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Abstract. – OBJECTIVE: This analysis aimed 
to investigate the candidate biomarkers associ-
ated with overall survival (OS) in hepatocellular 
carcinoma (HCC) patients. 

MATERIALS AND METHODS: In the GSE14520 
dataset, candidate parameters were selected 
and included in the Cox regression and Nomo-
gram models through bioinformatic enrichment 
methods and LASSO analysis, survivor func-
tions of candidate biomarkers were also as-
sessed. 

RESULTS: Complement and coagulation cas-
cades including 36 differential expressed genes 
(DEGs) and ribosome pathway including 27 DEGs 
were significantly enriched (both p < 0.05 and ad-
justed p < 0.05). LASSO model, Cox regression 
and nomogram analysis indicated that RPS3, to-
gether with BCLC and TNM staging, were signifi-
cantly associated with OS in HCC patients. Vali-
dated in the GEO series, TCGA and Human Pro-
tein Atlas (HPA) datasets, RPS3 mRNA and RPS3 
protein were significantly upregulated in tumor 
tissues compared to that in nontumor tissues (all 
p < 0.05). Upregulation of RPS3 has been linked 
to high alpha fetoprotein (AFP), advanced tu-
mor stages and multinodular (all p < 0.05). Af-
ter adjusting AFP, tumor stage and multinodu-
lar, log rank analysis revealed that HCC patients 
with high RPS3 had unfavorable OS compared to 
those with low RPS3 (all p < 0.05). 

CONCLUSIONS: RPS3 upregulation in tumors 
might contribute to unfavorable OS in HCC pa-
tients.

Key Words:
RPS3, Hepatocellular carcinoma, Overall survival, 

Ribosome.

Introduction

Liver cancer has a widespread distribution 
across the world, especially in Asian continent, 
and accounts for a serious threat to the people 
health1,2. As the seventh most frequently occur-
ring cancer and the second most common cause 
of cancer death, the incidence of hepatocellular 
carcinoma (HCC) has been assumed to rise over 
the next 10-20 years3-5. Although advanced com-
prehensive approaches have been made for the 
treatment of HCC during the past few years, the 
prognosis remains poor and only a handful can 
benefit from existing anti-neoplastic therapies6-9. 
The liver cancer related mortality has been in-
creased by more than 2% annually since 20073. 
Candidate biomarkers of HCC used for prognos-
tic or predictive purposes may have vital clinical 
effects in the near future10.

Currently, effective biomarkers, potential 
therapeutic targets and underlying predictors to 
guide treatment decisions still remain noticeably 
absent11. Detection of biomarkers in tumors is 
a direct and cost-effective adjunct, especially 
in monitoring disease prognosis and the selec-
tion of treatment targets in HCC patients12,13. 
High-throughput technical means and gene chips 
have become fast approaches for assessing differ-
entially expressed genes (DEGs) and functional 
pathways and led to a significant increase in 
the availability of molecular insights involved 
in HCC progressiveness at multiple biological 
levels14-16. The accessibility of genomic sequenc-
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ing data from liver tumors has provided us with 
invaluable resources. Through integrating data 
from different public sources might help us to fa-
cilitate the identification of promising biomarkers 
or therapeutic targets17.

This study identified DEGs in the GSE14520 
dataset and addressed the most significant func-
tional pathways using Gene Set Enrichment 
Analysis (GSEA) enrichment. The least absolute 
shrinkage and selection operator (LASSO) model 
was used to address potential candidate biomark-
ers for predicting overall survival (OS) in HCC 
patients. We hope our results could provide valu-
able insights into understanding of the progress 
and prognosis in HCC patients.

Materials and Methods

Ethics Statement
As stated by Roessler et al18,19, all participants 

provided written informed consent. The informed 
consent and study protocol of the primary study 
were approved by the Institutional Review Board 
of Zhongshan Hospital, Fudan University18,19. The 
protocol of this secondary analysis was reviewed 
and approved by the Ethics Committee, Shanghai 
Public Health Clinical Center, Fudan University.

