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Abstract. – OBJECTIVE: Traditional blood 
glucose testing methods have several disadvan-
tages, such as high pain and poor acquisition 
continuity. In response to these shortcomings, 
we propose a multi-parameter fusion non-inva-
sive blood glucose detection method that com-
bines machine learning and photoplethysmog-
raphy (PPG) signal feature parameter analysis.

MATERIALS AND METHODS: This method 
uses the signal validity check process based on 
the correlation operation to test and calculate 
PPG data. It, then, respectively applies the boot-
strap aggregation algorithm and the random for-
ests algorithm to establish two non-invasive 
blood glucose detection models that compre-
hensively predict blood glucose data.

RESULTS: Experimental comparative analy-
sis showed that the accuracy of the detection 
model based on the random forests algorithm is 
superior. The correlation coefficient of the ob-
tained blood glucose prediction set is 0.972, the 
mean square error is 0.257, and the relative er-
ror is less than ± 20%.

CONCLUSIONS: Relative error in blood glu-
cose prediction meets the national standards in 
China. Meanwhile, the results of the Clarke Er-
ror Grid Analysis indicate that the non-invasive 
blood glucose testing method proposed in this 
study meets clinical accuracy requirements.

Key Words:
Photoplethysmography, Digital signal processing, 

Machine learning, Non-invasive blood glucose de-
tection.

Introduction

Daily blood glucose monitoring is an important 
routine that aids diabetes treatment and preven-
tion for people with diabetes or those with simi-
lar health issues. Current clinical and individual 
self-testing methods for blood glucose can be di-
vided into three categories: invasive testing, min-
imally invasive testing, and non-invasive testing. 

Invasive blood glucose testing is performed by 
drawing venous blood directly from the patient’s 
body or by pricking the finger to extract a blood 
sample. These procedures are painful and often 
cause distress in certain patients. Besides, min-
imally invasive glucose testing methods based 
on subcutaneous glucose sensor microelectrode 
implantation1 have the disadvantages of frequent 
electrode replacement, time-dependent detection 
accuracy, and high testing costs2. Non-invasive 
blood glucose testing overcomes the deficiencies 
that exist with invasive and minimally invasive 
methods. At present, non-invasive blood glu-
cose detection mainly involves several technical 
routes, such as energy metabolism integration3, 
microwave detection4, and optical detection5. Of 
these methods, the practicality and accurate per-
formance of optical detection methods are the 
most desirable6.

Photoplethysmography (PPG) is a technique 
that involves the non-invasive collection of hu-
man physiological information using optical 
technology. It contains validated spectral data 
that truly reflects blood composition informa-
tion7 and can be used for the non-invasive detec-
tion of human blood glucose. Monte-Moreno et 
al8 used a machine-learning algorithm to analyt-
ically fit the PPG signal collected from the fin-
gertip site for non-invasive estimation of human 
blood pressure and blood glucose, with a blood 
glucose prediction accuracy of 87.7%. Bao et al9 
established a blood glucose concentration cal-
culation model based on photoelectric detection 
technology. When combined with other human 
characteristic parameters, the detection results 
of the model achieved a correlation coefficient 
of 0.854. Besides, Zhang et al10 designed a PPG 
signal acquisition device for the fingertip, used 
the wavelet threshold denoising algorithm to 
analyze and process PPG data, and established 
a blood glucose correction model based on a 
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machine learning algorithm. The blood glucose 
prediction set correlation coefficient of this de-
vice was 0.9152. Wang et al11 used the photo-
electric volumetric pulse wave tracing method 
to collect PPG data from the fingertip area 
and established a least squares-based detection 
model. This method achieved a model test set 
correlation coefficient of 0.976 and a root mean 
square error of 0.357, with an accuracy that met 
the requirements of clinical use.

