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Abstract. – OBJECTIVE: The heterogeneity 
of clinical manifestations and mortality rates in 
Coronavirus disease 2019 (COVID-19) patients 
may be related to the existence of molecular sub-
types in COVID-19. To improve current manage-
ment, it is essential to find the hub genes and 
pathways associated with different COVID-19 
subtypes.

MATERIALS AND METHODS: The whole-ge-
nome sequencing information (GSE156063, 
GSE163151) of nasopharyngeal swabs from nor-
mal subjects and COVID-19 patients were down-
loaded from the Gene Expression Omnibus 
(GEO) database. The molecular subtypes of pa-
tients with COVID-19 were classified using the 
“consistent clustering” method, and the spe-
cific genes associated with each subtype were 
found. Differentially expressed genes (DEGs) 
were screened between normal subjects and 
COVID-19 patients; the Weighted gene co-ex-
pression network analysis (WGCNA) meth-
od was used to find the key module genes of 
COVID-19 patients. Subtype-specific, differen-
tially expressed and module-related genes were 
collected and intersected. Gene ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment analysis were car-
ried out and protein-protein interaction (PPI) 
networks were generated. The pathways en-
riched in COVID-19 subtypes were analyzed by 
gene set variation analysis (GSVA). 

RESULTS: Patients with COVID-19 were divid-
ed into three subtypes, and there was no signif-
icant difference in gender and age distribution 
between subtypes. 82 differential gene path-
ways were screened between Subtypes I and II, 
131 differential gene pathways were screened 
between Subtypes I and III, and 107 differen-
tial gene pathways were screened between 
Subtypes II and III. Finally, 44 differentially ex-
pressed key genes were screened, including 
11 hub genes (RSAD2, IFIT1, MX1, OAS1, OAS2, 
BST2, IFI27, IFI35, IFI6, IFITM3, STAT2).

CONCLUSIONS: There are significant differ-
ences in gene activation and pathway enrich-
ment among different molecular subtypes of 
COVID-19, which may account for the heteroge-
neity in clinical presentation and the prognosis 
of patients.
Key Words: 

COVID-19, WGCNA, GEO, Genes cluster, Molecu-
lar subtypes.

Abbreviations
COVID-19: Corona Virus Disease 2019; SARS-COV-2: 
Severe acute respiratory syndrome coronavirus 2;  GEO: 
Gene Expression Omnibus;  GSVA: Gene set variation 
analysis; GSEA: Gene set enrichment analysis; DEGs: 
Differentially expressed genes; WGCNA: Weighted 
gene co-expression network analysis; GO: Gene ontolo-
gy; KEGG: Kyoto Encyclopedia of Genes and Genomes; 
PCA: Principal component analysis; BP: Biological pro-
cess; CC: Cellular Component; MF: Molecular Function; 
PPI: protein-protein interaction. (The abbreviations for 
the Supplementary Figures are placed in the Supplemen-
tary Materials).

Introduction

The outbreak of Coronavirus disease 2019 
(COVID-19) has become a severe threat to peo-
ple’s lives worldwide, and so far, the pandemic 
has not been effectively controlled1,2. The clini-
cal manifestations and the mortality rates of these 
patients are significantly different. Advanced age, 
male gender, and comorbidities have been doc-
umented as mortality risk factors3-7. Nowadays, 
nucleic acid detection by collecting nasopharyn-
geal swabs is the most commonly used method 
for diagnosing COVID-19 patients. The Gene 
Expression Omnibus (GEO) database8,9 is one of 
the largest genome sequencing databases at pres-
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ent and contains detailed genome sequencing and 
clinical information of nasopharyngeal swabs 
from COVID-19 patients. Weighted gene co-ex-
pression network analysis (WGCNA) is a widely 
used bioinformatics tool to identify gene sets with 
high synergistic variation10 and has been acknowl-
edged by most scholars11-13. Unlike the traditional 
screening methods for Differentially expressed 
genes (DEGs), WGCNA focuses more on identi-
fying genes with similar functions in the whole 
module rather than the differential expression of 
individual genes. 

