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Abstract. – OBJECTIVE: Drug-target rela-
tionships provide the basis for network-based 
polypharmacology, and target deconvolution is 
a key step in phenotypic-screening based drug 
discovery. Due to the complexity of the mamma-
lian proteomics and the often-limited affinity of 
the lead compound, it is challenging to identify 
the drug targets, especially when the goal is to 
identify all targets. This paper attempts to pro-
vide a brief and comprehensive introduction to 
the various methods in chemical proteomics for 
target deconvolution by categorizing them in-
to two groups: the biochemical enrichment and 
the proteomics-screening methods. Moreover, 
a brief introduction of related Mass Spectrom-
etry techniques is also provided, together with 
recent progress.

MATERIALS AND METHODS: The data for 
this review were queried from Web of Science 
and PubMed, the keywords used were Drug tar-
gets, Target deconvolution, and Chemical Pro-
teomics. A total of over 500 relevant articles, 
with a time limit from 1953 to 2022, were identi-
fied according to search strategy. Duplicate re-
cords and review articles were excluded by their 
titles and abstracts. Finally, we found about 120 
articles matching our inclusion criteria, which 
covered representative research and reviews of 
various target discovery methods.

RESULTS: Existing target discovery methods 
can be grouped into either biochemical en-
richment or the proteomics-screening methods, 
with the recent emergence of a hybrid method 
combining these two such as lysine reactivity 
profiling. The advantage of the biochemical en-
richment method is the ease of operation and 
the comprehensive target coverage. However, 
most biochemical enrichment methods require 
a high-affinity binding of the drug to the target 
proteins and cannot differentiate direct/indirect 
targets. The proteomics-screening methods do 
not require drug modification but have limited 
protein coverage, and most of them cannot dif-
ferentiate direct/indirect targets. 

CONCLUSIONS: Although existing target dis-
covery methods have greatly facilitated phar-
macological research, each of these methods 
has advantages and disadvantages. New strat-

egies/methods are needed to further improve 
both the coverage of the proteosome and the 
specificity.
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volution, Biochemical enrichment, Proteomics-screen-
ing, Mass spectrometry.

Introduction

More than 200 years ago, Sertürner1 success-
fully extracted morphine from poppies, opening 
a new era of new drug discovery from plants. 
Currently, there are two main strategies for dis-
covering small molecule drugs: target-based drug 
discovery and phenotypic-screening based drug 
discovery2. Target-based drug discoveries firstly 
identify a protein target or a group of targets crit-
ical for etiology, then screen compound libraries 
for hits. Phenotypic-screening based drug discov-
eries firstly screen compound libraries for hits that 
induce certain phenotypes, then identify the drug 
targets and further optimize the hits3-5. Historically 
most first-in-class drugs are discovered through 
phenotypic-screening6, while the target-based 
drug discovery pathway has been rising along with 
a deeper understanding of disease etiology. With 
the development of multi-omics technologies, phe-
notypic-screening has been re-surging7. 

Drug-target relationships provide essential in-
formation for both phenotypic-screening based 
drug discovery, and the construction of pharma-
cology networks. Moreover, the combination of 
phenotypic screening with network pharmacolo-
gy provides a viable option for discovering drugs 
with multiple targets, which could be advanta-
geous for treating diseases with complex etiolo-
gy8. Finally, the molecular action mechanism of 
some clinical drugs remains unknown9, and the 
discoveries of the drug targets will pave the way 
for drug repurposing10-12.
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A variety of methods have been developed 
for target discovery, including but not limited to 
chemical proteomics, CRISPR/RNAi libraries, 
other “omics” technologies, and computational 
predictions, or the combinations of them, for 
example, network pharmacology and molecular 
docking are helpful in exploring the effective 
components and mechanisms of traditional Chi-
nese medicine13,14. The main goal of this paper 
is to give a brief but relatively comprehensive 
review of chemical proteomics methods. Chem-
ical proteomics target finding methods can be 
classified into two categories: one is a biochem-
ical enrichment strategy, i.e., firstly enrich the 
protein targets using drug-affinity capture, then 
identify the enriched proteins by MS; the other is 
a proteomics screening strategy, i.e., firstly sub-
ject proteosome samples to denaturing/digestion 
conditions with/without the drugs, then identify 
the protein targets based on stability changes 
induced by the drug via proteosome analyses. Re-
views have been published on chemical proteom-
ics for target identifications15-17. This paper briefly 
summarized these two categories of methods, 
emphasizing the method comparisons and recent 
developments, followed by a brief introduction to 
MS techniques involved.

