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Abstract. – EMMPRIN, also known as Basigin or 
CD147, is a transmembrane glycoprotein member 
of the immunoglobulin superfamily. It is expressed 
basally in cells that regulate physiological process-
es of the cardiovascular, nervous, and immune sys-
tems. However, EMMPRIN is also capable of inter-
acting with different proteins, like VEGFR, SMAD4, 
Integrin, MCT, CyPA, GLUT1, CAIV, Annexin II, Cav-
1, CAML, etc., and regulating signaling pathways 
that stimulate the cell processes of proliferation, 
apoptosis, metabolism, adhesion, invasion, migra-
tion, metastasis, tumor immune response, and an-
giogenesis processes, which favors the develop-
ment of different types of cancer. EMMPRIN is the 
first protein reported that favors cancer develop-
ment due to its ability to interact with extracellu-
lar, intracellular, and membrane proteins. In con-
clusion, EMMPRIN regulates several proteins as-
sociated with the development of tumor process-
es. Therefore, blocking the expression of EMM-
PRIN can be a therapeutic target, and the analysis 
of its expression can be used as an important bio-
marker in cancer. 
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Introduction

Cancer is the second leading cause of death 
globally; in 2020 it caused approximately one in 
six deaths. The most common types of cancer are 
breast (2.26 million cases), pulmonary (2.21 million 
cases), colorectal (1.93 million cases), prostate (1.41 
million cases); skin (non-melanoma) (1.20 million 

cases), and gastric (1.09 million cases). The can-
cers that caused the highest number of deaths were 
lung cancer (1.8 million deaths), colorectal cancer 
(935,000 deaths), liver (830,000 deaths), gastric 
(769,000 deaths), and breast (685,000 deaths). Can-
cer is produced by transforming normal into tumor 
cells1,2. Any normal cell type can transform into a 
malignant tumor, and the main feature is uncon-
trolled division. However, alterations are also ob-
served in the processes of apoptosis, metabolism, 
migration, adhesion, metastasis, angiogenesis, etc3,4. 
The tumor cells present alteration in the expression 
of several proteins, among them the inducer of ex-
tracellular matrix metalloproteinases (EMMPRIN), 
known as Basigin or CD147, type I transmembrane 
glycoprotein of the immunoglobulin superfamily, 
is expressed in a basal manner in epithelial cells, fi-
broblasts, peripheral blood mononuclear cells, tro-
phoblasts, hepatocytes5-10. It plays an essential role 
in cardiovascular, nervous, and immune5,8,11-13. In 
addition to its participation in physiological process-
es, EMMPRIN can interact with different proteins 
such as integrins, cyclophilins, caveolins, E-cad-
herin, MCT4, etc., and regulate signaling pathways 
that participate in the stimulation of the develop-
ment of tumor processes14-18. In different types of 
cancer, such as pancreatic cancer19, bladder20, he-
patocellular14, ovary21,22, lung23, breast24,25, cervi-
cal26,27, prostate17, oral28, melanomas29 EMMPRIN 
overexpression has been observed. In these cancers, 
it modulates cell metabolism, adhesion, and facili-
tating proliferation15, invasion14,30, migration28, me-
tastasis29,31, angiogenesis18,32, and regulation of the 

European Review for Medical and Pharmacological Sciences 2022; 26: 6700-6724

Corresponding Author: Ana Elvira Zacapala Gómez, MD; e-mail: zak_ana@yahoo.com.mx

B. DE LA CRUZ CONCEPCIÓN1, L.D. BARTOLO-GARCÍA1, M.D. TIZAPA-MÉNDEZ1, 
M. MARTÍNEZ-VÉLEZ1, J.J. VALERIO-DIEGO1, B. ILLADES-AGUIAR1,  
E.G. SALMERÓN-BÁRCENAS2, J. ORTIZ-ORTIZ1,3, F.I. TORRES-ROJAS1,  
M.Á. MENDOZA-CATALÁN1,3, N. NAVARRO-TITO4, A.E. ZACAPALA-GÓMEZ1

1Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad 
Autónoma de Guerrero, Chilpancingo, Guerrero, México

2Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del 
Instituto Politécnico Nacional, Ciudad de México, México

3Laboratorio de Biomoléculas, 4Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias 
Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México

EMMPRIN is an emerging protein capable 
of regulating cancer hallmarks



EMMPRIN is an emerging protein capable of regulating cancer hallmarks

6701

immune system8,33. Therefore, this literature review 
aimed to analyze the role that EMMPRIN plays in 
the regulation of cancer hallmarks.

EMMPRIN 

EMMPRIN, also called Basigin (BSG) or 
CD147, is a transmembranal glycoprotein belong-
ing to the immunoglobulin superfamily and func-
tions as an inducer of matrix metalloproteinases 
(MMP)34. It is encoded by the BSG gene located on 
chromosome 19.13.3 and consists of ten exons that 
span ~ 12 kb 840403535. In 1982, EMMPRIN was 
initially purified from the LX-1 human lung cancer 
in the membrane36. The EMMPRIN receptor has 
269 amino acids and comprises a short intracellular 
region, an extracellular region, and a transmem-
brane region37. It is a highly glycosylated protein 
that recognizes various molecules in a cis or trans 
form; trans binding to a soluble protein or a protein 
from adjacent cells and cis to membrane proteins 
from the same cell35 (Figure 1a).

Non-glycosylated EMMPRIN has a molecular 
weight of 27 kDa, while the glycosylated form has 
a molecular weight between 43 and 66 kDa. Gly-
cosylated EMMPRIN exists in two forms: highly 
glycosylated EMMPRIN (HG-EMMPRIN) weigh-
ing ~ 40-60 kDa and low glycosylated EMMPRIN 
(LG-EMMPRIN) weighing ~ 32 kDa. HG-EMM-
PRIN contains complex-type carbohydrates sen-
sitive to peptide N glycosidase F (PNGase F). In 
contrast, LG-EMMPRIN contains carbohydrates 
with a high content of mannose that is sensitive to 
endoglycosidase H (Endo H). Therefore, LG-EM-
MPRIN is the precursor of HG-EMMPRIN in ER, 
which requires further modification in the Golgi 
before being expressed on the cell surface38. EMM-
PRIN can dimerize in a cis manner; dimer forma-
tion occurs when EMMPRIN is highly glycosylat-
ed. Three glycosylation sites are observed in the 
crystal structure of EMMPRIN: Asn44 at the end 
of the B chain and Asn152/ Asn186 in the middle 
of the C´D loop and F chain, respectively39.

Basigin Isoforms

The BSG gene encodes EMMPRIN; it has ten 
exons, presents four isoforms called Basigin 1 
(BSG 1), Basigin 2 (BSG 2), Basigin 3 (BSG 3), 
and Basigin 4 (BSG 4). These isoforms are gener-
ated from alternative splicing and the use of alter-
nate promoters. The first promoter for Basigin is 

upstream of exon 1 (alternative promoter), and the 
second is upstream of exon 240. The extracellular 
region of CD147 can be variable, depending on the 
isoform35.