Gene activation is significantly different in 
COVID-19 patients, which may be determining 
factor affecting the prognosis of patients. Based 
on the whole genome sequencing data, COVID-19 
patients were clustered by a consistent clustering 
method to find the differentially expressed genes 
among different subtypes of patients14-16. Differen-
tially expressed genes of each subtype were inter-
sected with the related genes screened by DEGs 
and WGCNA, and the hub genes expressed in 
COVID-19 patients were screened. Finally, Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway enrichment analy-
ses were carried out17,18. Constructing a protein-pro-
tein interaction (PPI) network based on differential 
expression genes and searching for hub genes can 
help us narrow the research field and conduct stud-
ies more efficiently19,20. Gene set variation analy-
sis (GSVA) is a functional enrichment analysis 
method similar to gene set enrichment analysis 
(GSEA)21. It is widely used in clinical research and 
can screen the differentially expressed pathways 
between molecular subtypes22,23. GSVA analysis of 
COVID-19 patients found different signaling path-
ways between different subtypes, thus explaining 
the differences in prognosis of COVID-19 patients.

Materials and Methods

Data Collection 
The patients’ high-throughput genomic sequenc-

es, clinical information, and annotated genetic in-
formation (GSE156063, GSE163151) were down-
loaded from the GEO database9, and the whole-ge-
nome sequencing information from nasopharyn-
geal swabs of normal subjects and COVID-19 
patients were screened and standardized.

DEG Analysis
R software’s “limma” package24 was used to 

analyze the differential gene expression between 

normal subjects and COVID-19 patients. Gene 
expression values were log2 transformed. Genes 
with |log2 fold change (FC)| > 1 and p < 0.05 were 
considered as significant. A higher-ranked gene 
was associated with a smaller p-value. Volcano 
plots and heatmaps of the DEGs were generated.

Co-Expression Network Construction 
by WGCNA

The gene co-expression network was con-
structed by using the R software “WGCNA” 
package10, and the optimal soft thresholding pow-
er was calculated using the “PickSoftThreshold” 
function. When the scale independence was set to 
0.9, the best power value was selected, and gene 
correlation modules were constructed. The gene 
modules with the largest correlation coefficient 
and statistical significance were screened. 

Consensus Clustering for COVID-19
The datasets GSE156063 and GSE163151 

were log2 transformed, and the batch correction 
of the two datasets was carried out using the R 
software “sva” package25 to eliminate the batch 
effect between different platforms. Principal 
component analysis (PCA) was used to evaluate 
the effect of data processing. Then, the “Consen-
susClusterPlus” package14 was used to perform 
consistent clustering among the 231 standardized 
COVID-19 patients, and the most stable K value 
among different molecular subtypes was selected 
to determine the number of classifications.

GSVA in Different Molecular Subgroups 
of COVID-19

In order to find specific activation pathways in 
each subtype, the R software packages “GSVA” 
and “GSEABase”21 were used to analyze the gene 
sets variation among COVID-19 patients with dif-
ferent molecular subtypes.

Identification of the Key Genes in 
Functional Modules and Differentially 
Expressed Genes

In datasets GSE156063, GSE163151, the differ-
entially expressed genes were screened by DEGs, 
the gene modules with the strongest correlation 
were screened by WGCNA, and the specific genes 
related to COVID-19 patient subtypes. These 
genes were intersected to screen the key genes.

Functional and Pathway Enrichment 
GO, and KEGG enrichment analyses of the se-

lected key genes were performed by R software 
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packages “org.Hs.eg.db” and “enrichplot”, and 
the statistically significant gene enrichment path-
ways were screened26-28. GO enrichment analysis 
can be divided into three sub-ontologies: Biolog-
ical process (BP), Cellular Component (CC), and 
Molecular Function (MF)17,29.

Analysis of PPI of Crucial Genes
The STRING database was used to build a PPI 

network for the representative genes, and then 
to screen the hub genes with the most related 
nodes30,31.

Correlation Analysis of Hub Gene 
Expression

To study the differential expression of hub 
genes between normal subjects and COVID-19 
patients, and to study the ability of each gene 
to diagnose COVID-19 patients by ROC curve, 
the Pearson correlation coefficient method was 
used to analyze the correlation between hub 
gene expression and age, gender and subtypes of 
COVID-19 patients.