Enrich Drug Targets Using Probes
This strategy uses a drug-based probe to en-

rich the protein targets, and a typical process is 
composed of the following steps: connecting the 
drug to a tag to form a probe, probe binding to 
the protein targets, “fishing” out the drug-tar-
get complexes using the tag and determine the 
protein targets identities by MS18. Chen et al19 
published a recent review on this path. For this 
strategy to work well, probes ideally shall have 
a high affinity to the protein targets, which often 
is not the case with the un-optimized lead com-
pounds, so strategies have been improved to solve 
this problem.

Direct Enrichment
An early strategy directly fixes drugs to sol-

id carriers (usually agarose or magnetic beads) 
for affinity chromatography20-22 (Figure 1). The 
advantage of this method is the ease of use; 
however, protein target binding could be com-
promised due to the steric hindrance created by 
the anchoring to the solid carrier23. Furthermore, 
non-specific bindings, either to the probe or to the 
beads are inevitable, which requires a drug with 
sufficient affinity24-26. With the emergence of new 

methods, this method is less applied, and new 
research along this path is focused on improving 
solid-phase materials, such as using nanoparticle 
Fe3O4 as a carrier27. In addition, there is a Unique 
Polymer Technology (UPT) method that uses 
weak interactions to adsorb small molecules on 
polymers, and then uses polymers to catch the 
protein targets28. 

Enrichment With a Tag
To solve the steric hindrance introduced by 

the first method, a “tag” for later enrichment is 
added to the drug by covalent attachment via a 
linker (Figure 1). Biotin is often adopted as the 
tag, together with a solid carrier coated with 
streptavidin for enrichment29. The advantage of 
this method over the first one is that it allows 
the drug to contact the sample more completely 
and has been successfully applied to identify the 
protein targets of withaferin A, adenanthin, and 
berberine30-32. 

However, this method still requires a drug with 
high affinity. When the affinity is not sufficient, 
choosing the strength of the washes after the pro-

Figure 1. Enrichment of protein targets by drug-based af-
finity chromatography. The drug is directly immobilized 
on a solid phase, then incubated with the protein lysate to 
capture the targets (left); A probe of the drug and a biotin 
tag mixed with the protein lysate, and the target proteins 
enriched by biotin-streptavidin (middle); A probe of the 
drug and an alkyne tag mixed with the protein lysate, and 
the target proteins enriched via click chemistry (right). The 
enriched target proteins are identified by sodium dodecyl 
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 
and LC-MS/MS analysis.



Z.-C. Dong, Y. Wang, F. Yang, F. Wan

6016

tein-probe binding becomes a catch-22 scenario: 
less stringent washes could lead to the identifi-
cation of non-specific proteins as targets, while 
stringent washes could lead to the loss of the 
target proteins. Moreover, the design of the linker 
between biotin and the drug might need optimi-
zation: the linker length shall be long enough to 
prevent steric repulsion, while it does not bind to 
proteins nor change the probe solubility33-37. 

Since biotin could still create steric hindrance 
and reduce the activity of the drug, smaller 
groups like the alkyne groups for click chemistry 
have been adopted as the tag in the probes38-41 
(Figure 1). After the probes form complexes with 
protein targets, azide-functionalized solid carri-
ers are applied so that click chemistry reaction 
occurs to connect the probes to the solid carriers, 
which are then enriched for identification of the 
protein42,43. Alkyne or azide are smaller in size 
and have less impact on the activity of the drug, 
and the discovery of drug targets is likely to be 
successful44.

It is worth noting that the above strategy still 
requires the drug to have a sufficient affinity to 
the protein targets. The introduction of a covalent 
bond between the protein targets and the drug 
could efficiently stabilize the interaction, hence 
the “enrichment with covalent linkage” strategy 
is developed.