The BSG 1 and BSG 2 isoforms are generat-
ed from the promoter upstream of exon 2; BSG 1 
is the longest isoform; its translation begins from 
exon 2, presenting three immunoglobulin domains. 
BSG 2, unlike BSG 1, does not express exon 3, 
showing two immunoglobulin domains35. BSG 3 
and 4 begin transcribing from the alternative pro-
moter upstream of exon 1. BSG 3 is translated from 
exon 5 to 9, presenting a single immunoglobulin 
domain. BSG 4 is similar to BSG 3 but has a signal 
peptide in exon 1 and one single immunoglobulin 
domain41 (Figure 1b). 

Role of EMMPRIN in the Development  
of Cancer

Several studies show that EMMPRIN and its 
isoforms regulate cellular processes that favor can-
cer development, such as adhesion, metabolism, 
apoptosis, proliferation, invasion, migration, me-
tastasis, angiogenesis, and immune response, from 
the interaction with various proteins8,14-18,29,33 (Fig-
ure 2). Therefore, the participation of EMMPRIN 
in cellular processes related to tumor development 
is described below; the order of appearance of cel-
lular processes is about the progression of cancer 
development.

EMMPRIN Promotes the Cell 
Proliferation

Cell proliferation is a process of cell division 
that increases the number of cells; it is a complex 
process and strictly controlled42. EMMPRIN is 
a critical protein in regulating proliferation; it is 
carried out from the union with molecules such 
as SMAD4, Cyclophilin A (CyPA), integrins, 
CD98hc, and MCT15,16,43,44.

EMMPRIN interacts with SMAD4 or DCP4 by 
the MH2 domain of Smad4 with serine 252 phos-
phorylated in EMMPRIN. SMAD4 belongs to a 
family of signal transduction proteins45, is a tumor 
suppressor, and inhibits epithelial cell prolifera-
tion46. The EMMPRIN-SMAD4 interaction leads 
to the inhibition of the SMAD4/p21 signal since 
the nuclear translocation of SMAD4 is avoided to 
regulate the transcription of p21, inducing an in-
crease in proliferation15. 

CyPA is a natural ligand of EMMPRIN; CyPA 
is a protein with highly conserved peptidylprolyl 
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Figure 1. EMMPRIN structure scheme. a) Domains of the EMMPRIN structure essential to its function, b) EMMPRIN isoforms. 
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isomerase activity and functions as an autocrine/
paracrine chaperone molecule that facilitates the 
expression and activation of EMMPRIN in the cell 
membrane12,47. Binding between CyPA and EMM-
PRIN activates the ERK1/2, p38, and NF-kB signal-
ing cascade downstream, promoting proliferation48. 

EMMPRIN also interacts with integrins, a fam-
ily of transmembrane receptors composed of 18 α 
subunits and 8 β subunits49. Integrins activate var-
ious signaling pathways, which contribute to the 
regulation of cell proliferation44. By interacting 
with EMMPRIN, β1 integrins induce activation of 
the downstream FAK/cortactin pathway, inducing 
the proliferation of tumor cells linked to extracellu-
lar matrix (ECM)44,49. 

EMMPRIN and CD98hc (CD98 cell surface 
heterodimer heavy chain) form a complex in the 
cell plasma membrane of normal and tumor cells. 
Co-expression and binding of EMMPRIN to 
CD98hc promotes cell proliferation through the 
PI3K/Akt pathway23. However, EMMPRIN also 

binds directly with MCT, forming a super-com-
plex in which more molecules are involved: MCT-
EMMPRIN-CD98hc-LAT1, which also includes 
ASCT2 and EpCAM. There is also a direct associ-
ation between EpCAM and 4F2hc in the complex 
and between LAT1 and 4F2hc. However, there is 
no direct crosstalk between EMMPRIN and LAT1 
and between EMMPRIN and ASCT2. EMMPRIN 
favors the biosynthetic assembly of the MCT-EM-
MPRIN-4F2hc-LAT1 complex or exerts a stabiliz-
ing effect on each molecule once they are present 
on the cell surface. It favors the activation of the 
mTOR signaling pathway and increases the prolif-
eration of tumor cells19,50.

In addition to interacting directly with proteins 
to promote cell proliferation, EMMPRIN also in-
creases proliferation by alternative pathways, in 
some cases unknown. A correlation between the 
expression of GSDMD and EMMPRIN has been 
demonstrated; inhibition of EMMPRIN expression 
decreases GSDMD expression. GSDMD overex-

Figure 2. Direct interaction of EMMPRIN with proteins that participate in cancer development. VEGFR: Vascular Endo-
thelial Growth Factor Receptor, MCT: Monocarboxylate transporter, CyPA: Cyclophilin A, TRAF: Tumor receptor-associated 
factor, GLUT: Glucose transporter, CAIV: Carbonic Anhydrase IV, CAML: calcium modulating cyclophilin, Cav-1: caveolins, 
HOOK1: Hook Microtubule Tethering Protein 1, E2F1: E2F Transcription Factor 1. This figure was created on BioRender.com.
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pression is associated with larger tumor size20,51,52. 
EMMPRIN is related to activities of the cell cycle, 
cyclin D1, and cyclin E. It activates IGF-1R, a ubiq-
uitous tyrosine kinase that regulates cell growth53. 
Activation of IGF-1R activates the Wnt pathway, 
inducing overexpression of cyclin D1 and reduc-
ing the expression levels of the tumor suppressor 
p53, thus promoting proliferation in tumor cells 24,54 
(Figure 3). 
 
EMMPRIN Inhibits the Apoptosis

Apoptosis is a highly regulated physiological 
process that maintains the balance between cell sur-
vival and death. Controlled apoptosis contributes 
to maintaining genomic integrity, while inhibition 
apoptosis promotes carcinogenesis55. Dysregula-
tion of apoptotic pathways promotes tumorigenesis 
and makes the cancer cell resistant to treatments, 
including chemotherapy, radiotherapy and immu-
notherapies, they primarily act by activating cell 
death pathways including apoptosis in cancer cells, 
facilitating tumor development and metastasis56. 

EMMPRIN interacts with TRAF2, a factor known 
to regulate NFκB and extrinsic apoptotic signaling, 
but being bound to EMMPRIN, TRAF2 cannot ac-
tivate apoptotic signaling10.

EMMPRIN interacts directly with CD44, acti-
vating the JAK/STAT3 signaling pathway, generat-
ing an increase of Bcl-2, and inhibiting apoptosis57. 
It has been observed that EMMPRIN also forms a 
tetrameric complex with Xkr8 (two molecules of 
Xkr8 and two molecules of EMMPRIN). Xkr8 is 
essential to expose phospholipids during apoptosis. 
When the cell undergoes apoptosis, caspases cleave 
Xkr8, mixing phospholipids between the inner 
and outer shells of the plasma membranes, there-
by exposing phosphatidylserine (PtdSer), which is 
exposed on the cell surface and is recognized by 
macrophages for phagocytosis of dead cells. By 
binding EMMPRIN to Xkr8, it inhibits the func-
tion of the Xkr8 and blocks PtdSer exposure during 
apoptosis, inhibiting apoptosis58.

