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Abstract. – OBJECTIVE: This mini-review 
aims to discuss research works about hepara-
nase published in 2017 and 2018 and provide a 
direction for therapy methods targeting hepara-
nase.

PATIENTS AND METHODS: The relevant da-
ta were searched by using keywords “hepara-
nase”, “function”, “diseases” and “inhibitors” in 
“PubMed, “Web of Science” and “China Knowl-
edge Resource Integrated databases (CNKI)”, 
and a hand-search was done to acquire peer-re-
viewed articles and reports about heparanase.

RESULTS: Except for tumor progression, 
pathological processes including procoagulant 
activities, preeclamptic placentas, inflammation 
and so on are all verified to be associated with 
heparanase activity. Also, these newly-found 
functions are closely connected to certain cel-
lular activities, including epithelial to mesenchy-
mal transition (EMT).

CONCLUSIONS: It could be concluded that 
heparanase would be a potential and valuable 
therapeutic target.
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Introduction

As a component of the extracellular matrix 
(ECM), heparan sulfate (HS) chains have a sig-
nificant metabolic function. They consist of hepa-
ran sulfate proteoglycans (HSPG), which take an 
important part in numerous biological processes, 
including keeping the structural matrix stable, 
forming basement membranes and binding to 
the receptors of various signaling molecules1. A 
large number of biological processes in diseased 
and healthy conditions are associated with HS 
and HSPG. Considering the vital role of HS and 

HSPG, enzymes regulating HS and HSPG should 
also be emphasized. Among the regulating en-
zymes, heparanase is an outstanding one1. Hepa-
ranase could degrade HS specifically and in this 
way, it could affect a lot of biological processes. 

The distinctive role of heparanase has been 
widely researched and heparanase’s function in 
tumor progression, angiogenesis and many other 
pathological activities have been already verified. 
This mini-review aims to report new findings of 
heparanase’s function in the last two years and 
tries to promote the clinical application of hepara-
nase inhibitors. 

EMT
Epithelial-mesenchymal transition (EMT) 

was a change in cell phenotypes which has been 
demonstrated to have an effect in the process of 
tumorigenicity2. Heparanase has already been 
verified to play a role in fibroblast growth fac-
tor-2-induced EMT, accompanied by syndecan-1. 

In 2017, Masola et al3 demonstrated that in 
mesothelial cell EMT, heparanase also plays a 
central part. Via an in vitro study which em-
ploys several biomolecular strategies, their 
experiment proved that pharmacological inhi-
bition of heparanase could reverse EMT and 
minimize fibrosis. They verified that hepara-
nase inhibitors had become a valuable thera-
peutic method for patients on peritoneal dial-
ysis. Gastric signet-ring cell adenocarcinoma 
(SRCA) is a particular gastric carcinoma that 
has notable fibrosis, fast-speed invasion and al-
so frequent metastasis. Shah et al4 showed that 
in SRCA, heparanase has a close relationship 
with EMT-related fibrosis. Heparanase gene ex-
pression and EMT-related molecular gene ex-
pression are consistent in SRCA tissues. Their 
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study provided a promising therapeutic target 
in the treatment of SRCA.

Procoagulant Activity
The procoagulant activity of heparanase has 

been discussed by Vlodavsky et al5. Their study 
showed that in heparanase-over-expressed trans-
genic mice and leukemia patients, the increase 
of tumor vascularity was correlated with the up-
regulation of heparanase. They presumed that a 
peptide that corresponds to the heparin-binding 
domain exerted the pro-coagulant function of 
heparanase and angiogenic factors were released 
by heparanase from the ECM to induce an angio-
genic response in vivo. 

In 2017, Crispel et al6 identified the heparanase 
procoagulant domain and the peptides were de-
rived from this domain. In the experiment, bleed-
ing time was significantly shortened, and wound 
healing was enhanced by the peptides. 

On the other hand, Bayam et al7 published a 
relevant paper in 2018. They described the au-
to-action of heparanase in a thrombus burden and 
thromboembolism. Their study showed that the 
inhibition function of heparanase’s procoagulant 
domain could be a therapeutic target for tumors 
and sepsis.

However, heparanase’s procoagulant function 
could be affected in several particular situations. 
In 2018, Matan et al8 proved that the procoagulant 
ability of heparanase would decrease during sep-
sis. Moreover, the procoagulant activity of hepa-
ranase would return to normal levels immediately 
once the patient recovered. Although the particu-
lar mechanism of this phenomenon needs further 
exploration, this finding may be of great value in 
predicting severe sepsis risk. 