Enrichment with Covalent Linkage
The “enrichment with covalent linkage” strat-

egy enables the formation of a covalent bond be-
tween the probe and protein targets. For a subclass 
of the drug targets, the enzymes, there is a well-es-
tablished activity-based protein profiling (ABPP) 
method that uses probes containing electrophilic 
groups to react covalently with enzyme active 
site nucleophiles, which stabilize the drug-target 
interactions45,46. A set of methods has been devel-
oped based on ABPP, including the fluorescence 
polarization (fluopol)-ABPP, isoTOP-ABPP, the 
reductive dimethyl tandem orthogonal proteolysis 
(rdTOP)-ABPP, the quenched near-infrared fluo-
rescent (qNIRF)-ABPP, and the quantitative ac-
id-cleavable (QA)-ABPP, etc. A recent review47 has 
provided a succinct summary of these methods. 

For another subclass of the drug targets, the 
membrane receptors, a method called “GLi-
Co-Click” uses a click reaction between a glycan 
on the target proteins, and a clickable group 
attached to the lead compound, forming a cova-
lent link between the target protein and the lead 
compound48.

A method with wider application scope is the 
photoaffinity labeling technology (PAL), theo-
retically applicable for all protein targets. PAL is 
centered on a photo-affinity probe (PAP)49, which 
is composed of three parts: the drug, the pho-
to-active group, and a tag for later enrichment50,51 
(Figure 2). The photo-active group forms a highly 
reactive intermediate under the irradiation of 
light of a suitable wavelength, which reacts with 
the amino acids of nearby proteins, thereby sta-
bilizing the drug-target interaction52,53. Protein 
enrichment, mass spectrometry, or microscopic 
imaging experiments can be performed to iden-
tify, quantify, or visualize the target protein54-60.

In the early studies, benzophenone was used 
as the photoactive group due to its stability and 
ease of synthesis61. The disadvantage is that 
the steric hindrance is large, and the ultravio-
let irradiation time is long, which may cause 
protein damages62-65. In recent years, the more 
efficient and smaller bisaziridine groups have 
been applied66. In 2016, Li et al67 developed a 
new type of tetrazole-based photo-crosslinking 

Figure 2. The process of enrichment with covalent linkage 
using photoaffinity technology. The Photoaffinity probe is 
composed of the drug, a photo-active group, and a tag for 
enrichment. After the probe binds to the target protein, the 
photo-active group reacts with the protein upon activation 
with the light of a specific wavelength. Then enriched and 
purified by biotin-streptavidin (left) or click chemistry (right), 
depending on the choice of tag. Then target proteins can be 
identified and analyzed by SDS-PAGE and LC-MS/MS.
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agent, which can effectively reduce non-specific 
marks and show excellent photo-crosslinking 
efficiency. However, PAL has its limitations: the 
efficiency of the photoreaction is not very high, 
and some natural products lack suitable sites that 
can be used to introduce tags68; furthermore, the 
photo-active group can react with any protein in 
the vicinity. The success rate of PAL is not high 
enough. Recently a cleavable tag has been added 
to the PAL method for further improvement of 
the success rate69.

Enrichment from Display Libraries
Targets are enriched from display libraries, 

including phage, yeast, and other display librar-
ies with probes (Figure 3). Moreover, a three-hy-
brid system based on the yeast two-hybrid sys-
tem has been developed70,71. There are several 
advantages of using a display library instead 
of cell lysates: (1) Retrieval and identification 
of protein targets are easy; (2) The expression 
level of the displayed peptides will be less vari-
able compared to the whole-cell lysates, where 
there is a bias toward the identification of highly 
expressed proteins as drug targets; (3) Due to 
the limited displayed peptide length, only direct 
targets that bind to the leads will be identified, 
while indirect targets won’t. To take full advan-
tage of the robustness of the display platform, 

Wu et al72 have combined the compounds li-
brary with the phage-displayed proteosome and 
achieved rapid discovery of the leads.  

However, the limited display of sequences also 
means that real targets will be missed in several 
scenarios: the displayed peptides from the protein 
targets could have lost the 3D structure and failed 
to bind to the drug; post-translational modifica-
tions can’t be displayed in phage libraries, etc.

Proteosome Screening Using Stability 
Changes

This group of methods relies on the protein 
stability changes associated with drug binding to 
distinguish the target proteins from the other pro-
teins73,74. A big advantage of these methods is they 
utilize the drug-induced changes in the energetics or 
biophysical properties of proteins and do not require 
any chemical modification of the drug75-77. Three 
aspects of protein stability have been utilized in-
cluding chemical, thermal, and proteolysis stability, 
by subjecting the proteins to chemical denaturant, 
heating, or protease. Methods including Stability 
of Proteins from Rates of Oxidation (SPROX), 
Thermal Proteome Profiling (TPP), Drug Affinity 
Responsive Target Stability (DARTS), Limited Pro-
teolysis (LiP), Chemical denaturation and Protein 
Precipitation (CPP), and Pulse Proteolysis (PP) have 
been reviewed in several papers78,79. Here, we briefly 
introduce these methods, highlighting several re-
cent developments. 