EMMPRIN is associated with the expression of 
insulin-like growth factor-binding protein 2 (IG-

Figure 3. Regulation of proliferation by EMMPRIN. Black arrow: direct activation; T bar: inhibition of processes and dotted 
black arrow: activation through unknown/not displayed other molecules. ERK: extracellular signal-regulated kinases, NF-kB: 
Nuclear factor-kB, PI3K: Phosphoinositide 3-kinase, CD98hc: CD98 cell surface heterodimer heavy chain, mTOR: Mechanistic 
target of rapamycin, IGF-1R: insulin-like growth factor 1 receptor, FAK: Focal adhesion kinas, GSDMD: Gasdermin D, MCT: 
Monocarboxylate transporter, LAT: linker for activation of T cell, ASCT: Alanine, Serine, Cysteine Transporter, CyPA: Cyclo-
philin A. This figure was created using BioRender software.
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FBP2), which belongs to the IGF-binding protein 
family; it inhibits apoptosis by regulating caspase 
activation -3 and the PTEN/PI3K/Akt pathway59,60. 
Also, inhibition of CyPA and EMMPRIN expres-
sion active apoptosis16. EMMPRIN overexpres-
sion has also been associated with hypoxia. In this 
sense, EMMPRIN, being overexpressed, inhibits 
apoptosis through p53 and HIF1α, stabilizing p53 
protein61,62.

EMMPRIN increases Bcl-2 levels and reduc-
es p53, Bax, and Mdm2 levels, inhibiting apopto-
sis63 because Bcl-2 (B2 cell lymphoma gene fam-
ily) is an anti-apoptotic protein. In contrast, Bax 
(Bcl-2-associated protein X) is a proapoptotic pro-
tein64, p53 is a protein that promotes apoptosis, and 
MDM2 ubiquitin ligase E3, a negative regulator of 
p53 activity65.

EMMPRIN reduces the expression of Caspases 
3/9 and poly (ADP-ribose) polymerase (PARP-1). 
Caspases -3/9 are proteolytic enzymes that induce 
apoptosis, and PARP-1 releases the mitochondrial 
apoptosis-inducing factor and its translocation to 
the nucleus66-68. EMMPRIN also correlates with in-
creased mitogen-activated protein kinase (MAPK) 
expression and Akt phosphorylation in HER2-pos-

itive breast cancer cells66. MAPK activation is re-
lated to apoptosis; in some cell lines, it promotes 
apoptosis, but in other cell lines, it inhibits apop-
tosis, while Akt is a serine-threonine kinase that 
inhibits apoptosis69,70. 

The expression of EMMPRIN is related to the 
reduction of Bim, a pro-apoptotic BH3 protein, 
through a MAPK-dependent pathway, which trig-
gers resistance to anoikis, a form of apoptosis trig-
gered by the lack of inappropriate interactions be-
tween the cell and the matrix71 (Figure 4).

EMMPRIN Involvement in Energy 
Metabolism 

Cellular energy metabolism is the bioprocess 
responsible for converting nutrients such as carbo-
hydrates, lipids, and proteins into energy and bio-
mass to maintain cell survival and proliferation72. 
EMMPRIN can improve the adaptation of tumor 
cells by positively regulating their metabolic path-
ways, which gives them a selective advantage 
during tumorigenesis and helps the cell to survive 
under stress conditions and proliferate to patholog-
ical levels. EMMPRIN regulates cell metabolism 
through its direct or indirect interaction with pro-

Figure 4. Regulation of apoptosis by EMMPRIN. Black arrow: direct activation; T bar: inhibition of processes and Dotted 
black arrow: activation through unknown/not displayed other molecules. TRAF2: tumor necrosis factor type 2 receptor-associ-
ated protein, STAT3: Signal transducers and activators of transcription 3, JAK: Janus kinases, Bcl: B-cell lymphoma, IGFBP: 
insulin-like growth factor binding proteins, HIF1α: hypoxia-inducible factor-1alpha, PtdSer: Phosphatidylserine, Mdm: Mouse 
double minute 2, Bax: BCL2 Associated X, PARP: Poly (ADP-ribose) Polymerases, MAPK: mitogen-activated protein kinases, 
Bim: Bcl-2-like protein. This figure was created on BioRender.com.
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teins related to hypoxia, glycolysis, oxidative phos-
phorylation, and lipolysis33,73.

EMMPRIN plays a crucial role in the metabol-
ic adaptation of tumors to hypoxia. HIF-1α and 
Sp1 mediate the expression of EMMPRIN during 
hypoxia74. HIF-1 is a heterodimer consisting of a 
constitutively expressed HIF-1β subunit and an 
oxygen-sensitive HIF-1α subunit75. Under hypox-
ic conditions, HIF-1α binds to a conserved DNA 
consensus, termed the hypoxia-sensitive element 
(HRE), in the promoters of numerous hypoxia-sen-
sitive genes. There are two binding sites for HIF-1 
and three for Specificity protein 1 (Sp1) in the 3 
‘and 5’ flanking regions of the EMMPRIN gene, 
respectively21,76. EMMPRIN also participates in the 
adaptation of the tumor to hypoxia, favoring other 
metabolic processes such as glycolysis through the 
interaction with GLUT177.

The direct interaction between EMMPRIN 
and GLUT1 has been demonstrated78. GLUT1 is 
a highly hydrophobic transmembrane protein that 
participates in the internalization of glucose, the 
interaction and overexpression of EMMPRIN with 
GLUT1 facilitates the entry of glucose into tumor 
cells to promote glycolysis, which leads to an in-
crease in ATP synthesis, energy molecules nec-
essary to perform the general functions of tumor 
cells73,78,79. GLUT1 overexpression has been related 
to increased glucose uptake and an adverse prog-
nosis in various tumor types since it leads to pro-
gression, invasion, and metastasis80. The high gly-
colytic rate during hypoxia produces an increased 
lactate concentration and can alter cell homeostasis 
in non-tumorigenic cells; however, in tumor cells, 
the increased lactate production is regulated due to 
the participation of EMMPRIN81. 

EMMPRIN can bind directly to transporter 
monocarboxylate 1 (MCT1), monocarboxylate 3 
(MCT3), and monocarboxylate 4 (MCT4)78, which 
catalyze the export of lactate from cells81-83. EMM-
PRIN regulates the expression of MCT1, MCT3, 
and MCT4 and their presence on the cell surface, 
where they remain tightly bound to each other84. 
EMMPRIN overexpression is directly related to 
MCT1 overexpression; EMMPRIN bound to MCT1 
initiates activation of the PI3K/Akt/mTOR pathway, 
enhancing lactate export, thereby regulating glycol-
ysis in tumor models33,78. On the other hand, MCT1, 
MCT3, and MCT4 require association with glyco-
sylated EMMPRIN for their correct translocation 
to the plasma membrane. EMMPRIN must remain 
tightly bound with MCTs to maintain transporter ac-
tivity81. MCT1-4 alone, still overexpressed, cannot 
translocate to the plasma membrane and accumulate 

in the perinuclear region and the Golgi apparatus. 
In another way, when their co-expression is associ-
ated with EMMPRIN, this induces MCTs to target 
the plasma membrane and acts as a chaperone for 
them85. Therefore, the co-expression of MCT and 
EMMPRIN can support glycolysis, inhibit mito-
chondrial biogenesis and oxidative phosphorylation, 
regulating the pH balance within the tumor84.