For PPG data collection, the fingertips, neck, 
wrist radial artery, and other superficial ar-
tery-rich parts of the body should be selected. 
Currently, to obtain better quality PPG data, the 
fingertips are often selected as the collection site. 
From the perspective of practicality and portabil-
ity, it is more appropriate to use the radial artery 
of the wrist as the collection site. However, the 
signal acquisition conditions in the wrist area are 
relatively poor. Besides, the acquired signal am-
plitude is weak and often contains excessive dis-
turbance, resulting in diminished blood glucose 
detection accuracy. To address these problems, in 
this study, we investigate the signal validity check 
and establish a non-invasive blood glucose detec-
tion model based on valid PPG data analysis.

Materials and Methods

Acquisition of PPG Signal
The human aorta produces regular forced vi-

brations under the influence of the periodic beat 
of the heart systole and diastole. This vibration is 
transmitted through the blood system to the vas-
cular endings of the body, forming a transverse 
wave known as a pulse wave. The pulse wave 
is a periodic physiological signal with a period 
roughly identical to the heartbeat cycle. It is also 
influenced by physiological factors, such as vas-
cular wall elasticity, blood viscosity, blood flow 
velocity, and vascular resistance12. As Figure 1A 
indicates, during the heartbeat, the micro-arterial 
vessels are forced to vibrate, forming transverse 
waves. As a result, the blood volume of the ves-
sels varies continually, which leads to changes 
in the light absorption of each blood component. 
When irradiated with a light source, the transmit-
ted or reflected light intensity also varies along 
with changes in blood volume. This periodically 
changing light signal is transformed into an elec-
trical signal, which is the PPG signal.

The PPG signal reflects the periodic variation 
in light intensity emitted through the human arte-

Figure 1. Acquisition of PPG. A, photoplethysmography; B, dual-wavelength reflective PPG acquisition system; C, schematic 
diagram of PPG signal acquisition (1: DCM03 acquisition sensor and protective casing, 2: signal connection line, 3: signal 
conditioning structure, 4: MCU).
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rial vasculature. According to the Lambert-Beer 
law10, the concentration c of the substance absorb-
ing light can be measured by the incident light 
intensity I0 and the outgoing light intensity I, as 
shown in Equation (1):

	 I = I0/e
єlc	 (1) 

In Equation (1), ε is the absorbance of the 
substance that absorbs light, and l represents the 
light range. Therefore, the PPG signal carries 
rich information on a range of blood components 
and can be used for the quantitative estimation of 
blood glucose and other blood component con-
centrations.

For the characteristics of skin thickness, bone, 
and other tissue at the wrist, a dual-wavelength 
reflective acquisition system was designed to 
complete the acquisition of PPG signals at the 
radial artery, as Figure 1B illustrates. 

The light source and photoelectric sensor of the 
acquisition system in Figure 1B utilize the reflec-
tive chip sensor DCM05 (APMKorea, Daejeon, 
South Korea). This device integrates both 660 nm 
and 905 nm wavelength LED light sources and a 
photoelectric sensor that receives the light of cor-
responding wavelengths and can obtain a higher 
accuracy PPG acquisition signal. The front-end 
chip for sensor driving and signal pre-conditioning 
is the AFE4400 (TI, Dallas, TX, USA) integrated 
analog front-end. It is commonly used for heart 
rate monitoring, pulse blood oxygen calculation, 
and industrial light measurement applications to 
meet system usage and accuracy requirements. 
Besides, the system uses the STM32F103ZE chip 
(ST, Geneva, Canton of Geneva, Switzerland) as 
the main control unit (MCU). The MCU commu-
nicates with the host computer through the serial 
protocol to complete further processing of data and 
feedback on blood glucose values. Considering 
that the effective frequency of the PPG signal is 
between 0.7~3 HZ11, the system digital sampling 
frequency is selected as 50 HZ. This setting satis-
fies the Nyquist theorem and can ensure the acqui-
sition accuracy of the signal. Also, by considering 
the fixation of the sensor and the portability of the 
device, the acquisition system uses the wristband 
fixation method for the acquisition process of the 
PPG signal, as illustrated in Figure 1C.