Stability Against Proteolysis 
This aspect of stability has been creatively 

utilized in DARTS80,81 (Figure 4a). DARTS firstly 
digests the protein samples with/without the lead 
compound with non-specific protease, then ana-
lyzes the samples by electrophoresis and MS82,83. 
DARTS has been used for the identification/ver-
ification of a variety of drugs including FK506, 
rapamycin, terpenoid Laurifolioside84, etc.

LC-MS/MS has been adopted to perform gel-
free DARTS. The advantage of DARTS tech-
nology is its simple operation, the experiment 
process does not include washing steps, so it 
applies to low-affinity drugs85-87. Furthermore, 
indirect protein targets are digested, while direct 
targets are identified. However, some proteins in 
cell lysates are resistant to hydrolytic enzymes 
and may interfere with the determination of the 
results88. Moreover, methods utilizing stability 
against proteolysis are not fitful when the binding 
of the drug does not protect the protein targets 
from protease digestion. 

Figure 3. Using display libraries to identify small molecule 
targets. Small molecule probes are co-incubated with phage 
or yeast display libraries for enrichment, then the protein 
targets are identified by the DNA sequences encoding the 
displayed peptides.
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Limited proteolysis (LiP) is similar to DARTS. 
In that protein samples with or without drugs are 
treated with non-specific protease, quenched, and 
the cleaved peptides are measured by LC-MS/
MS89. LiP is different from DARTS in their de-
tection objects: LiP is focused on the detection 
of peptides while DARTS is focused on the de-
tection of proteins90. So, LiP has a peptide-level 
resolution of the ligand-binding sequences. A 
succinct summary of LiP described its advantag-
es and disadvantages91. 

Stability against Chemical Denaturant
This aspect of stability is utilized by subjecting 

the proteosome to a series of chemical denaturant 
concentrations, with or without the drug, and 
measuring the stability of proteins92. Proteosome 
of the drug-treated group is compared to that of 
the non-treated control, to identify the proteins 

with altered stability curves. These are essential-
ly chemical denaturant-induced unfolding exper-
iments where the folded and unfolded proteins 
are measured. 

SPROX firstly subject proteins with or with-
out the drug to a series of chemical denaturant 
concentrations to cause protein unfolding and the 
exposure of buried methionine, then uses H2O2 
to oxidize the methionine, and quantified the 
oxidized or the non-oxidized methionine-con-
taining peptides by digestion and MS93 (Figure 
4b). When drug binding protects the target pro-
teins from the chemical denaturant, the methi-
onine-peptide oxidation rate is reduced, and the 
oxidized /non-oxidized ratio changes. The de-
tection of methionine-peptide with conventional 
bottom-up shotgun proteomics platforms, such 
as LC-MS/MS has limited proteosome coverage, 
probably because methionine is the second rarest 

Figure 4. Proteomic screening strategies for target identification based on protein stability changes. a, DARTS firstly digests 
the proteins samples with/without the lead compound with non-specific protease, then analyzes the samples by electrophoresis 
and MS. b, SPROX firstly subjects proteins with or without the drug to a series of chemical denaturant concentrations to 
cause protein unfolding and the exposure of buried methionine, then use H2O2 to oxidized the methionine, and quantified 
the oxidized or the non-oxidized methionine-containing peptides by digestion and MS. c, CETSA. Protein lysates samples 
are subject to a set of heat denaturation at different temperatures, with/without drugs. Then the samples are centrifuged, the 
proteins in the solution analyzed by Western blot, and the drug targets identified by their shifted denaturation curves.
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amino acid. Alternatively, Stable Isotope Label-
ing by Amino Acids in Cell Culture (SILAC) 
is adopted to expand the proteosome coverage 
(SILAC-SPROX)94.