Carbonic anhydrase (CA) is a ubiquitous en-
zyme that catalyzes carbon dioxide, protons, and 
bicarbonate balance. Its isoform II (CAII) (intra-
cellular) and isoform IV (CAIV) (extracellular) 
can be attached to the MCT-EMMPRIN complex86 
and can work together to secure the rapid transport 
of metabolites across the cell membrane. They in-
crease the transport activity of MCT187 and MCT4 
by a non-catalytic mechanism, facilitating the trans-
port of lactate coupled to protons through the cell 
membrane since EMMPRIN functions as a proton 
attractant for the transporter88. CAIV is anchored 
to the extracellular side of the plasma membrane 
through a GPI (glycosylphosphatidylinositol) an-
chor. CAIV also binds to MCTs through the Ig1 do-
main of EMMPRIN, bringing CAIV close enough 
to the membrane pore to transport protons89.

Intracellular CAII binds to MCT1 or MCT4 
through a group of three glutamic acid residues 
within the C-terminal tail of the transporter and a 
histidine residue at position 64 that is not involved 
in proton transfer between MCT and CAII88,90. Still, 
it mediates the enzyme’s binding to the transport-
er, facilitating the exchange of protons between the 
transporter and intracellular protonable residues 
like CAIV. Through this non-catalytic mechanism, 
intracellular and extracellular carbonic anhydrases 
facilitate the flow of proton-coupled lactate across 
the cell membrane91. 

The increase in glucose metabolism may con-
tribute to the proliferation of tumor cells by pro-
moting the synthesis of fatty acids. In most tumor 
cells, fatty acids are derived from de novo synthe-
sis, produced at a high rate, despite having a great 
supplement of extracellular lipids. The elevated 
synthesis rate of fatty acids in highly proliferative 
cells provides biogenesis of the membrane92,93.

In vitro and in vivo tumor models, EMMPRIN 
overexpression has been shown to play a critical 
role in reprogramming fatty acid metabolism. 
Specifically, it has been reported that EMMPRIN 
overexpression increases lipogenesis and prevents 
fatty acid oxidation94. Overexpressed EMMPRIN 
increases lipogenesis by activating the Akt-
mTOR signaling pathway, leading to increased 
expression of the sterol regulatory element-bind-
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ing protein 1c (SREBP1c), a transcription factor 
involved in the synthesis of lipids. Increased lev-
els of SREBPlc activate transcription and increase 
the expression of fatty acid synthase (FASN) and 
acetyl CoA carboxylase (ACC), two of the main 
enzymes involved in lipogenesis, thus promoting 
de novo lipogenesis35. 

EMMPRIN decreases fatty acid oxidation 
(FAO) in cancer by reducing proliferator-activated 
peroxisome receptor alpha (PPARα) levels. PPARα 
promotes the expression of CPT1 and ACOX1. 
With the downregulation of PPARα, the expression 
of both enzymes is negatively regulated, which 
prevents the oxidation of fatty acids94 (Figure 5).

EMMPRIN Inhibits the Immune Response
Tumor cells use a variety of mechanisms to 

evade the immune response, such as downregula-

tion of membrane proteins, so cytotoxic T lympho-
cytes are not recognized by them95.

EMMPRIN inhibits the T cell immune respons-
es. EMMPRIN overexpression and its co-expres-
sion with Tim-3 and PD-1, two immune checkpoint 
molecules expressed on CD8 + tumor-infiltrating 
lymphocytes (TIL), significantly increased tu-
mor growth in vivo; this same behavior has been 
observed in biopsies of metastatic tumors from 
patients. Additionally, a negative correlation was 
found between the expression of EMMPRIN and 
the decrease in CD8+TIL with the survival of pa-
tients8.

TIL CD8 + is an indicator of antitumor immune 
response to tumor antigens; however, the success-
ful elimination of tumor cells is locked by the co-
existence of progressively growing tumors, which 
leads to the loss of the ability to proliferate in TIL, 

Figure 5. Regulation of metabolism by EMMPRIN. Black arrow: direct activation. HIF1α: Hypoxia-inducible factor 1α, Sp1: 
Specificity protein 1, MCT: Monocarboxylate transporter, CAIV: Carbonic Anhydrase, CAII: Carbonic Anhydrase II, mTOR: 
Mechanistic Target of Rapamycin Kinase, SREBP1c: Sterol Regulatory Element Binding Transcription Factor 1, FASN: Fatty 
Acid Synthase, ACC: acetyl-CoA carboxylase, PPARα: Poly (ADP-ribose) Polymerases, CPT1: Carnitine O-palmitoyltransfer-
ase, ACOX1: Acyl-CoA Oxidase 1. This figure was created using BioRender software.
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produce cytotoxic cytokines, and lyse cancer cells. 
Down-regulation of antitumor immune responses 
facilitates tumor immune escape96,97. EMMPRIN 
inhibits CD8 + TILs due to upstream depletion of 
the cytotoxic transcription factors Runx3 and T-bet. 
They have been identified as crucial modulators in 
the transcriptional differentiation network and acti-
vation of cytotoxic functions in CD8 + T cells by 
promoting the expression of the cytotoxic effector 
molecules perforin and granzyme B8. EMMPRIN 
can also reduce the tumor immune response in 
CD8 + TIL by phosphorylating and activating the 
signaling molecule STAT3, which represses the ex-
pression of cytotoxic genes, including those encod-
ing granzyme B, IFN-γ, and T-bet8,98.

As another option, extracellular lactate de-
rived from tumor cells blocks the differentiation of 
monocytes to dendritic cells (DC). It also inhibits 
the release of cytokines from differentiated DCs, 
reduces the cytotoxic activity of NK cells, sup-
presses the proliferation and production of cyto-
kines of T lymphocytes in 95%, and inhibits their 
cytotoxic activity by 50%99-101. These alterations 
lead to cell survival, tumor growth, and metasta-
sis101,102. Additionally, the percentage of T cells NK 
(CD3 - CD56 +), NT (CD3 + CD56 +) and TIL 
CD8 + negatively correlate with the expression of 
EMMPRIN in tumor tissues. While the prevalence 
of regulatory T lymphocytes (Tregs) expressing the 
forkhead box transcription factor P3 (FoxP3) posi-
tively correlates with the expression of EMMPRIN 
in tumor tissues33. FoxP3 is a key intracellular mol-
ecule for the development and function of Tregs; 
it has been shown that a high infiltration of Tregs 
FoxP3 + inhibits host immunity against cancer by 
suppressing antitumor cytotoxic T cells103. Tregs 
FoxP3 + have been reported in several in situ or 
metastatic human carcinomas104-106. 

