
The data used to obtain the findings of this study can be 
found in the article and the supplementary information files.
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