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Abstract. – The term “chemobrain” refers to 
the cognitive dysfunction that occurs after che-
motherapy, and it is also known as chemother-
apy-induced cognitive impairment or “chemo-
fog”. The aim of this review is to bring togeth-
er the findings of existing literature on the top-
ic and summarize the current knowledge on the 
potential mechanisms of chemobrain. Accord-
ing to the reviewed studies, the mechanisms by 
which chemotherapy could cause chemobrain 
include disruption of hippocampal cell prolif-
eration and neurogenesis, hormonal changes, 
increased oxidative stress and reactive oxy-
gen species production, chronic increase in in-
flammation, and alterations in synaptic plastici-
ty and long-term potentiation. While the effects 
of inflammation and oxidative stress on neuro-
genesis and their role in chemotherapy-induced 
cognitive impairment have been widely stud-
ied, the chemotherapy-induced cognitive im-
pairment mechanisms that involve mitochon-
drial dysfunction, estrogen dysregulation, and 
increased transglutaminase 2 are still unclear. 
Further studies on these mechanisms are nec-
essary to understand the effects of chemother-
apy at the cellular and molecular level and facil-
itate the development of preventive and thera-
peutic strategies against chemotherapy-associ-
ated cognitive impairment or chemobrain.
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Introduction

Chemotherapy is a standard treatment for can-
cer that has been in use since the early 20th cen-
tury1. The aim of chemotherapy is to reduce the 
cellular proliferation of tumor cells2. According 
to their target in tumor cells, chemotherapeutic 
agents are classified as those that disrupt DNA, 
RNA, or protein biosynthesis3. Additionally, 

based on their mechanism of action and chemi-
cal structure4,5, they are classified as alkylating 
agents, such as cyclophosphamide; methotrexate 
antimetabolites, such as 5-fluorouracil; and an-
thracyclines, such as doxorubicin. In addition, 
hormonal therapy drugs, such as tamoxifen and 
anastrozole, are a class of drugs that regulate 
and prevent cancer cell proliferation by inhibit-
ing hormone receptors6. Chemotherapy is known 
to be effective in cancer treatment, but it is often 
accompanied by adverse effects such as fatigue7, 
loss of appetite, stress, and inflammation8, which 
eventually affect patients’ quality of life9, and can 
even cause cognitive dysfunction10,11. 

The cognitive impairment that occurs as a re-
sult of chemotherapy for cancer is also known as 
chemobrain or chemofog12 and is recognized as 
a complication of chemotherapy for cancer13-15. 
Cognitive impairment is observed in up to 75% 
of patients who have undergone chemotherapy for 
cancer, and it persists after treatment in 17-34% of 
survivors. For example, one study16 showed that 
breast cancer survivors who had received chemo-
therapy performed more poorly on a set of neu-
ropsychological tests than matched healthy con-
trols even 20 years after treatment. Chemobrain 
has been diagnosed since the 1970s; however, this 
condition was not clearly described or character-
ized until the 1990s. Chemobrain affects different 
aspects of memory function, and its symptoms 
include memory loss, inability to concentrate, 
difficulty in processing information, and other 
subtle cognitive changes12,17,18. Various studies19-21 
have shown that chemotherapeutic drugs affect 
the function and structure of the brain, as well 
as alter signaling pathways in neuronal cells. The 
most common areas of the brain that are affected 
by chemotherapy are the frontal lobes and parts 
of the limbic area, particularly the hippocampus. 
With regard to the mechanisms of chemobrain, 
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some chemotherapeutic agents, such as cyclo-
phosphamide, can permeate the blood-brain bar-
rier (BBB) and have a direct neurotoxic effect on 
the brain15,22,23. Others, such as doxorubicin, can-
not permeate the BBB, but might induce chemo-
brain indirectly20,24,25. Although there have been 
several clinical and experimental studies on the 
chemobrain phenomenon, the underlying mech-
anisms and the resulting cognitive problems are 
poorly understood.