Analysis of Pan-Cancer Association of 
Hub Gene Expression

The whole-genome sequencing information, 
clinical information, immunophenotype data 
and tumor stem cell index data of 33 types of tu-
mors in the The Cancer Genome Atlas (TCGA) 
database were downloaded from the UCSC Xena 
website (https://xenabrowser.net/datapages/) to 
study the correlation between them and hub gene 
expression32. Gene-related sensitive drugs were 
screened by CellMiner Drug Database33(https://
discover.nci.nih.gov/cellminer/home.do) 

Results

Included Patient’s Data and Analysis 
Flow-Chart

Patients with nasopharyngeal swab RNA se-
quencing data were selected, including 100 nor-
mal subjects and 93 COVID-19 patients in the 
GSE156063 data set, and 93 normal subjects and 
138 COVID-19 patients in the GSE163151 data 
set. The detailed flow chart is shown in Figure 1.

Differentially Expressed Genes Screening 
and Co-Expression Network Construction

As shown in Figure 2, in the GSE156063, 175 
upregulated genes and 75 downregulated genes 
were screened by the DEGs method (Figure 2A: 

volcano plot, Figure 2B: heatmap, Figure 2C: 
histogram). The “PickSoft Threshold” function 
in the “WGCNA” package was used to calcu-
late the best soft thresholding power. When the 
Power value was set to 5, and the scale indepen-
dence was set to 0.9, the mean connectivity was 
relatively high (Figure 2D). The 11 co-expressed 
gene modules were clustered (Figure 2E and 
Figure 2F), among them, the pink module (419 
genes) was the most correlated with COVID-19 
patients (R=0.68, p < 0.05). Meanwhile, a sig-
nificant correlation was found between the 
pink module group and module-related genes 
(R=0.86, p < 0.05, Figure 2G and Figure 2H). 
In the GSE163151 dataset, the same method was 
used for DEGs and WGCNA analysis. 675 up-
regulated genes and 137 downregulated genes 
were screened using the DEGs method (Figure 
3A: volcano plot, Figure 3B: heatmap, Figure 
3C: histogram). When the Power value was 
set to 6, and the scale independence was set to 
0.9, the mean connectivity was relatively high 
(Figure 3D). The 14 co-expressed gene mod-
ules were clustered (Figure 3E and Figure 3F), 
among which the red module (422 genes) was 
the most correlated with COVID-19 patients 
(R=0.71, p < 0.05). There was also a significant 
correlation between the red module group and 
module-related genes (R=0.89, p < 0.05, Figure 
3G and Figure 3H). Therefore, the related genes 
from the pink module in GSE156063 and the 
red module from GSE163151 were selected for 
follow-up analysis.

Consensus Clustering of COVID-19 Cases
GSE156063 and GSE163151 datasets were 

merged and included a total of 231 COVID-19 pa-
tients. Figure 4A shows the clustering of these two 
datasets before batch correction, while Figure 4B 
shows the clustering of two datasets after batch 
correction. After batch correction, the results 
showed that the batch effect between datasets of 
different platforms was successfully eliminated, 
and the subsequent analysis results were reliable. 
After batch correction, 231 COVID-19 patients 
were clustered into different molecular subtypes. 
Clustering results were most stable when the num-
ber was set to three (k=3). The patients were di-
vided into three molecular subtypes (Figure 4C). 
There were 87, 108 and 36 COVID-19 patients in 
subtypes I, II and III, respectively. Differences in 
gene expression patterns were significant among 
the three groups, which exhibited highly similar 
gene expression patterns (Figure 4C). When K 
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was set to 3, the consistency score of each sub-
type was close to or greater than 0.8 (Figure 4D), 
and the relative change of the area under the CDF 
curve was smaller (Figure 4E), so this classifica-
tion is more robust. The age and gender ratio of 
patients in three subtypes were statistically ana-
lyzed, and it was found that there was no signif-
icant difference in age composition and gender 
ratio among COVID-19 patients in different sub-
types (Figure 4F and Figure 4G).