EMMPRIN acts as an extracellular receptor 
for CyPA, which is released into the extracellular 
space by activated macrophages, smooth muscle 
cells, platelets, etc.; it has cytokine-like activities 
and is a potent chemoattractant of human mono-
cytes, neutrophils, eosinophils, and T cells107,108. 
EMMPRIN expression increases tumor cells’ via-
bility when co-cultured with T cells and decreases 
the chemotaxis and infiltration of T cells induced 
by CyPA in vitro, and in vivo. Thus, EMMPRIN 
promotes the escape from tumor immune surveil-
lance of T cells108.

Another way, EMMPRIN has been related to an-
titumor immune escape is from the glycosylation of 
its structure, mediated by β-galactoside α2-6-sialyl-
transferase 1 (ST6Gal-I), the enzyme responsible for 

the addition of acid α2-6-sialic to terminal N-glycans 
on the cell surface109. ST6Gal-I overexpression pro-
moted tumor immune escape by activating the EM-
MPRIN/MMP signaling pathway and its expression 
in tumor cells, causing inhibition in the proliferation 
of T cells and suppressing the intra-tumor penetra-
tion of CD8 + T cells9 (Figure 6).

EMMPRIN Promotes the Angiogenesis
Angiogenesis is the growth of new blood ves-

sels that tumors need to obtain nutrients to grow 
and perform their essential functions110. 

EMMPRIN overexpression has been associ-
ated with tumor cell angiogenesis by increasing 
vascular endothelial growth factor (VEGF) levels 
in the tumor and the stroma111. In several types of 
cancer, VEGF is overexpressed, it is a mitogenic 
and angiogenic mediator and a potent stimulator of 
vascular permeability, and it binds to three tyrosine 
kinase receptors VEGFR1 (Flt-1), VEGFR2 (KDR 
/ Flk-1), and VEGFR3 (Flt-4)112,113.

EMMPRIN induces VEGF secretion in fibro-
blasts and tumor cells through the PI3K-Akt signal-
ing pathway and increases the expression of VEG-
FR-2 through the transcription factor HIF-2α114,115. 
VEGFR1 and VEGFR2 recognize VEGF113. Once 
VEGF is recognized by VEGFR, the activation 
of tumoral angiogenesis and the increase in the 
malignant characteristics of tumor cells begins114. 
It has been shown that EMMPRIN also acts as a 
coreceptor for VEGFR2. The interaction occurs 
through the extracellular domain of EMMPRIN lo-
cated near the cell membrane, specifically at amino 
acids 195/199. Direct interaction is necessary for 
the VEGF-induced activation of VEGFR2. There-
fore, overexpression of EMMPRIN in cancer can 
enhance the activation of VEGFR2115. 

In a study, a tumor cell co-culture model of tu-
mor angiogenesis and HUVEC has created cells 
expressing EMMPRIN induced the formation of 
neovasculature-like network-like structures. This 
result was associated with increased VEGF secre-
tion and insulin-like growth factor I (IGF-I) pro-
moted by EMMPRIN. IGF-I was also found to 
positively regulate EMMPRIN expression in both 
tumor cells and HUVEC. These findings suggest 
positive feedback between EMMPRIN and IGF-I 
at the tumor-endothelial interface116. 

Another mechanism by which EMMPRIN pro-
motes VEGF secretion is by direct stimulation of 
MMP-2 / -9 and MT1-MMP secretion; it has been 
reported to increase VEGF expression through the 
Src pathway 18,115,117. MT1-MMP is a pro-MMP-2 ac-
tivating transmembrane metalloproteinase; howev-
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er, it also promotes VEGF expression independently 
of MMP-2118. MMPs also facilitate the cell migra-
tion of pericytes119. Pericytes are the primary vascu-
lar cells that control blood flow in tumor vessels120. 
MMPs also contribute to epidermal growth factor 
receptor (EGFR) activation in vivo121. The binding 
of EGFR to its ligand activates the PI3K-Akt sig-
naling pathway that activates endothelial nitric ox-
ide (NO) synthase, releasing NO in endothelial cells, 
which leads to vascular cell permeability and can 
trigger angiogenesis122. In addition to stimulating 
the expression of VEGF through the Src pathway, 
MMPs also promote its release and that of other an-
giogenic factors such as transforming growth factor 
β1 (TGFβ1)123,124. TGFβ1 can activate the Activin 
Receptor-Like Kinase (ALK1), and this, in turn, 
phosphorylates Smad1/5, increasing the expression 
of placental growth factor (PIGF) that positively 

regulates VEGF-A / VEGFR2 signaling, which that 
contributes to the development of endothelial angio-
genesis125 (Figure 7).

EMMPRIN Involvement in Adhesion
Cell adhesion is the ability to create extracel-

lular cell-cell or cell-matrix junctions. Cells ad-
here through proteins present on the cell surface, 
called adhesion molecules (CAM), through homo-
philic or heterophilic interactions. During malig-
nant transformation, cell-cell interactions are lost, 
and cell-extracellular matrix interactions forma-
tion126,127.

EMMPRIN controls the adhesion process by 
regulating the expression and binding of various 
molecules. EMMPRIN generates homophilic bind-
ing, where the same molecule acts as a counter-
receptor, mainly through its first Ig domain (D1). 

Figure 6. Regulation of immune response by EMMPRIN. Black arrow: direct activation, and T bar: inhibition of processes. 
MMP: Matrix metalloproteinases, FoxP3: Forkhead Box P3, STAT3: Signal Transducer and Activator of Transcription 3, T-bet: 
T-box expressed in T cells, Runx3: RUNX Family Transcription Factor 3, IFN: Interferon, Bim-3: Bcl-2-like protein, ST6Gal-I: 
ST6 Beta-Galactoside Alpha-2,6-Sialyltransferase 1, MCT: Monocarboxylate transporters, NT: neutrófilos, KN: natural killer. 
This figure was created on BioRender.com.
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This interaction involves the induction and oligom-
erization of matrix metalloproteinases (MMP) and 
can occur in tumor cells and stromal cells128,129.

EMMPRIN interacts with Annexin II, which in-
creases the adhesive potential of tumor cells14. An-
nexin II is an F-actin binding protein, so it has been 
suggested that acting with EMMPRIN increases 
adhesion potential14,130. On the other hand, EM-
MPRIN, through the Ig 2 domain in tumor lines, 
forms a complex with Cav-1, an essential structural 
protein of caveolae that induces adhesion of tumor 
cells to fibronectin by activating adhesion signal-
ing mediated by focal adhesion kinase (FAK)131,132. 
Cav-1 bound to EMMPRIN positively regulates 
EMMPRIN glycosylation of tumor cells128.