Data Source
Microarray series and clinical dataset of 

GSE14520 were downloaded from Gene Expres-
sion Omnibus (GEO, https://www.ncbi.nlm.nih.
gov/geo/) database. Two cohorts were included in 
the GSE14520. For gene expression profiling, tu-
mors and paired non-tumor tissues were profiled 
separately using a single channel array platform. 
Tumor and paired non-tumor samples in cohort 1 
were carried out on Affymetrix Human Genome 
U133A 2.0 Array platform. All samples including 
tumor and paired non-tumor samples of cohort 
2 were processed on the Affymetrix HT Human 
Genome U133A Array platform18,19.

Patients
In the GSE14520 dataset, 220 hepatitis B virus 

(HBV) related HCC patients were included in this 
analysis after excluding 27 cases without gene 
expression or clinical data. All liver tissue was 
obtained with informed consent from patients 
who underwent radical resection between 2002 
and 2003 at the Liver Cancer Institute and Zhong-
shan Hospital, Fudan University18,19. 

Outcome
The primary outcome of OS was defined as the 

time from surgery to death from any causes18,19.

Identification of DEGs
Raw.CEL files of the microarray GSE14520 

dataset were normalized by quantile method of 
robust multichip analysis (RMA) from R affy 
package20. Missing gene expression data was 
imputed with k-Nearest Neighbor method by im-
pute index in R program21. DEGs between tumor 
and nontumor tissues were identified by Limma 
package in R program with the criterion of a 
|log2FC| > 1.0 and adjusted p-value < 0.0522. This 
identify framework was also addressed in other 
GEO series including GSE3300623, GSE4543624, 
GSE6050225 and GSE8404226.

Candidate gene expression between tumor 
and nontumor tissues were validated in The 
Cancer Genome Atlas (TCGA), GEO series and 
the Human Protein Atlas (HPA) databases. The 
mRNA normalized counts data of LIHC in 
TCGA database derived from RNAseq Htseq 
platform was downloaded from Genomic Data 
Commons Data Portal (https://portal.gdc.can-
cer.gov/). In the Repository section, the liver 
and intrahepatic bile ducts were selected in the 
Primary Site, and TCGA-LIHC was selected in 
the Progect Id part, transcriptome profiling and 
gene expression quantification were selected as 
Data Category and Data Type respectively. In 
addition, the RNA-Seq method was selected 
in the Experimental Strategy. Then, “Add All 
Files to Cart” and download the Clinical, Sam-
ple Sheet, Metadata, Manifest and Cart files 
in the Cart section for the following analysis. 
TCGA RNAseq data contains 424 samples with 
374 tumor and 50 nontumor samples. In TCGA 
dataset, the edgeR package27,28 in R program was 
used to identify gene expression levels between 
tumor and nontumor tissues. Protein levels with 
mean integral optical density (IOD) between 
HCC and normal samples detected by immuno-
histochemistry (IHC) in the HPA dataset was 
calculated by Image-Pro Plus version 6.0 (Media 
Cybernetics Inc., Rockville, MD, USA).

Enrichment Analysis
R package clusterProfiler29 was used to ad-

dress function enrichment pathway analysis of 
DEGs between tumor and nontumor tissues in 
GSE14520 dataset. Top 20 pathways and signifi-
cant pathways were presented. Genes enriched in 

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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significant pathways with both p-value < 0.05 and 
adjusted p value < 0.05 were selected for LASSO 
model establishment.

The LASSO Model Establishment
LASSO regression model was used to de-

termine the most powerful prognostic markers 
for overall survival in HCC patients30. In the 
GSE14520 dataset, parameters including age, 
gender, alanine aminotransferase (ALT), cirrho-
sis, main tumor size, multinodular, alpha-feto-
protein (AFP), Barcelona Clinic Liver Cancer 
(BCLC) staging, TNM staging and Cancer of 
the Liver Italian Program (CLIP) staging and 
genes in significantly enriched pathways were 
included in the LASSO model. “glmnet” and 
“survival” packages were used for LASSO model 
establishment with family equals to “cox” and 
alpha equals to 1. The model was validated with 
5-fold cross-validation. Both “lambda.1se” and 
“lambda.min” were used to assess the coefficient 
of parameters31.