GSVA in Different Molecular Subtypes 
of COVID-19 Based on KEGG (Kyoto 
Encyclopedia of Genes and Genomes) 
Pathway Enrichment Analysis

GSVA analysis was performed among mo-
lecular subtypes of COVID-19 patients, and the 
first 20 differentially activated KEGG pathways 
were drawn. 82 differential gene pathways (Sup-
plementary Table I) were screened between 
subtypes I and II, 131 differential gene path-

Figure 1. Research flow chart. The RNA sequencing data of nasopharyngeal swabs from normal subjects and COVID-19 
patients with GSE156063 and GSE163151 were analyzed by DEGs and WGCNA methods, respectively, and differentially 
expressed genes and module related genes were screened. Consistent cluster analysis was used to screen subgroup spe-
cific genes in 231 patients with COVID-19. The differentially expressed genes, module-related genes and molecular sub-
type-related genes were selected and intersected for KEGG, GO enrichment analysis and PPI network construction. Hub 
gene was screened from PPI network and analyzed by differential expression analysis, gene correlation analysis, ROC 
analysis and pan-cancer correlation analysis. The gene pathways activated by different molecular subsets in patients with 
COVID-19 were analyzed by GSVA.

https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Table-I-11041.pdf
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ways (Supplementary Table II) were screened 
between subtypes I and III, and 107 differential 
gene pathways (Supplementary Table III) were 
screened between subtypes II and III. A heat-
map (Figure 5A) showed the differential activa-

tion pathways between subtypes I and II, which 
showed significant differences in activation of 
“STEROID BIOSYNTHESIS”, “DRUG ME-
TABOLISM CYTOCHROME P450” and “PRO-
PANOATE METABOLISM” pathways between 

Figure 2. Differential gene screening and WGCNA analysis of the GSE156063 dataset. (A) Volcano plot, red dots repre-
sent up-regulated differentially expressed genes, while green dots represent down-regulated differentially expressed genes. 
(B) Heatmap, differentially expressed genes between normal subjects and COVID-19 patients. Different colors represent the 
relative expression of genes. Red represents high expression, and green represents low expression. The first 15 up-regulated 
and down-regulated genes are shown, respectively. (C) Differential gene expression histogram. 175 up-regulated genes and 
75 down-regulated genes were screened by the DEGs method. (D) Analysis of scale-free index and average connectivity for 
various soft-threshold powers. (E) In the GSE156063 dataset, gene clustering dendrograms are based on different topological 
overlaps and module colors. (F) 11 gene modules were identified by consistent clustering. The correlation coefficients between 
the 11 gene modules and normal persons and COVID-19 patients were shown by heatmap. The pink gene modules with the 
strongest correlation with normal persons and COVID-19 patients were selected for follow-up analysis. (G-H) In normal sub-
jects and COVID-19 patients, the correlation analysis between pink module group and module-related genes, p < 0.05. It shows 
that the genes in this module are of great significance for the study of COVID-19 diseases.

https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Table-II-11041.pdf
https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Table-III-11041.pdf
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subtypes I and II. The heatmap in Figure 5B 
showed differential activation pathways between 
subtypes I and III, which showed significant dif-
ferences in activation of “GLYCOSAMINOGLY-
CAN BIOSYNTHESIS CHONDROITIN SUL-
FATE”, “PRIMARY IMMUNODEFICIENCY” 
and “ADIPOCYTOKINE SIGNALING PATH-

WAY” pathways between subtypes I and III. The 
heatmap in Figure 5C showed differential activa-
tion pathways between subtypes II and III, indi-
cating that subtypes II and III were significantly 
different in activation of “MAPK SIGNALING 
PATHWAY”, “CHEMOKINE SIGNALING 
PATHWAY” and “NATURAL KILLER CELL 

Figure 3. Differential gene screening and WGCNA analysis of the GSE163151 dataset. (A) Volcano plot. (B) Differential gene 
expression heatmap. (C) Differential gene expression histogram. 675 up-regulated genes and 137 downregulated genes. (D) 
Analysis of scale-free index and average connectivity for various soft-threshold powers. (E) In the GSE163151 dataset, gene 
clustering dendrograms are based on different topological overlaps and module colors. (F) 14 gene modules were identified by 
consistent clustering. The red gene modules with the strongest correlation with normal persons and COVID-19 patients were 
selected for follow-up analysis. (G-H) In normal subjects and COVID-19 patients, the correlation analysis between red module 
group and module-related genes, p < 0.05. 
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MEDIATED CYTOTOXICITY” pathways. The 
results show that the activation pathways are sig-
nificantly different among molecular subtypes of 
COVID-19 patients, and each subtype should be 
treated with a different approach.