EMMPRIN increases the activity and expres-
sion of FAK by overexpressing and forming a 

complex on the cell surface with α3β1-integrin, 
the interaction EMMPRIN-α3β1-integrin increases 
the activity of the integrin, and this forms an inte-
grin-FAK signaling link, this interaction also acti-
vates FAK-paxillin-PI3K signaling pathways133,134. 
Activation of this pathway regulates IP3 levels, IP3 
releases Ca2+ from intracellular deposits ([Ca2+] 
i)135. Another way in which EMMPRIN increases 
[Ca2+]i is through the complex that it forms with 
calcium modulating cyclophilin (CAML), which is 
a ubiquitous protein located mainly in the endoplas-
mic reticulum (ER) and acts as intermediate sig-
naling in numerous pathways that regulate [Ca2+]
i. EMMPRIN overexpression and its interaction 
with CAML regulate ER signaling and increase the 
concentrations of [Ca2+]I; high concentrations of 
[Ca2+]i have been related to the regulation of cell 

Figure 7. Regulation of angiogenesis by EMMPRIN. Black arrow: direct activation. MMP: Matrix metalloproteinases, MT1: 
Metallothionein 1, VEGF: Vascular Endothelial Growth Factor, Smad: Family Member, TGFβ: Transforming Growth Factor 
Beta 1, VEGFR2: Vascular Endothelial Growth Factor Receptor 2, PI3K: Phosphoinositide 3-kinases, HIF1: Hypoxia-inducible 
protein, PIGF: placental growth factor, IGF-1: insulin-like growth factor-1, NO: Nitric oxide, EGFR: Epidermal growth factor 
receptor. This figure was created using BioRender software.
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adhesion mediated by dependent and independent 
signaling pathways of integrins136-138.

EMMPRIN regulates adhesion with the ECM 
through the β1/Kindlin-3 integrin adhesion path-
way139. Kindlin-3 belongs to the family of focal 
adhesion proteins; it is a crucial protein in the ac-
tivation of β1 integrin, which regulates the interac-
tions between the cell and the ECM, thus playing a 
pivotal role in regulating these junctions140. 

EMMPRIN overexpression causes loss of po-
larity in tumor cell lines by interacting with the cell 
apoptosis susceptibility protein (CAS) and inhibit-
ing the complex formed by this protein with E-cad-
herin (E-cad) and β-catenin (β-cat), a complex 
known as CAS/E-cad/β-cat. Inhibition of the com-
plex decreases the localization of β-cat and E-cad 

in the cell membrane, increasing the levels of β-cat 
in the nucleus and activating the β-cat pathway28,141. 

Activation of the β-cat pathway can enhance the 
expression of the Snail gene, which causes the tran-
scriptional repression of E-cad, promoting the loss 
of membrane junctions in the cell142,143. EMMPRIN 
overexpression also causes activation of the Wnt/
GSK-3β/β-cat pathway. In this pathway, GSK-3β is a 
factor upstream of β-cat, promoting its phosphoryla-
tion144. The phosphorylated form of β-cat is ubiquitin 
and degrades, thus maintaining low levels of β-cat. 
However, EMMPRIN inhibits the kinase activity of 
GSK-3β and decreases the levels of phosphorylated 
β-cat. Therefore, the levels of nuclear β-cat increase 
and consequently decrease the expression of E-cad-
herin, reducing cell-cell adhesion17,144,145 (Figure 8). 

Figure 8. Regulation of adhesion by EMMPRIN. Black arrow: direct activation and T bar: inhibition of processes. CAS: CRIS-
PR-associated proteins, E-Cad: E-cadherin, GSK-3β: Glycogen Synthase Kinase 3 Beta, MMP: matrix metalloproteinase, CA: 
Carbonic Anhydrase, Cav-1: Caveolin 1, CAML: Calcium Modulating Ligand, FAK: Focal adhesion kinase, PI3K: Phosphoinos-
itide 3-kinase, Sp1: Sp1 Transcription Factor, Egr2: Early Growth Response 2. This figure was created using Biorender software.
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EMMPRIN Promotes the Migration
Cell migration results from chemical and me-

chanical interactions between cells and their extra-
cellular environment. The types of unicellular and 
collective migration, in addition to their intercon-
versions, depend on the polarization, adhesion, de-
formability, contractility, and proteolytic capacity 
of the cells146.

One of the tumor processes most related to cell 
migration is the epithelial-mesenchymal transition 
(EMT), a process in which stationary polarized ep-
ithelial cells become mobile mesenchymal cells, 
accompanied by activating an invasive phenotype 
and behaviors of neoplastic cells147. EMMPRIN 
plays an essential role in the collective migration 
of tumor cells. Collective migration is a type of co-
hesive and multicellular spread; it is different from 
the unicellular invasion that depends on the spe-
cific mechanisms of the cell type and contributes 
to carcinogenesis, progression, and distant spread 
of various types of cancers148,149. TGF-β1-induced 
overexpression of EMMPRIN is widely related 
to EMT. TGF-β1 is a tumor promoter that trig-
gers EMT through the transcription factors Snail1 
and Slug. Snail1 serves as an upstream factor of 
Slug in the TGF-β1-PI3K/Akt-GSK3β pathway in 
EMT, while Slug directly regulates the expression 
of EMMPRIN150. In addition, the overactivation of 
the β-cat pathway due to overexpression of EM-
MPRIN can also enhance the expression of genes 
associated with EMT, such as the mesenchymal 
markers N-cadherin, vimentin, and Snail, which 
causes transcriptional repression of E-cadherin. 
EMMPRIN also increases migration by enhanc-
ing F-actin rearrangement, decreasing adhesion by 
suppressing the adhesion molecule ICAM-1, and 
indicating the epithelial-mesenchymal transition 
by reducing the epithelial marker claudin-117,151. In 
this way, the cell’s loss of membrane junctions is 
promoted, and its transformation into mobile mes-
enchymal cells occurs141. 

EMMPRIN also promotes the mesenchy-
mal phenotype by increasing hyaluronan synthe-
sis25,152,153. EMMPRIN overexpression has been 
correlated with high nano-hyaluronan and CD44 
levels in the cell membrane and has exhibited 
typical EMT properties, such as anchorage-inde-
pendent growth and migration153,154. Hyaluronan 
is released in the pericellular medium; it interacts 
multivalently with CD44 to induce or stabilize sig-
naling domains within the plasma membrane and 
activate signaling pathways such as RAF, PI3K-
Akt, and FAK that cause, among some other tu-
mor processes, cell migration. Hyaluronan-CD44 

interactions also induce cytoskeletal changes that 
promote motility155. The result is that oncogenic 
cells acquire the ability to migrate to local and dis-
tant tissues. A higher expression of EMMPRIN has 
been reported in oncogenic cells near the border 
than in the nucleus of tumor samples156.

EMMPRIN acts as a receptor for the S100A9 
ligand, forming an S100A9-EMMPRIN complex. 
S100A9 is a chemoattractant derived from pe-
ripheral keratinocytes; its expression is induced 
by pro-inflammatory factors secreted by primary 
tumor cells, facilitating tumor cells to migrate to 
pre-metastatic sites157. Melanoma cells that over-
express EMMPRIN have been reported to migrate 
to skin expressing S100A9, whereas cells with low 
expression of EMMPRIN do not migrate or metas-
tasize in response to S100A9. This effect is because 
the S100A9-EMMPRIN complex promotes MMP 
expression in neighboring cancer cells through 
EMMPRIN signal transduction. The disappearance 
of the basement membrane has been demonstrated 
just in the area where EMMPRIN and S100A9 are 
co-expressed158. In addition, the S100A9-EMM-
PRIN interaction induced the activation of cdc42, 
a member of the Rho GTPase family, which pro-
motes filopodium formation, regulates polarity, and 
cell migration159. Thus, EMMPRIN is expressed in 
the invasive border and not in their densest mass158.