Nomogram Model Establishment
Parameters significantly associated with OS 

in HCC patients in multivariate Cox model were 
included in the risk prediction model by nomo-
gram with “rms” package in R program. Based 
on Cox proportional hazards model, “survival” 
package in R program was used to calculate the 
cumulative risk of death. To calculate the con-
cordance index and its 95% confidence intervals 
(CI), “survcomp” package was used. Bootstrap 
method was used for repeated sampling for in-
ternal verification of the model. Calibration plot 
was presented for evaluating the performance of 
nomogram, which was also established in “rms” 
package in R program.

Statistical Analysis
Differences of variables between the individual 

groups were analyzed using student t test, Mann–
Whitney test and Chi-square test based on data 
types. Parameters enrolled in the LASSO model 
were included in univariate and multivariate Cox 
regression. Results were reported as hazard ratios 
(HR) with 95% CI. Log rank method was used to 
address the survivor functions of candidate genes 
for OS in HCC patients. Stata software version 
16.0 (STATA Corp., College Station, TX, USA) 
and IBM SPSS Statistics version 26.0 (SPSS Inc., 
Armonk, NY, USA) were used. A two-tailed p 
< 0.05 were considered significance for all tests.

Results

Functional Enrichment of DEGs
In total, 7439 DEGs between tumor and non-

tumor tissues were identified in the GSE14520 
dataset. Top 20 functional pathways of these 
DEGs were presented in Figure 1A. Complement 
and coagulation cascades including 36 DEGs and 
ribosome pathway including 27 DEGs were sig-
nificantly enriched (both p < 0.05 and adjusted p 
< 0.05, Figure 1B). 

Identification of Potential Candidates for 
OS in HCC

In the GSE14520 dataset, 63 significant genes 
in complement and coagulation cascades (n = 
36) and ribosome (n = 27) pathways, together 
with clinico-pathological characteristics includ-
ing age, gender, HBV status, multinodular, cir-
rhosis, main tumor size, AFP, BCLC staging, 
TNM staging, and CLIP staging were enrolled in 
LASSO model (Figure 2A). After the 5-fold cross 
validation, parameters including RPS3, TNM 
staging and BCLC staging were recruited to be 
underlying candidates of OS in HCC patients 
when λ took the minimum value (Figure 2A). The 
regression coefficient plot of factors by LASSO 
was shown in Figure 2B.

As summarized in Table I, univariate Cox 
model indicated that RPS3, TNM staging and 
BCLC staging were underlying predictors for 
OS in HCC patients (all p < 0.05, Table I). After 
adjusting TNM staging and BCLC staging, mul-
tivariate Cox regression demonstrated that high 
RPS3 was significantly associated with unfavor-
able OS in HCC patients (HR = 1.95, 95% CI = 
1.22-3.14, p = 0.006, Table I).

In addition, nomogram model was established 
according to the independent parameters in-
cluding RPS3, TNM staging and BCLC staging 
(Figure 3A). According to the upper scale of 
each independent risk factor (-0.6 to 0.8), the 
corresponding score of this risk factor could 
be determined. The total score was obtained 
by adding the scores of each factor. Projecting 
downward from the total score, the correspond-
ing mortality risk prediction probability value 
could be obtained. The concordance index of 
this model was 0.74 (95% CI = 0.68-0.8). Cal-
ibration curves of 1-year, 3-year and 5-year 
for internal verification of this nomogram with 
bootstrap were described in Figure 3B, 3C and 
3D, respectively.
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RPS3 Expression Between Tumors and 
Nontumor Tissues

RPS3 mRNA was significantly upregulated 
in tumor tissues compared to nontumor tissues 

in GSE14520 (p < 0.001, Figure 4A), which was 
validated in TCGA dataset (p = 0.004, Figure 
4B) and Gene Expression Omnibus (GEO) series 
including GSE33006, GSE45436, GSE60502 and 

Figure 1. Enrichment of functional pathways of differential expressed genes (DEGs) in GSE14520. Top 20 pathways (A) and 
significant pathways (B) of DEGs enrichment.

Figure 2. Parameter selection 
through LASSO regression 
(A) and elucidation of LASSO 
coefficient profiles for selected 
factors (B).
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Table I. Univariate and multivariate Cox regression models for identifying candidates of overall survival from HCC patients#.