Identification of Key Genes and Pathway 
Enrichment Analysis

Intersection of the differentially expressed 
genes screened by DEGs, the most relevant gene 
modules screened by WGCNA (GSE156063: pink 

Figure 4. The consistency clustering for COVID-19 patients: (A) PCA clustering diagram, the batch clustering of the two 
datasets before batch correction. (B) Batch clustering of the two datasets after batch correction. (C) Consensus clustering plot, 
231 COVID-19 patients were divided into three molecular subtypes. (D) The consistency clustering score of each subtype 
in different clustering methods. When K=3, the consistency score of each subtype cluster is close to or greater than 0.8. (E) 
CDF curve, the smaller the relative change of the area under the CDF curve, the more stable the classification. (F) Analysis of 
age composition differences among three molecular subtypes. (G) Analysis of gender composition ratio differences among 3 
molecular subtypes.
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module, GSE163151: red module) and the specific 
genes related to subtypes of COVID-19 patients, 
and finally, 44 key genes were screened out (Fig-
ure 6A). All the 44 genes had a significant posi-
tive correlation (Figure 6B), and genes with a cor-
relation coefficient greater than 0.85 (Figure 6C) 
were as follows: HERC6, OAS2, CMPK2, IFI6, 
MX1, TRIM22, IFIT1, DDX58, RSAD2, IFIH1, 

HERC5, CXCL10, CXCL11. Furthermore, the 
44 key genes were analyzed by gene enrichment 
analysis. GO enrichment analysis showed that the 
genes were enriched in the functions of “response 
to virus,” “defense response to virus,” and “neg-
ative regulation of viral life cycle” (BP: 235 en-
richment pathways, CC: 10 enrichment pathways, 
MF: 36 enrichment pathways). KEGG enrichment 

Figure 5. GSVA in different molecular subtypes of COVID-19. (A) The first 20 differentially activated gene pathways be-
tween molecular subtypes I and II. (B) The first 20 differentially activated gene pathways between molecular subtypes I and 
III. (C) The first 20 differentially activated gene pathways between molecular subtypes II and III.
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analysis showed that the genes were significantly 
enriched in “Coronavirus disease-COVID-19”, 
“Chemokine signaling pathway” and “Cyto-
kine-cytokine receptor interaction” pathways (14 
enrichment pathways).

PPI Network Construction and 
Identification of Hub Genes

The PPI network of 44 key genes was con-
structed by the STRING database (Version:11.0), 
and the minimum required interaction score was 
set to 0.9. Finally, 28 protein-coding genes were 
included to construct the PPI network (Figure 
7A). The hub gene (the number of gene-related 
nodes greater than or equal to 10) is as follows 
(Figure 7B): RSAD2, IFIT1, MX1, OAS1, OAS2, 
BST2, IFI27, IFI35, IFI6, IFITM3, STAT2.

Correlation Analysis of Hub Gene 
Expression with COVID-19 Patients 
and ROC Curve for Diagnosis COVID-19 
Patients

These 11 genes were all highly expressed in 
COVID-19 patients (Figure 8A), and their gene ex-

pression levels were significantly higher in young 
patients (Figure 8C), but not related to gender 
(Figure 8D). In patients with different COVID-19 
molecular subtypes, the gene expression levels 
were significantly different; the difference was 
statistically significant (Figure 8E). ROC curve 
analysis showed that all genes had high diagnostic 
ability in patients with COVID-19, and the area 
under the curve was greater than 0.8. therefore, 
the diagnostic ability was more significant (Fig-
ure 8B).