EMMPRIN induces the expression of MCT1 
and MCT-4 through the Akt-FoxO3-NF-κB path-
way. The overexpression of EMMPRIN in tumor 
cells is related to the activation of PI3K, which 
phosphorylates and activates Akt (pAkt). Active 
Akt promotes the phosphorylation of FoxO3 and 
its proteasomal degradation. The suppression of 
FoxO3 promotes the phosphorylation of NFκB 
(p65), which causes its nuclear translocation and 
transcriptional activity on MCT-1/4. Consequent-
ly, the expression of MCT-1/4 is elevated, which 
has been related to the induction of tumor migra-
tion and invasion from lactic acid regulation160-162. 
MCT-1/4 export the lactic acid generated in large 
quantities in the tumoral process84,133. The accu-
mulation of lactic acid in the extracellular medium 
induces the acidification of the tumor microenvi-
ronment. It influences the migration of tumor cells 
by promoting hyaluronan production, which acts 
on fibroblasts and the cytoskeleton of cancer cells 
through interaction with CD44133,163. 

EMMPRIN can recycle itself to the plasma 
membrane without undergoing proteasomal deg-
radation through its interaction with Rab22a164. 
Rab22a is a Rab family member located at mul-
tiple levels in the endocytic pathway165. Endocyt-
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ic recycling is coordinated with endocytic uptake 
to control the plasma membrane composition166. 
The cytoplasmic tail of EMMPRIN can be recog-
nized by Hook1, which mediates its selection into 
Rab22a-dependent tubules associated with recy-
cling167; therefore, after endocytosis, EMMPRIN 
enters the recycling tubules directly and relocates 
back to the plasma membrane, preventing ubiq-
uitin-proteasome degradation39. Recycling EMM-
PRIN by Rab22a maintains EMMPRIN expression 
levels in the cell membrane and plays a critical role 
in transduction signals promoting tumor cell mi-
gration, favoring invasion164. 

The overexpression of EMMPRIN in the mem-
brane of various types of tumor cells induces the 
transformation of normal fibroblasts into cancer-as-
sociated fibroblasts (CAF)168. The CAFs abundant 
in the tumor stroma contribute to the formation 
of the malignant micro-environment of cancers 
through the secretion of MMPs that degrade ECM, 
thus inducing EMT of tumor cells169,170. CAFs in-
duce EMT depending on expression and favor the 
migration potential of tumor cells168. Another way 
that EMMPRIN has been associated with the mi-
gration process is through its interaction with the 
cell cycle-specific transcription factor and E2F1171. 
This transcription factor has been detected in var-
ious cancers, and oncogenic or tumor suppressor 
functions have been attributed to it depending on 
the type and subtype of cancer172. E2F1 regulates 
the expression of EMMPRIN, thus promoting 
EMT and migration in tumor cells; however, it has 
also been reported that E2F1 increases MMP ex-
pression, so this could be one of how EMMPRIN, 
overexpressed by E2F1, increases migration171,172.

EMMPRIN is co-localized with the previous 
gradient 2 (AGR2) in tumor samples; its overex-
pression in vitro and in vivo increases cell migra-
tion156. Silencing AGR2 reduces the expression of 
EMMPRIN, the mesenchymal marker N-cadherin, 
Slug, Snail, and upregulates E-cadherin in tumor 
cells exposed to exogenous TGF-β1173, so AGR2 
could be a protein upstream of EMMPRIN, regu-
lating its expression and favoring EMT156.

Cells undergo dynamic actin cytoskeleton re-
arrangements during cell migration to form pro-
trusive structures and generate the intracellular 
forces necessary for cell translocation. Src phos-
phorylation triggered by the EMMPRIN-α3β1 
integrin complex blocks the activity of Rho and 
ROCK and thereby reduces MLC2 phosphoryla-
tion, promoting mesenchymal cell movement and 
suppressing amoeboid cell movement174. EMM-
PRIN inhibits the Rho/ROCK signaling pathway 

and amoeboid cell migration, inhibiting Annex-
in II phosphorylation175. Therefore, EMMPRIN 
leads to cell migration174.

Activating the FAK pathway by the EMM-
PRIN-α3β1 integrin complex also plays an essen-
tial role in reorganizing the cytoskeleton. FAK, in 
turn, phosphorylates Src, recognized as a critical 
mediator in the organization of the cytoskeleton 
that in turn phosphorylates and promotes nuclear 
translocation of STAT3, promotes the expression of 
DOCK8, and activates Rac1. Rac1 activity increas-
es the expression of WAVE2, which stimulates ac-
tin polymerization and membrane protrusions174 
(Figure 9).

 
EMMPRIN Promotes the Cell Invasion

Invasion is the ability of tumor cells to infil-
trate neighboring tissues by rupturing the basement 
membrane. Cancer cells that become invasive can 
spread to secondary sites and metastasize176. 

EMMPRIN modulates invasion by negatively 
regulating GSK-3β and increasing the β-cat sig-
naling pathway, positively regulating cathepsin B 
(CTSB) transcription177. CTSB is a cysteine   pro-
teolytic enzyme with a high expression level in 
tumor tissues, is released by tumor cells through 
exosomes, participates in the hydrolysis of ECM, 
and activates MMPs, thus increasing the invasion 
of cells tumorous178.

The expression of BSG2 has been correlated 
with the induction of cell invasion by increasing 
the expression and secretion of MMP-2 and MMP-
9; MMP is associated with epithelial-mesenchy-
mal transition (EMT)30. EMMPRIN can stimulate 
MMP production, specifically MMP-1, -2, -3, -7, 
-9, -14 and -15128,129,179,180. The MMPs are an im-
portant family of enzymes that degrade the ECM; 
the degradation of the ECM is a crucial step in the 
local invasion. Therefore, the role of EMMPRIN 
in the induction of MMP is one of the most studied 
functions, hence the derivation of its other name: 
extracellular matrix metalloproteinase inducer 
(EMMPRIM)13,181. EMMPRIN stimulates MMP 
production in tumor cells and surrounding fibro-
blasts, which influences the balance of the tumor 
microenvironment, with the modulation of inva-
sion by fibroblasts being greater, suggesting some 
interactions between cancer cells and fibroblasts 
can promote tumor invasion179. The overexpres-
sion of EMMPRIN, regulated by the transcription 
factors Sp1 and Egr2, promotes invasiveness in 
primary fibroblasts. It has been shown that EMM-
PRIN also increases MMP expression and tumor 
progression by interacting with other proteins, such 
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as complex formed by EMMPRIN and Annexin II 
that promotes MMP expression in tumor cells7,14,182 
(Figure 10).

EMMPRIN Promotes the Metastasis
Metastasis represents the end product of a 

multi-stage cellular biological process, called the 
invasion-metastasis cascade, which involves the 
spread of cancer cells to anatomically distant organ 
sites and their subsequent adaptation to foreign tis-
sue microenvironments183.