		  Univariate		  Multivariate

	 Variable	 HR (95% CI)	 p-value	 HR (95% CI)	 p-value

RPS3, high vs. low	 2.32 (1.48-3.64)	 < 0.001	 1.95 (1.22-3.14)	 0.006
TNM staging					   
    I	 Reference	 -	 Reference	 -
    II	 2.15 (1.24-3.73)	 0.007	 2.1 (1.2-3.68)	 0.01
    III	 5.09 (2.89-8.95)	 < 0.001	 2.52 (1.11-5.73)	 0.027
BCLC staging					   
    0	 Reference	 -	 Reference	 -
    A	 2.92 (0.91-9.36)	 0.072	 4.04 (0.98-16.64)	 0.053
    B	 6.33 (1.78-22.5)	 0.004	 4.42 (0.92-21.27)	 0.064
    C	 12.1 (3.58-40.89)	 < 0.001	 8.99 (1.82-44.41)	 0.007

#Only variables selected in LASSO model were included.

Figure 3. Competing risk model with nomogram for overall survival (OS) based on Cox regression (A) and calibration curves 
for 1-year (B), 3-year (C) and 5-year OS (D).
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GSE84042 (all p < 0.05, Figure 4C). In the HPA 
database, RPS3 protein levels of 6 HCC patients 
and 1 healthy individual detected by IHC were 
presented in Figure 4D. The means of IOD of 
HCC patients were significantly higher than those 
in normal tissues (p = 0.037, Figure 4E).

Associations Between RPS3 and 
Clinico-Pathological Features in 
HCC Patients

HCC patients with high RPS3 levels had high-
er proportions of AFP > 300 ng/ml compared to 
those with low RPS3 levels [69 (62.7%) vs. 30 
(27.3%), p < 0.001, Figure 5A]. HCC patients with 
high RPS3 levels also had advanced tumor stages 
including BCLC staging, CLIP staging and TNM 

staging (all p < 0.05, Figure 5B-5D). Moreover, 
multinodular occurred more frequently in HCC 
patients with high RPS3 levels [31 (28.2%) vs. 14 
(12.7), p = 0.004, Figure 5E].

Associations Between RPS3 and OS in 
HCC Patients

In the GSE14520 dataset, log rank method 
revealed that RPS3 upregulation accounted for 
worse OS in HCC patients (p = 0.002, Figure 
6A). Since RPS3 expression was associated with 
clinico-pathological characteristics (Figure 5), we 
addressed survivor function analysis adjusting 
these potential confounding factors. As shown 
in Figure 6, HCC patients with high RPS3 levels 
had significantly unfavorable OS compared to 

Figure 4. RPS3 mRNA expression between tumor and nontumor tissues in GSE14520 (A), and validation in TCGA (B) and 
other GEO series including GSE33006, GSE45436, GSE60502 and GSE84042 (C); RPS3 protein levels between HCC and 
normal samples detected by immunohistochemistry (IHC) in the Human Protein Atlas (HPA) database (D) and mean integral 
optical density (IOD) of these IHC samples (E).
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those with low RPS3, after adjusting AFP, BCLC 
staging, CLIP staging, TNM staging and multi-
nodular (all p < 0.05, Figure 6B-6F). 

Discussion

Ribosomes are involved in the process of cell 
proliferation, growth and survival32. Current evi-

dences have elucidated that inhibition of ribosome 
biogenesis could induce p53 stabilization and acti-
vation33,34. Recently, ribosome biogenesis has been 
linked with various human malignancies including 
HCC and emerged as an effective target in cancer 
therapy35. A series of compounds that inhibit ribo-
some biosynthesis or function have shown their 
toxic action on cancer chemotherapy36-38. Recent 
literatures of HCC ribosome profiling have also 

Figure 5. AFP (A), CLIP staging (B), BCLC staging (C), TNM staging (D) and multinodular (E) distributions between RPS3 
low and RPS3 high groups.
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provided insightful data resource for dissecting 
the translatome shift in liver cancer, at sub-codon 
resolution, and the regulatory mechanisms of on-
cogenic signaling and HCC therapy39,40.