Protumor

Marker of Poor Prognosis
The protumor function of heparanase has long 

been recognized and has been observed in a va-
riety of human tumors, including tumors of the 
head and neck, bladder, breast, pancreas, cervix, 
colon, ovary, endometrium, thyroid, liver and so 
on1. In 2017, some new findings supplemented this 
theory. 

In the review article of Barbosa et al9, hepa-
ranase’s function in cleaving HS could promote 
the physiopathological process of prostate ECM 
turnover and the progress of prostate cancer. 
Goldberg’s experiment10 in breast carcinoma al-

so verified heparanase’s pro-tumor function. In 
that study, heparanase promotes breast tumor-
igenesis in patients with hyperinsulinemia. In 
the 2017 study of Vornicova et al11, heparanase 
could be an indicator in the early diagnosis of 
breast cancer and help determine the treatment 
type of breast cancer. Sun et al12 demonstrat-
ed that heparanase overexpression suggested 
poor prognosis of breast cancer. Spyrou et al13 
showed that heparanase promotes the aggres-
siveness of pediatric brain tumors. In the paper 
of Barash et al14, both preclinical and clinical 
data showed that heparanase is of great signifi-
cance in mesothelioma progression. 

From this study, we may regard 
heparanase as a therapeutic target 
for patients with cancer

Promotes Tumor Metastasis
In 2018, Yang et al15 showed that heparanase 

plays an important role in mitotic spindle regu-
lation. According to their study, chromosomes 
would become unstable when heparanase lost its 
function on the microtubule organization center 
(MTOC). After that, oncogenesis would develop. 

Wei et al16 suggested that heparanase is able to 
mediate cell adhesion, which contributes to the 
circulating tumor cell (CTC) clusters. CTC would 
also mediate metastasis. 

Putz et al17 were the first to report that heparanase 
plays an important part in the invasion of NK cells 
and promotes the progression of tumors. On the oth-
er hand, it could be indicated that heparanase inhibi-
tors may be able to restrict NK cell infiltration. 

Promotes Tumor Angiogenesis
In 2018, Zechendorf et al18 indicated that hepa-

ranase played a role in septic cardiomyopathy. In 
the study of Lv et al19, heparanase combined with 
IL-17A, contributed to the tumor angiogenesis in 
cervical cancer through the nuclear factor kap-
pa-B (NF-κB) signaling pathway. 

Inflammation

A notable example of heparanase’s pro-inflam-
matory function is the study by García et al[20]. 
In their research, heparanase overexpression was 
detected in the inflammatory condition of kerato-
conic corneas. The role of heparanase in inflam-
mation could also be depicted by Changyaleket et 
al21. Their experiment illustrated that heparanase 
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could mediate the neuroinflammatory response 
in subarachnoid hemorrhage (SAH). SAH-related 
neurological deficits could be promoted by hepara-
nase, leading to early brain injury.

Normal and preeclamptic placentas
Hambruch et al22 indicated that heparanase 

might be involved in bovine placental maturation. 
They showed that heparanase helped to reduce 
fetomaternal adhesion by degrading the matrix, 
thus promoting the post-parturition membrane 
separation. 

Che et al23 observed that heparanase can be a 
potential predictive biomarker for preeclampsia 
at an early stage of pregnancy and represents a 
promising therapeutic target for the treatment of 
preeclampsia. 

Renal Disease

Szymczak et al24 showed an increase in hepara-
nase activity in patients with lupus nephritis and 
membranous nephropathy. Heparanase could be 
a marker of membranous nephropathy and lupus 
nephritis. In the study of Abassi et al25, hepara-
nase was regarded as an important factor in re-
nal injury development and kidney dysfunction 
promotion. The inhibition of heparanase could 
be an effective therapeutic method for acute kid-
ney injury. Masola et al26 also found that hepara-
nase contributed to kidney damage by regulating 
pro-fibrotic factors. 

Viral Infections

Neel et al27 pointed out the role of heparanase 
in viral pathogenesis. They verified that the ex-
pression of heparanase will be upregulated in 
viral infections, including Herpes simplex virus, 
dengue virus, human papillomavirus, respiratory 
syncytial virus, adenovirus, hepatitis C virus, and 
porcine respiratory and reproductive syncytial vi-
rus. They concluded that heparanase played a sig-
nificant role in viral infections.

To better understand heparanase’s role in Her-
pes simplex virus-1 (HSV-1), Agelidis et al28 
demonstrated that heparanase may be the trigger 
for HSV-1 infection and heparanase was upregu-
lated by HSV-1 infection in human corneal epi-
thelial cells. The upregulated heparanase moved 
to the nucleus and promoted viral spread after-
ward. Their findings suggested that heparanase 

could serve as a driver of the viral spread of HSV-
1 infection.