As already mentioned in the metabolism sec-
tion, the overexpression of EMMPRIN deregulates 
the main enzymes involved in lipid metabolism, 
which increases lipogenesis and decreases the oxi-
dation of fatty acids. In addition to being associated 
with growth, these processes are associated with tu-
mor metastasis35,184. Meanwhile, in vitro and in vivo 

models, HG-EMMPRIN is correlated with highly 
metastatic potential in lymph nodes and high ex-
pression N-acetylglucosaminyltransferase (GnT) –
IV, which is an enzyme that catalyzes the formation 
of the GlcNAC β1-4 branch in the central struc-
ture of N-Glycans and is responsible for inducing 
the glycosylation of EMMPRIN and increasing its 
β1-6 branches of N- Glycans31,185. Fyn is another 
enzyme that directly interacts and increases EM-
MPRIN glycosylation and metastasis using in vivo 
models29. Fyn is a tyrosine kinase associated with 
T cells and neuronal signaling in normal cell de-
velopment and physiology and is overexpressed in 
clinical tissues of primary and metastatic tumors186. 
Fyn phosphorylates EMMPRIN at Y140 and Y183 
and promotes their glycosylation and recruitment 
to the membrane; Fyn-mediated expression of EM-
MPRIN promotes MMP expression and a signifi-

Figure 9. Regulation of invasion by EMMPRIN. Black arrow: direct activation; Red T bar: inhibition of processes, Dotted 
black arrow: activation through unknown displayed other molecules. GSK-3β: glycogen Synthase Kinase 3 Beta, Sp1: Sp1 
Transcription Factor, Egr2: Early Growth Response 2, CTSB: Cathepsin B, MMP: matrix metalloproteinase. This figure was 
created with BioRender.com.
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cant increase in the size and number of metastatic 
nodules in mice29. 

In tumor biopsies, the co-expression of MCT1 and 
EMMPRIN is associated with the presence of lymph 
node metastases and distant metastases187. Addition-
ally, the overexpression of MCT4 promoted by EM-
MPRIN and the EMMPRIN-CD44 complex favors 
metastasis and is associated with a poor prognosis in 
cancer patients188. The EMMPRIN-CD44 complex 
also promotes metastasis by regulating the PI3K/Akt 
and MAPK/ERK signaling pathways by reducing the 
levels of p-Akt and p-ERK in tumor cells189. 

EMMPRIN induces the release of Ca2+, which 
regulates the expression or release of MMP, par-

ticularly MMP-2 and MMP-9, which improve the 
degradation of basal membranes, cell migration to 
distant organs, processes involved in cancer me-
tastasis134,136. 

In vivo tumor models, EMMPRIN overexpres-
sion promotes liver and lung cell colonization. 
The enhancing effect of EMMPRIN on metastasis 
seems to be generalized for cancer cells since colo-
nization in these cells has been reported in different 
types of cancer150,151,190. Tumor metastasis may be 
due to increased fibroblasts peripheral to the tu-
mor tissue and increased MMP-2, MMP-11, and 
VEGF expression. Cancer-associated fibroblasts 
are the main effector population in the stroma that 

Figure 10. Regulation of migration by EMMPRIN. Black arrow: direct activation; Red T bar: inhibition of processes, Dotted 
black arrow: activation through unknown/not displayed other molecules, TGF-β1: Transforming Growth Factor Beta 1, AGR2: 
Anterior gradient protein 2 homolog, GSK3β: Glycogen Synthase Kinase 3 Beta, PI3K: phosphoinositide 3-kinase, N-cad: 
neural cadherin, ICAM-1: Intercellular adhesion molecule-1, FAK: Focal adhesion kinase, RhoA: Rhodopsin, ROCK: Rho-as-
sociated protein kinase, Cdc42: Cell Division Cycle 42, FAK: Focal adhesion kinase, PI3K: FoxO3: Forkhead Box O3, MCT: 
Monocarboxylate transporters, ZEB: Zinc Finger E-Box Binding Homeobox 2, TWUIS: Twist Family BHLH Transcription 
Factor 1, E2F1: E2F Transcription Factor 1. This figure was created on BioRender.com.
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interacts with EMMPRIN in tumor cells. Fibro-
blast-tumor cell interaction promotes secretion of 
MMP and some active cytokines, leading to tumor 
metastasis32,179.

EMMPRIN has also been reported to promote 
metastasis independently of MMP by modulating 
only tumor angiogenesis. In in vitro and in vivo 
tumor models, the suppression of EMMPRIN 
did not affect the expression of MMP. Still, it 
did affect the expression of the angiogenic factor 
VEGF by regulating the PI3K-Akt signaling path-
way191,192. Tumor cells, overexpress VEGF, induce 
increased blood vessel formation and metastasis 
in vivo193. 

Regarding the transcriptional regulation of 
EMMPRIN and its association with metastasis, 
antagonistic transcription factors Sp1 and KLF6 
have been shown to regulate the expression of 

EMMPRIN. Sp1 binds to the promoter of EMM-
PRIN and activates its expression, while KLF6 
represses the expression of Sp1. Therefore, 
KLF6 can suppress the expression of EMMPRIN 
directly or indirectly. The regulation mediated 
by these transcription factors on EMMPRIN is 
involved with metastasis in mice194. Also, hy-
pomethylation is another critical factor that may 
be associated with the expression of EMMPRIN 
in human tumor cells and tissue; the demethyla-
tion of the EMMPRIN promoter leads to an in-
crease in the binding affinity of Sp1 and the in-
creased expression of EMMPRIN195. Therefore, 
the regulation in the expression of EMMPRIN 
from the hypomethylation of its promoter and 
the KLF6/EMMPRIN relationship could provide 
a new potential therapeutic target to treat metas-
tasis194 (Figure 11).

Figure 11. Regulation of metastasis by EMMPRIN. Black arrow: direct activation; Red T bar: inhibition of processes, Dotted 
black arrow: activation through unknown/not displayed other molecules. FASN: Fatty Acid Synthase, ACC: Acetyl-CoA carbox-
ylase, CPT1: Carnitine Palmitoyltransferase 1A, ACOX1: Acyl-CoA Oxidase 1, (GnT)IV: N-Acetylglucosaminyltransferase-4, 
MMP: Matrix metalloproteinases, Ca: Carbonic Anhydrase, VEGF: Vascular Endothelial Growth Factor, PI3K: Phosphoinos-
itide 3-kinase, MAPK: mitogen-activated protein kinase, Erk: extracellular signal-regulated kinases, MCT: Monocarboxylate 
transporters, Sp1: Sp1 Transcription Factor, KLF6: Kruppel Like Factor 6. This figure was created on BioRender.com.
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Conclusions

EMMPRIN is a transmembrane protein capa-
ble of interacting with multiple membrane cell, 
cytoplasmic, and extracellular proteins, regulat-
ing several signaling pathways, gene expression, 
and proteins related to cancer development. EM-
MPRIN regulates hallmarks in cancer, maintains 
proliferative signals, resistance to cell death, in-
duction of angiogenesis, activation of invasion 
and metastasis, reprogramming of energy metab-
olism, and evasion of immune destruction. EMM-
PRIN may be a potential therapeutic target can-
didate or biomarker in various cancers. However, 
more studies on patients are necessary.
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