The Principle of Signal Validity Check 
Figure 2A introduces possible external distur-

bances, such as pulse interference, signal loss, 

and motion artifacts13 in the initial PPG signal 
obtained from the acquisition system. These dis-
turbances are often caused by subject jitter, am-
bient light interference, or sensor slippage. Since 
these disturbances that may exist in the acquired 
signal and cannot always be effectively filtered 
out during the filtering process, blood glucose de-
tection accuracy can be affected. To address this 
problem, we propose a PPG acquisition signal 
validity check method based on the correlation 
operation, which can accurately identify and re-
ject signal segments with excessive disturbance 
to ensure the validity of the collected signals.

The validity check of the PPG signal is imple-
mented based on the correlation operation14. The 
correlation operation is similar to the convolution 
operation, which is an operation that combines 
two signal sequences to obtain a third signal. It 
can be used to detect the presence or absence of a 
target signal in the received signal.

The convolution operation process can be rep-
resented by Equation (2):

	 yc = xc * hc 	 (2)

In Equation (2), xc denotes the discrete input 
sequence, hc signifies the convolution kernel, and 
yc is the output sequence. The convolution oper-
ation determines yc by reversing the order of the 
sample points in hc, then multiplying and adding 
the sample points in xc. If the length of xc is M 
and the length of hc is N, the length of yc can be 
expressed as N+M-1. The computational process 
of the correlation operation is similar to that of 
the convolution operation, and the resulting third 
signal is called the cross-correlation signal of the 
two input signals. The output-side algorithm for 
the correlation operation can be expressed by 
Equation (3):

(3)

In Equation (3), yr represents the cross-correla-
tion signal, xr denotes the input signal, hr stands 
for the target signal, and F represents the signal 
length of hr. Also, i and j are the sample numbers 
of the signal in Equation (3). Equation (3) indi-
cates that the difference between the two oper-
ations is that the correlation operation does not 
reverse the order of the samples in hr, but directly 
multiplies and adds the samples in xr to obtain yr, 
where the signal length of yr is equal to xr.
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According to the correlation operation, the am-
plitude of each sample point of yr depends on the 
similarity between xr and hr at the current sample 
point, so that each moment of hr appearing in xr 
corresponds to a symmetrical wave peak in yr. 
Ideally, the value of the peak is expressed using 
Equation (4):

(4)

Therefore, by counting the number of such 
peaks, the quantity of the target signal hr con-
tained in the input signal xr can be obtained. 
According to this principle, the validity of PPG 
acquisition signal can be checked.

The main purpose of the signal validity check 
is to screen and reject the acquired signal seg-
ments with excessive disturbance. Thus, the tar-
get signal in the PPG signal acquisition validity 
check process is selected as the standard PPG 
signal. Furthermore, considering the accuracy of 
signal detection, the signal length of the target 
signal should not be too large. It is most appropri-
ate for the signal length to only contain one cycle 
of the standard PPG signal.

The standard PPG signal of one cycle consists 
of three waveforms: the main wave, dichotomous 
wave, and dichotomous pre-wave, which can be 
simulated by three Gaussian functions. Thus, the 
superposition of the three corresponding Gauss-
ian functions constitutes a period of the simulated 
standard PPG signal15, so the design of the target 
signal hr

PPG in this study can be expressed using 
Equation (5):

(5)

In Equation (5), t stands for the sample num-
ber of hr

PPG and PPGsim represents a period of 
the analog standard PPG signal sequence. Be-
sides, the parameters Ai, Pi, and Bi determine 

the height, position of the peak, and width of the 
Gaussian waveform, respectively. To facilitate 
effective wave peak screening, the amplitude of 
PPGsim is taken as the maximum value of the PPG 
acquisition signal amplitude in the system. Also, 
to simulate the actual sampling frequency of the 
system, the data sample interval tc in hr

PPG is rep-
resented by Equation (6):

	 tc = 1 / fc	 (6)

In Equation (6), fc signifies the system sam-
pling frequency, which is 50 HZ in this study. 
Additionally, to allow the signal period of PPGsim 
to match the period of the PPG signal contained 
in the current acquisition signal, the signal period 
of PPGsim is expressed using Equation (7):

	 lenh = lens = fc / fs  	 (7)