Liver Fibrosis
Secchi et al29 drew the conclusion that hep-

aranase could affect liver fibrosis along with 
macrophages. Their work suggested that inflam-
matory macrophages are significant sources of 
heparanase and heparanase contributes to the 
macrophage-mediated activation of hepatic stel-
late cells. They suggested that heparanase was 
involved in early liver damage. Heparanase-tar-
geting compounds could be promising in liver fi-
brosis treatment.

Nervous System

Xiong et al30 demonstrated that heparanase 
could promote the differentiation of embryonic 
stem (ES) cells into neural lineage cells. In their 
study, heparanase-overexpressed ES cells had a 
more rapid growth rate than normal ES cells. Erk 
and Akt phosphorylation caused by heparanase 
overexpression played an important role. 

Garcia et al31 discovered a relationship between 
heparanase expression and Alzheimer’s Disease 
(AD). They found that in the brain tissue of AD 
patients, heparanase and heparanase-2 could be 
detected in degenerated neurons and core-frag-
mented neuritic plaques. In the work of Chang-
yaleket et al32, the role of heparanase in stroke, 
multiple sclerosis and glioma growth has also 
been clarified. 

Heparanase was also indicated to attenuate 
axon degeneration which was caused by sciat-
ic-nerve-transection by regulating the Schwann 
cell injury response and axon-glia support. This 
finding may lead to a new therapy method33.

Inhibitors of Heparanase

In 2017, Rondanin et al34 investigated an aryl-
amidonaphtalene sulfonate compound with an-
ti-angiogenic and anti-metastatic properties was 
named FCE27266. The results suggested that 
FCE27266 had strong heparanase inhibition ac-
tivity and no cytotoxic effects. These similar abil-
ities were also found in SST0546NA1 (17a, an 
FCE27266 analogue)34.

An experimental demonstration of Cir-
cHIPK3’s inhibition effect was first carried out by 
Li et al35 in 2017. In their paper, the “microRNA 
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sponges” role of CircHIPK3 was described and 
the treatment role of CircHIPK3 in malignant 
bladder carcinoma was evaluated. 

The first study illuminating that aspirin could 
be a therapy target was reported by Dai et al36 in 
2017. Aspirin could prevent cancer metastasis 
and angiogenesis in this way. In 2017, Loka et al37 
conducted a series of computational researches to 
extract HS-heparanase interactions. Afterward, 
they used the interactions as a template to design 
HS-mimicking glycopolymers. Finally, they con-
firmed that a 12-repeating-units glycopolymer 
was the most potent inhibitor that had a strong 
heparanase-binding ability. 

Another heparanase inhibitor was observed 
by Poupard et al38 in 2017. They demonstrated 11 
kDa RD-GS-l-Carrageenan as an effective hep-
aranase inhibitor and a potential anti-angiogenic 
agent. A zinc ionophore called pyrithione was 
found to have an inhibition effect on heparanase 
in the research of Guo et al39 in 2017. Pyrithione 
could restrict the release of the virus by inhibit-
ing heparanase and reducing the replication of the 
virus. Baburajeev et al40 discovered that 1,2,4-tri-
azolo-1,3,4-thiadiazoles could be a promising 
heparanase inhibitor in humans. 

Among the recently discovered heparanase in-
hibitors, arctigenin is a special one that is extract-
ed from the seeds of Arctium lappa L. Lou et al41 
demonstrated that arctigenin could downregulate 
heparanase expression and consequently prevent 
MDA-MB-231 cells’ invasion and migration, even 
though the mechanism remains to be clarified. An-
other inhibitor of heparanase named roneparstat 
was described by Rossini et al42 in 2018. They 
concluded that roneparstat could modulate and en-
hance the microenvironment during anti-lympho-
ma therapy. Particularly, a kind of bionic nanode-
vice (Beijing, China) exploiting heparanase, which 
is tumor cell-selective, showed a good effect in 
combating breast carcinoma. The nanodevice was 
invented by Lang et al43 and provided a promising 
method for treating breast cancer.

Conclusions

Studies have shown that heparanase plays an im-
portant role in tumor development. However, new 
features of heparanase still need to be explored, 
since the mechanisms of heparanase’s functions 
are still not totally clarified. With the discovery of 
heparanase’s new functions, a wider range applica-
tion of heparanase inhibitors in clinical medicine 

would be possible. Considering the role of hepara-
nase in human diseases, the inhibitors of hepara-
nase are promising targets in treatment.
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