Pan-Cancer Correlation Analysis of Hub 
Gene Expression

Malignant tumor is a high-risk factor of 
COVID-19 associated mortality. Accordingly, it 
is highly significant to analyze expression in pa-
tients with malignant tumors. Supplementary 
Figure 1A shows the overall expression level of 
genes in all malignant tumors. Supplementary 
Figure 1B is a heatmap of gene expression differ-
ences among different cancerous tumors. Supple-
mentary Figure 1C shows the correlation coeffi-
cient among 11 genes. Supplementary Figure 2 

Figure 6. Key genes screening and pathways enrichment analysis. (A) Venn diagram, screening intersection genes. (B) The 
correlation coefficient heatmap of these 44 genes. (C) The gene relationship network diagram with a correlation coefficient 
greater than 0.85. (D) GO enrichment analysis; BP, CC, MF methods show the first ten enrichment pathways, respectively. (E) 
KEGG enrichment analysis; There are 14 activation gene pathways.

https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Figure-1-11041.pdf
https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Figure-1-11041.pdf
https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Figure-1-11041.pdf
https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Figure-2-11041.pdf
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and Supplementary Figure 3 showed the differ-
ential expression of 11 genes in different types of 
cancers and their corresponding normal tissues. It 
can be seen that many genes are highly expressed 
in cancer tissues. Supplementary Figure 4 shows 
the correlation heatmap between gene expression, 
immune cell score and tumor stem cell index in 
pan-cancer, which showed a significant positive 
correlation between gene expression and immune 
score in different tumor types34. Supplementary 
Table IV shows the results of drug sensitivity 
analysis, which showed a significant correlation 
between gene activation and a variety of drugs, 
which can help screen drugs for treatment in pa-
tients with malignant tumors

Discussion

COVID-19 is a highly infectious disease, which 
has spread to many countries and regions world-
wide, turning into a humanitarian disaster with 
devastating social and economic repercussions35,36. 
With the progress made in COVID-related re-
search and the continuous improvement of treat-
ment methods, the cure rate of patients continues 
to improve, along with a decrease in the case fa-
tality rate. Reducing the mortality rate is the ul-
timate goal of COVID-19 treatments. Although 
many vaccines have been developed, the constant 
mutation of the virus has attenuated the efficien-

cy and usefulness of these vaccines. The progno-
sis of COVID-19 patients is highly heterogeneous. 
An increasing body of evidence suggests that ad-
vanced age and comorbidities are high-risk factors 
for mortality in patients infected with the SARS-
COV-2 virus37,38. Since its emergence in December 
2019, the SARS-COV-2 virus gene has mutated 
and increased its infectivity and viral load, and the 
virus-negative time is longer. Accordingly, it is es-
sential to study the key genes and pathways of the 
SARS-COV-2 virus in the human body. We stud-
ied the differential gene expression of nasopharyn-
geal swab high-throughput sequencing microarray 
(GSE156063 and GSE163151) in 231 COVID-19 
patients and screened the specific gene modules 
related to COVID-19 using the WGCNA method. 
The “ConsensusClusterPlus” package was used 
to cluster the patients for subtyping of COVID-19 
patients. Differentially expressed genes, specific 
module genes, and subtype-related genes were se-
lected and intersected to screen for the most critical 
genes. Finally, 44 key genes closely related to the 
pathogenesis of SARS-COV-2 virus were obtained. 
Gene pathway enrichment analysis of the selected 
key genes was performed. GO enrichment analysis 
showed that the genes were obviously enriched in 
the functions of “response to virus”, “defense re-
sponse to virus” and “negative regulation of viral 
life cycle”. KEGG enrichment analysis showed that 
the genes were significantly enriched in the path-
ways “Coronavirus disease-COVID-19”, “Chemo-

Figure 7. PPI network. (A) 28 crucial protein-coding genes in PPI network. (B) Genes with more than or equal to 10 gene-re-
lated nodes in the PPI network.

https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Figure-3-11041.pdf
https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Figure-4-11041.pdf
https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Table-IV-11041.pdf
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Figure 8. Correlation analysis of hub Genes and Diagnostic ROC curves. (A) Differential expression histogram of 11 hub 
genes in normal subjects and COVID-19 patients. (B) ROC curves of 11 hub genes for diagnosing COVID-19 patients. (C) Dif-
ferential expression histogram of 11 hub genes in different age groups. (D) Differential expression histogram of 11 hub genes 
in different genders. (E) Differential expression histogram of 11 hub genes in different molecular subtypes.