In Equation (7), lenh denotes the period length 
of PPGsim, lens represents the period length of 
the current actual PPG acquisition signal, and fs 
is the main frequency of the actual PPG acquisi-
tion signal. The corresponding signal frequency 
spectrum can be obtained using the fast Fourier 
transform of the original acquired signal with the 
baseline drift filtered out. Also, the frequency 
corresponding to the maximum value of the sig-
nal spectrum between 0.7 HZ and 3 HZ effective 
frequency is taken as the main frequency fs of 
the effective PPG signal contained in the current 
acquired signal. Combined with the analysis of 
the acquired signal waveform, the values of each 
parameter16 in Equation (5) can be determined 
and are shown in Table I.

By combining Equations (5), (6), and (7) and 
the parameters in Table I, the corresponding 
target signal required by the current acquisition 
signal validity process can be obtained.

Figure 2B shows the linear amplitude spec-
trum obtained by the fast Fourier transform after 
filtering out the baseline drift of the analog in-
terference signal shown in Figure 2A. As Figure 
2B illustrates, the frequency corresponding to 
the maximum spectral amplitude of the analog 

Table I. Value of parameters in hr
PPG

	Parameter	 Value (mV)	 Parameter	 Value	 Parameter	 Value

A1	 1.5	 B1	 30/fs	 P1	 16/fs

A2	 1.125	 B2	 30/fs	 P2	 30/fs

A3	 0.375	 B3	 30/fs	 P3	 40/fs
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interference signal between 0.7 HZ and 3 HZ is 
2 HZ, so the fs of the effective PPG signal con-
tained in the analog interference signal is 2 HZ. 
Meanwhile, according to Equation (7), the corre-
sponding target signal length is 25 sample points. 
Figure 2C displays the construction process of 
the corresponding target signal, which can be ob-
tained after combining Equations (5) and (6) and 
the parameters in Table I.

Figure 2D presents the cross-correlation signal 
obtained by the correlation operation between 
the analog interference signal after baseline 
drift is filtered and the corresponding target sig-
nal. Corresponding effective peaks occur in the 
cross-correlation signal at the position where the 
target signal appears in the acquired signal. How-
ever, the cross-correlation signal corresponding 
to the excessive disturbance signal segment does 
not contain any effective peaks, meaning it is an 
irregular waveform signal.

PPG Acquisition Signal Validity Check 
Process and Filtering

The validity of the PPG acquisition signal 
is checked in terms of data segments, which 
are intercepted from the initial position of the 

original acquisition data Xr. The interception 
process of data segments can be expressed by 
Equation (8):

xn = Xr [n × 2000: ((n + 1) × 2000 - 1)]

(8)

In Equation (8), xn represents data segments, 
where the subscript n is the current data seg-
ment number. n starts at 0 and xn length is 2,000 
sample points containing 40 seconds of collected 
data. The validity check process for xn is shown 
in Figure 3.

The process shown in Figure 3 starts with 
high pass filtering of xn to eliminate baseline 
drift and avoid interference with peak detection 
from the DC component of the signal. In Fig-
ure 3, xL

n is the high pass filtered signal. The 
corresponding spectrum xL

n_FFT is then obtained 
by performing the fast Fourier transform on 
xL

n. The fs of the current signal segment can be 
obtained from xL

n_FFT, and the corresponding 
target signal hn

PPG of the current signal segment 
is constructed according to fs. After obtaining 

Figure 2. The principle of signal validity check and the filtered signal. A, analog interference signal (1: valid signal segment, 
2: motion artifact, 3: low pulse interference, 4: signal loss segment, 5: high pulse interference); B, linear amplitude spectrum; 
C, target signal; D, cross-correlation signal; E, filtered PPG acquisition signal at the radial artery.
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hn
PPG, xL

n is correlated with hn
PPG to obtain the 

cross-correlation signal yn. Besides, in Figure 3, 
l represents the sample number of the data in yn. 
The peak threshold of the valid waveform in yn is 
denoted as m in the check process, and the value 
of m is calculated using Equation (9):

(9)

Meanwhile, due to the difference between the 
amplitudes of hn

PPG and the PPG signal in the 
collected signal, the valid wave peaks in the 

cross-correlation signal cannot satisfy absolute 
symmetry. Consequently, in this study, the wave 
peaks satisfying Equation (10) in yn are approxi-
mated to be symmetrical.