Ribosomal protein subunit 3 (RPS3) possesses 
an endonuclease activity that mediates regula-
tory functions in DNA repair processes41,42, and 
plays multifunctional roles in cell apoptosis43,44 
and transcriptional regulation45,46. Knockdown of 
RPS3 alleviates cells injury and increases cell sur-
vival-rate from genotoxic stress after exposure to 
hydrogen peroxide47. In addition, RPS3 serves as 
an essential subunit of NF-κB signaling involved 
in the regulation of key genes in rapid cellular 
activation responses46,48. Knockdown of RPS3 

impaired NF-κB mediated transcription process 
of selected p65 target genes46,49. Moreover, RPS3a 
upregulation increases the solubility of highly 
aggregation-prone HBx and it could induce on-
cogenesis through enhancing the HBx-induced 
NF-κB signaling in HCC50. Current evidence51,52 
indicated that RPS3 functions as a vital compo-
nent in regulation of tumorigenesis, immune and 
inflammatory responses, and cell development. 
As a member of ribosomal protein family, RPS3 
might exert oncogenic functions synergistically 
with other subunits in ribosomes. Hence, onco-
genic functions of RPS3, together with ribosomes 
signaling pathway, should be investigated experi-
mentally and clinically in future53. 

Figure 6. Log rank analysis of associations between RPS3 and OS from HCC patients in GSE14520 (A), and survivor 
functions of RPS3 for OS adjusted for AFP (B), BCLC staging (C), CLIP staging (D), TNM staging (E) and multinodular (F) 
from HCC patients in GSE14520 series.
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RPS3 was also associated with many other hu-
man malignancies52,54. In gastric cancer, exosomal 
RPS3 was essential for inducing chemoresistance 
of receptor cells. Exosomal RPS3, derived from 
cisplatin-resistant gastric cancer cell, enhanced 
the chemoresistance of cisplatin-sensitive gastric 
cancer cells through the PI3K-Akt-cofilin-1 sig-
naling pathway55. RPS3 knockdown significantly 
reduced the proliferation, survival, migration and 
invasion and increased apoptosis of the colon 
cancer cells Caco-2, which correlated with p53 el-
evation and lactate dehydrogenase (LDH) down-
regulation56. Similarly, the knockdown of RPS3 
inhibited cell growth and induced apoptosis in 
breast cancer cells57. In radiation resistant non-
small cell lung cancer cells, ionizing radiation led 
to casein kinase 2α (CK2α)-mediated phosphor-
ylation of RPS3, which induced dissociation of 
RPS3- tumor necrosis factor receptor -associated 
factor 2 (TRAF2) complex and NF-κB activation, 
resulting in significant elevation of prosurvival 
genes, namely, cIAP1, cIAP2, and survivin58.

In our analysis, BCLC staging and TNM stag-
ing were also identified as predictors for HCC 
prognosis. Consistent with current consensus59,60, 
we have addressed that BCLC staging was an 
unfavorable predictor for HCC prognosis previ-
ously61,62. The predictive value of TNM staging 
in HCC survival has already been assessed63. 
Moreover, TNM system was a better staging 
model for HCC compared to other applied staging 
systems64,65.

This study has some limitations. The primary 
is that no experiments were conducted to validate 
the expression of RPS3 mRNA and RPS3 protein 
in our own biobank, and there is no experimental 
data to address the effects of RPS3 on hepatoma 
cellular functions. Secondly, this analysis was 
conducted at mRNA level, links between RPS3 
protein and HCC prognosis was not investigated. 
Thirdly, this is a study based on public datasets, 
and none of our own follow-up data of HCC 
patients were available. Fourthly, the predictive 
values of RPS3 for OS in HCC patients were not 
validated in prospective cohorts. 

Conclusions

In this report, we found that RPS3 was up-
regulated in HCC tumors, and correlated with 
tumor aggressiveness. The LASSO analysis, 
Cox regression model, and Kaplan-Meier meth-
ods demonstrated that RPS3 was correlated with 

unfavorable survival in HCC patients, even af-
ter adjusting clinico-pathological characteristics 
including AFP, tumor staging, and multinodu-
lar. The mechanisms and clinical applications of 
RPS3 in HCC should be investigated in-depth in 
future.
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