Both CPP and PP share with SPROX similar 
denaturant treatment schemes. After the dena-
turation, CPP dilutes and centrifuges the treated 
samples, then quantifies the soluble or precipi-
tated proteins by MS95. PP adds additional pro-
teolysis treatment and measures the intact or 
cleaved peptides after chemical denaturation. A 
comparison of these methods reveals that PP has 
a similar proteosome coverage as SPROX, while 
CPP provides affinity estimation (Kd) and better 
proteosome coverage.

Recently Zhang et al96 have developed a pro-
teosome screening method named “solvent-in-
duced protein precipitation, SIP” that measures 
protein stability against chemical denaturants 
(organic solvents). SIP subject the drug-treated 
or untreated proteosomes to a mixture of organic 
solvent, then detect the non-denatured proteins 
in the solution97. SIP is further combined with 
quantitative proteosome technology and area un-
der the curve analysis to improve the proteosome 
coverage. 

Thermal Stability
The binding of a drug may increase or de-

crease protein targets’ thermal stability. Marti-
nez et al98 utilized this property and developed 
the CETSA technology (Figure 4c). Protein ly-
sates samples are subject to a set of heat dena-
turation at different temperatures, with/without 
drugs. Then, the samples are centrifuged, the 
proteins in the solution analyzed by Western 
blot, and the drug targets identified by their 
shifted denaturation curves. The throughput of 
the original CETSA is low, then the proteom-
ics techniques have been combined with CET-
SA, including 2D gel electrophoresis99, isobar-
ic tandem mass tag (TMT)-based quantitative 
proteomics100, etc. Thermal Proteome Profiling 
(TPP) is the combination of CETSA with proteo-
some analysis, enabling high-throughput screen-
ing of target proteins. Reviews on TPP101,102 and 
high throughput CETSA103 provide more details. 
As a successful example of multiple-target iden-
tification, Savitski et al100 have used TPP to 
identify more than 50 Staurosporine targets100. 
Another example of CETSA combined with 
“one-pot” approach is the determination of the 
effects of the binding of methotrexate to dihy-
drofolate reductase104.

The CETSA/TPP methods have a similar or 
slightly larger proteosome coverage (5000-8000) 
compared to LiP (5000-6000), while both are 
larger than SPROX or PP (~1000)79. Due to the 
relative ease of operation and larger proteosome 
coverage, TPP has been gaining popularity in 
target identification. It is worth noting that larger 
proteosome coverage does not necessarily mean 
better target identification. A direct comparison 
of TPP and SPROX using a one-pot 2D platform 
has found that although TPP coverage is ~1.5 fold 
of SPROX, SPROX offers protein domain-level 
information, identifies comparable numbers of 
kinase hits, has a higher signal (R-value), and 
requires ~3× less MS time105.

One disadvantage of CETSA/TPP though, is 
that indirect targets are identified along with di-
rect targets, due to a phenomenon called thermal 
proximity coaggregation106,107. Although some-
times these indirect targets provide clues for 
pinpointing the direct targets, in many cases, 
they make it harder to discern the direct tar-
gets. In contrast, DARTS or LiP can discern the 
direct target more easily, and LIP can provide 
domain-level information108. Furthermore, reg-
ular CETSA/TPP requires the protein targets to 
be soluble. Insoluble membrane proteins can be 
studied using other methods such as PP or by 
adding non-ionic detergent to increase the solu-
bility109,110.

Drugs themselves may also affect proteins’ 
solubility. Sridharan et al111 have used multi-
plexed MS to quantify the soluble and insolu-
ble populations of individual proteins to assess 
ATP’s effect on solubility, a strategy they dubbed 
“Solubility Proteome Profiling (SPP)”. SPP has 
been combined with TPP for the identification of 
ATP-binding proteins.

Separation and Proteomics Techniques
For biochemical enrichment methods, usu-

ally after gel separation, both bottom-up and 
top-down MS can be applied to analyze the 
enriched samples. For proteosome screening 
methods, three stable isotope-labeling techniques 
have been applied, in combination with various 
stability-changing strategies mentioned above. A 
review devoted to drug target finding related MS 
techniques provided the details110. 

When using the enrichment strategy, 1D or 
2D electrophoresis is often used to separate the 
enriched proteins, then the interested portion 
(usually judged by comparing to a control group), 
will be cut out and analyzed by MS. Electropho-
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resis is also combined with some stability-based 
target identification strategies such as DARTS or 
CETSA.