(10) 

In Equation (10), θ denotes the sequence num-
ber of the signal sample point and q signifies the 
empirical threshold, which is calculated by the 
waveform analysis of the acquired signal and the 
cross-correlation signal. In this study, the value 
of q is 0.0016 mV. Therefore, if the sample yn(l) 
in yn is a valid peak point, yn(l) should satisfy 
Equation (11):

(11)

In Figure 3, δ is a valid peak count parameter, 
and the value of δ is updated every time a valid 
peak is detected in yn. Besides, φ represents the 
number of valid peaks that should theoretically 
be included in yn if the current xn is a valid signal 
segment. The value of φ can be determined using 
Equation (12):

	 φ = 2000 / ( fc / fs)	 (12)

Therefore, considering the loss of signal period 
caused by interception of the data segment, when 
the current data segment xn with a length of 2,000 
samples is a valid signal segment, the current δ 
should satisfy Equation (13):

	 φ – 2 ≤ δ ≤ φ + 2	 (13)

After completing the count of valid peaks in yn, 
the process checks whether δ satisfies Equation 
(13). If it is satisfied, the corresponding xn is de-
termined to be a valid data segment. Otherwise, 
xn is determined to be invalid and cannot be used 
for blood glucose detection so it is eliminated, 
and the next data segment is intercepted for 
checking.

The signal xn passing the validity check con-
tains some slight disturbances such as power 
frequency interference, EMG interference, and 
random noise. Signal filtering can be accom-

Figure 3. Signal validity check process.
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plished using an 8th-order Butterworth filter. 
Figure 2E shows a partial waveform of the PPG 
signal collected from the radial artery after fil-
tering. It can be seen that the filtered signal has 
a complete shape, no evident noise interference, 
and clear waveform characteristics. Therefore, 
it can be used to establish a non-invasive blood 
glucose detection model.

Non-Invasive Blood Glucose Detection 
Feature Parameter Extraction and 
Detection Model Establishment

In this study, the data segments xn, which 
passed the validity check and filtering process, 
were used as samples for the extraction of fea-
ture parameters. When extracting parameters, 
the data segment is initially divided into multiple 
data windows. The data windows are denoted as 
wτ, where τ represents the data window sequence 
number. Each wτ is 200 sample points in length 
and contains 4-6 pulse beats in about 5 seconds, 
which is smaller than the human respiratory cy-
cle and can reduce the interference of respiratory 
action and other physiological activities17. The ad-
jacent windows are designed to have a 50% data 
overlap, so a 2,000-point data set can be divided 
into 19 windows. The wτ is used as the minimum 
unit for signal feature parameter extraction cal-
culations.

The PPG signal contains rich amounts of in-
formation. Therefore, for the model in this study, 
we selected an assortment of parameters that are 
more typical and have a higher correlation with 
blood glucose as the feature parameters.

The spectroscopic entropy H is a common 
characteristic value for quantitative spectral anal-
ysis and represents the entropy value of a pure 
substance18. To calculate H in terms of wτ, the 
frequency spectrum Wτ is first obtained using the 
fast Fourier transform of wτ. Next, Pτ

W is obtained 
by normalizing Wτ so the spectroscopic entropy 
Hτ

w(k) on wτ can be expressed by Equation (14)10:

	 Hτ w (k) = Pτ W (k) log (Pτ W (k))	 (14)

The H value of the data segment can be cal-
culated by superimposing Hτ

w(k). Besides, the 
mean Hμ, variance Hσ, quadratic spacing Hiqr, 
and skewness Hskew of H on the data segment 
are used as the components of the model input 
matrix.