kine signaling pathway” and “Cytokine-cytokine 
receptor interaction”. Through the enrichment 
analysis of key genes, the scope of our follow-up 

research has been significantly reduced. This can 
help us develop more targeted drugs for the treat-
ment of COVID-19. 
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Different COVID-19 patients have different 
prognoses; this may be explained by the differ-
ent pathways activated by the SARS-COV-2 vi-
rus. Using the GSVA method21 to find the specific 
activation pathway between different molecular 
subtyping of COVID-19 patients can explain the 
differences in prognosis of different patients. 82 
differentially activated gene pathways between 
subtypes I and II were screened, 131 differentially 
activated gene pathways between subtypes I and 
III were screened, and 107 differential gene path-
ways between subtypes II and III were screened. 
There were significant differences in activation 
of “STEROID BIOSYNTHESIS”, “DRUG ME-
TABOLISM CYTOCHROME P450” and “PRO-
PANOATE METABOLISM” pathways between 
subtypes I and II. Furthermore, significant dif-
ferences in activation of “GLYCOSAMINO-
GLYCAN BIOSYNTHESIS CHONDROITIN 
SULFATE”, “PRIMARY IMMUNODEFICIEN-
CY” and “ADIPOCYTOKINE SIGNALING 
PATHWAY” pathways were observed between 
subtypes I and III. Furthermore, significant dif-
ferences were observed in activation of “MAPK 
SIGNALING PATHWAY”, “CHEMOKINE SIG-
NALING PATHWAY” and “NATURAL KILL-
ER CELL MEDIATED CYTOTOXICITY” path-
ways between subtypes II and III. The analysis of 
GSVA can help us choose appropriate treatment 
approaches and develop different targeted drugs 
for patients with different molecular subtypes of 
COVID-19.

In order to further narrow the scope of re-
search, a PPI network was constructed using the 
STRING database, and the hub genes (RSAD2, 
IFIT1, MX1, OAS1, OAS2, BST2, IFI27, IFI35, 
IFI6, IFITM3, STAT2) with ten or more gene-re-
lated nodes were screened. These genes were 
highly expressed in COVID-19 patients, and they 
all have a high diagnostic yield. By using the Pear-
son correlation coefficient method, it was found 
that the expression of these genes was not relat-
ed to gender but significantly correlated with age 
and subtypes of COVID-19 patients. These genes 
were highly expressed in young patients (age < 52 
years old). Thus, more emphasis should be laid 
on specific molecular subtypes of COVID-19 pa-
tients, and different treatment approaches should 
be adopted accordingly.

During the epidemic of COVID-19, patients 
with malignant tumors are a population that re-
quires special attention39,40. The presence of co-
morbidities often worsens the condition of these 
patients; patients often have relatively lower im-

munity which is further undermined during the 
treatment for tumors (such as radiotherapy and 
chemotherapy). These patients are thus more sus-
ceptible to be infected with the SARS-COV-2 
virus and have higher mortality rates. Through 
the analysis of these 11 hub genes in 33 types 
of malignant tumors, we can discover the high-
risk tumor types of SARS-COV-2 virus infection 
and key prognostic genes. Gene-related sensitive 
drugs were screened using the CellMiner drug 
database41. This information will help in provid-
ing better treatment and improving survival in 
patients with cancer.

Here, we improved our understanding of COVID-19, 
and identified specific gene pathways and key patho-
genic genes involved in the SARS-COV-2 virus in-
fection. Different approaches should be used to treat 
COVID-19 patients with different molecular subtypes, 
and high-risk populations should be identified earlier. 
For high-risk patients, multidisciplinary consultation 
should be carried out as soon as possible, and tailored 
treatment plans should be made accordingly to im-
prove the cure rate and reduce mortality.

Conclusions

There are significant differences in gene acti-
vation and pathway enrichment among different 
molecular subtypes of COVID-19, which may ac-
count for the heterogeneity in clinical presenta-
tion and the prognosis of patients.
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