Without the gel, the bottom-up proteomics 
technologies like LC-MS/MS are applied most 
widely to identify the enriched proteins, by firstly 
digesting, then identifying the peptides. Top-
down approaches are also adopted in certain cas-
es, for example in the DARTS method to detect 
the whole proteins instead of the peptides. 

To better compare the probe-mediated pull-
down to the relevant control samples, stable iso-
tope labeling technologies have been adopted. 
Early studies used isotope-coded affinity tag 
(ICAT) technology112,113. Later on, isobaric tags 
for relative and absolute quantification (iTRAQ) 
have been adopted to compare the probe-mediat-
ed pulldown without or with different concentra-
tions of free lead as competitors114, which enables 
the estimation of the binding parameters. 

The combination of the SILAC with pulldown 
assays in the presence of free drug competition has 
proved to be a useful target finding method (Figure 
5). To quantify the kinome changes during the cell 
cycle, Daub et al115 applied either heavy or light 
stably isotope-labeled amino acid in different cell 

cycle stages, then captured kinases using probes 
containing multiple unspecific kinases inhibitors 
and compared the kinome of different stages. 
Although the purpose of this study was not to 
identify drug targets, it provided an early example 
of combining SILAC and drug affinity chromatog-
raphy. Ong et al116 collected heavy or light stably 
isotope-labeled cell culture proteins, incubating 
one of them with probes only, another with probes 
in presence of free drugs. The protein targets in the 
pulldown mixture will be reduced with free drug 
competition, while the non-specific binders remain 
unchanged. However, the indirect protein targets 
share a similar pattern as the direct ones in this 
assay and will be identified, too. SILAC technolo-
gy has also been combined with SPROX and PP117.

The adoption of multiplex TMTpro labeling tech-
nology has facilitated the detection of multiple sam-
ples in “one-pot” and has efficiently reduced the 
MS time required118. The one-pot method has been 
plugged into various proteosome screening methods 
including CETSA, CPP, PP, and SPROX119.

A Hybrid Method- Lysine 
Reactivity Profiling

Recently lysine reactivity profiling method has 
been invented and adopted in probing drug-target 
interaction120-122 and target identification123. This 
method is a hybrid of the proteosome screening 
and the enrichment method. A probe containing 
both the drug and a lysine reactive group has been 
designed and synthesized, for the enrichment of 
the protein targets, and simultaneous detection of 
the specific lysine reactivity at the drug-binding 
domains, via coupling to MS. In searching for 
targets of staurosporine, this method’s sensitivity 
is found to be comparable to LiP combined with 
machine learning (LiP-quant) and TPP123.

Discussion

Current protein target identification strategies 
can be grouped into two major categories based 
on their principles: the biochemical enrichment 
path and the proteosome screening path. To suc-
cessfully implement the probe enrichment meth-
ods, the design of the probe is critical, which 
sometimes requires prior structure-activity re-
lationship (SAR) information about the drug. 
To successfully fulfill the proteosome screening 
methods, it is assumed that drug binding will 
incur certain stability changes. Some proteosome 
screening methods have better proteosome cov-

Figure 5. Flowchart of proteomics analysis using SILAC for 
target deconvolution. Cells are cultured with light or heavy 
isotope-labeled amino acids, proteomic samples collected, 
incubated with free small molecules or small molecule probes. 
Then proteins are analyzed by Electrophoresis and MS.
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erage than others79, yet none of them have full 
coverage. A study that directly compared CET-
SA, CPP, PP, and SPROX has shown that differ-
ent methods provide complementary information, 
so to catch as many drug targets as possible, a 
combination of methods is recommended120. A 
combination of different techniques has been suc-
cessfully adopted in several cases, for example, 
TPP combined with SPP and TPP combined with 
SPROX124.  

Conclusions

This article summarizes two main strategies 
for drug target discovery: biochemical enrich-
ment and proteosome screening. Numerous 
studies have shown that both strategies have 
been widely adopted for target development and 
achieved remarkable results. However, they still 
suffer from over-reliance on affinity, limited pro-
tein coverage, and false positives/false negatives 
to overcome. This field is becoming a more 
urgent need with the development of AI drug 
research, and more innovations in this field are 
expected. For enrichment technologies, bio-or-
thogonal reactions could perform better than the 
PAL, if a universal clickable group can be found 
on protein targets. Such clickable groups could be 
inserted via post-translational modification, for 
example, ubiquitination.  
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