In diabetic patients, blood pressure and blood 
glucose have a direct correlation. Moreover, the 
spectral energy logarithm feature E of the PPG 

signal is closely related to the respiratory rate 
and can indirectly reflect the blood pressure lev-
el. Therefore, E is used as a feature parameter 
of the model. Eτ, the spectral energy logarithm 
feature on wτ, can be expressed using Equation 
(15)19:

(15)

In the data segment, E is obtained by the su-
perposition of Eτ, and the statistical values Eσ and 
Eiqr of E can be used as components of the model 
input matrix.

The pulse wave transmission time T is relat-
ed to the pulse wave transmission velocity, and 
there is also a correlation between the pulse 
wave transmission velocity and arterial blood 
pressure20. Additionally, because the blood pres-
sure of diabetic patients is closely related to 
blood glucose, T can also be used as a feature 
parameter of the model. The pulse wave trans-
mission time on wτ can be obtained by calculat-
ing the length of each cycle of the PPG signal in 
wτ. The mean value Tμ and the variance Tδ of the 
pulse wave transmission time in each wτ of the 
data segment are used in the composition of the 
model input.

As a measure of the oxygen content in the 
blood, blood oxygen saturation (SpO2) is an 
important parameter of the human respiratory 
system. When abnormal blood glucose levels 
affect the respiratory function, it leads to a lower 
SpO2 value9, so SpO2 can be used as a feature 
parameter of the model. The calculation of SpO2 
of the tested sample can be expressed by Equa-
tion (16):

SpO2 k1 +  k2 (IR / IIR) + k3 (IR / IIR)
2

(16)

In Equation (16), IR and IIR respectively rep-
resent the reflected light intensity of red light 
and near-infrared light collected by the system. 
They can be obtained by reading the LEDVA 
and ALED-VAL registers of AFE4400, where k1, 
k2, and k3 represent empirical scaling constants. 
Besides, SpO2 is the last component of the model 
input.

By combining the above parameters, two 
non-invasive blood glucose detection models 
were established based on either the bootstrap 
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aggregation algorithm or the random forests al-
gorithm. The model input matrix Q can be ex-
pressed by Equation (17):

(17)

In Equation (17), i denotes the sample number.

Results

Blood Glucose Prediction Results
To verify the correctness and accuracy of the 

signal validity check process and the blood glucose 
detection method, we enlisted 40 volunteers aged 
20-60 years old for data collection and testing. 
During data collection, the volunteers maintained 
even breathing, kept calm, relaxed their arms, and 
opened their palms naturally. The PPG data was 
collected from the radial artery of the volunteers’ 
wrists, and an invasive blood glucose meter was 
used also to detect the true blood glucose value. 
Finally, 107 sets of data that passed the validity 
check were obtained. Then, the collected data 
was filtered, and the feature parameters extract-

ed. Model training was performed based on the 
bootstrap aggregation algorithm and the random 
forests algorithm, respectively. After training, we 
obtained two non-invasive blood glucose detection 
models with specific accuracy, which were used 
to determine blood glucose prediction values. The 
curves of the blood glucose prediction values of 
the two algorithm models and the true values are 
presented in Figure 4A and 4B. 

Error Analysis of Blood 
Glucose Prediction

Figure 4A and 4B indicates that the blood 
glucose prediction models based on the two al-
gorithms have better prediction accuracy in the 
middle range of blood glucose values. The rela-
tive error curves of the prediction results of the 
two models are displayed in Figure 4C, which 
shows that the relative error of the random forests 
algorithm model is always less than ±20%. These 
results are more accurate than the bootstrap ag-
gregation algorithm model.

The correlation coefficient and mean square 
error (MSE) of the prediction results of the two 
algorithm models are shown in Table II. The 
correlation coefficient and MSE of the random 

Figure 4. Blood glucose prediction results analysis. A, blood glucose prediction results based on the bootstrap aggregation 
algorithm model; B, blood glucose prediction results based on the random forests algorithm; C, relative errors of the predicted 
values of the two models; D, Clarke Error Grid Analysis of predicted blood glucose values.
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forests model results are better than those of the 
bootstrap aggregation model.

To further compare the accuracy of the two 
models, we introduced the Clarke Error Grid 
Analysis21 to analyze the blood glucose prediction 
values of the algorithms. The Clarke Error Grid 
Analysis was developed in 1987 and is an analyti-
cal tool specially used for evaluating the accuracy 
of blood glucose detection values.

The Clarke Error Grid Analysis establishes a 
two-dimensional scatter plot using the true blood 
glucose value and the blood glucose detection value 
as the horizontal and vertical coordinates, respec-
tively. This coordinate system is divided into five 
distinct regions: A, B, C, D, and E. Scattered points 
in area A indicate that the absolute percentage error 
between the blood glucose detection value and the 
true value does not exceed 20%, thereby meeting 
clinical requirements. The points in zone B suggest 
that there is an obvious deviation between the blood 
glucose detection value and the real value. It does 
not meet clinical standards but does not lead to 
misdiagnosis. In region C, the error is too large and 
there is no reference value. Zone D is a dangerous 
error area, and the data in this area may lead to 
misdiagnosis. Finally, E is the complete error area, 
where the blood glucose detection value does not 
correlate at all with the true value. The Clarke Error 
Grid Analysis results of the predicted values of the 
two algorithm models are shown in Figure 4D.

Figure 4D indicates that for the random forest’s 
algorithm model, 99% of the sample points in the 
blood glucose prediction value fall within area 
A. In contrast, 97% of the sample points for the 
bootstrap aggregation algorithm are in area A. 
Therefore, based on the Clarke Error Grid Anal-
ysis results, the accuracy of the prediction model 
of the random forests algorithm is better than that 
of the bootstrap aggregation model.

Discussion

Analysis of the experimental results shows 
that there is a correlation between the feature pa-
rameters selected in this study and blood glucose 

value. Besides, the signal validity check process 
and blood glucose detection method are also 
correct. The relative error, correlation coefficient, 
MSE, and Clarke Error Grid Analysis results of 
the blood glucose prediction values all show that 
the detection model based on the random forests 
algorithm has superior accuracy. Therefore, it is 
more suitable for blood glucose detection.

Conclusions

The main research focus of this paper is the va-
lidity check of PPG signals and the non-invasive de-
tection of blood glucose based on machine learning.

In this study, a reflective PPG signal acquisition 
device was first designed based on photoplethys-
mography. Using the radial artery of the wrist as 
the acquisition position, a primary PPG signal was 
obtained. Meanwhile, considering the influence of 
possible excessive waveform disturbance on the 
accuracy of blood glucose detection, we proposed 
a PPG signal validity check process based on 
correlation operations to screen out disturbance 
from the PPG signal. After completing the validity 
check and filtering the PPG signal, we established 
two non-invasive blood glucose detection models 
based on the bootstrap aggregation algorithm and 
the random forests algorithm, respectively. Then, 
we selected certain variables that were highly cor-
related with blood glucose as the input vector of 
the blood glucose detection model. These variables 
included spectral entropy features, spectral log-
arithmic features, pulse wave transmission time, 
and SpO2. An analysis of experimental results 
shows that the non-invasive blood glucose detec-
tion model based on the random forests algorithm 
has higher accuracy. More specifically, the cor-
relation coefficient of the obtained blood glucose 
prediction set is 0.972, the MSE is 0.257, the 
relative error is less than ±20%, and 99% of the 
sample points in the Clarke Error Grid Analysis 
are in zone A. The blood glucose prediction results 
meet the relevant national standards22 and also the 
requirements for clinical accuracy.

The PPG signal has strong variability and con-
tains rich information. Therefore, the next step of 
this research is to increase the input dimension 
of the blood glucose detection model and select 
more PPG feature parameters as the inputs of the 
model. Additionally, the amount of data collected 
for people with various physical conditions will 
be increased, and the relevance and overall accu-
racy of the model will be enhanced.

Table II. Correlation coefficient and MSE of algorithm model.

	 Model	 Correlation	
	 algorithm	 coefficient	 MSE

Random forests	 0.972	 0.257
Bootstrap aggregation	 0.924	 0.474
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