In this review, we discuss some recent stud-
ies26-31 that provide insights into the possible 
mechanisms by which chemotherapy could cause 
chemobrain, including the disruption of hippo-
campal cell proliferation and neurogenesis26,27, 
hormonal changes28, increased oxidative stress 
and reactive oxygen species (ROS) production29, 
chronic increase in inflammation30, and alter-
ations in synaptic plasticity and long-term poten-
tiation (LTP)19,31 during and after chemotherapy 
(Figure 1). Through this review, we aim to im-
prove our understanding of the mechanisms un-
derlying chemobrain, as this could help in the de-
velopment of preventive strategies to ameliorate 
the adverse effects of chemotherapy.

Anatomical Basis of Chemobrain
There is evidence to show that chemotherapy 

affects cognitive function via its effect on certain 
areas of the brain. An animal study32 on a mouse 

model found that chemotherapy (along with tu-
mor growth) resulted in considerable reduction in 
the volume of the hippocampus and frontal lobes. 
Accordingly, Inagaki et al29 (2007) showed that in 
breast cancer survivors, one year after chemother-
apy, smaller grey matter volumes were observed 
in the right prefrontal cortex and para-hippocam-
pal gyrus, and smaller white matter volumes were 
observed in the bilateral middle frontal gyri, left 
para-hippocampal gyrus, left precuneus, and right 
cingulate gyrus. Similarly, a study33 on children 
with lymphoblastic leukemia who underwent in-
trathecal and systemic chemotherapy showed that 
the volumes of the bilateral hippocampi, the left 
nucleus accumbens, amygdala, and thalamus were 
significantly smaller after treatment. These chang-
es in brain structure have a corresponding effect 
on the function of the affected areas. For instance, 
prospective longitudinal studies34,35 showed that 
chemotherapy resulted in a decrease in working 
memory-related brain activity in the frontal lobes 
one month after treatment, although the patients 
partially recovered a year later. Further, in patients 
with breast cancer, chemotherapy was found to 
decrease brain activation in regions of the parietal 
lobe that were involved in planning and episodic 
memory 10 years after treatment36. With regard to 
the effects of chemotherapy at the cellular level, 
the chemotherapeutic drugs carmustine, cisplatin, 
and cytosine arabinoside were associated with in-

Figure 1. Mechanisms of chemotherapy-induced cognitive impairment.
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creased cell death and decreased cell division in 
the subventricular zone, in the dentate gyrus of 
the hippocampus, and in the corpus callosum of 
the central nervous system (CNS)37. These effects 
on neurogenesis can cause changes in the neuro-
nal architecture to eventually affect CNS func-
tion. This notion is supported by a study on mice 
which showed that chronic treatment with adria-
mycin and cyclophosphamide altered the neuronal 
architecture in the hippocampus via a significant 
reduction in total dendritic length, ramification, 
and complexity, as well as spine density and mat-
uration in hippocampal neurons38. This finding is 
supported by another study which demonstrated 
loss of dendritic spines and synapses in hippo-
campal neurons even in response to low doses of 
cisplatin in rats39. Another important anatomical 
change induced by chemotherapy is alteration in 
functional connectivity between different areas of 
the brain. For example, breast cancer survivors ap-
peared to have disrupted functional connectivity in 
the frontal, temporal, and striatal brain regions five 
years after chemotherapy40. Additionally, Chen et 
al41 (2017) found decreased functional connectivity 
between the dorsolateral prefrontal cortex and the 
right hippocampus in breast cancer patients treat-
ed with tamoxifen, and Cheng et al42 (2017) found 
a chemotherapy-induced decrease in hippocampal 
functional connectivity between the left hippocam-
pal network and the right parahippocampus, and 
between the right hippocampal network and the 
left temporal pole in breast cancer survivors. All 
these findings indicate that the cognitive effects of 
chemotherapy have a strong anatomical basis that 
could be a starting point for understanding the un-
derlying molecular mechanisms.

 
Chemobrain and Neurogenesis

Adult neurogenesis is an evolutionarily con-
served process in several species, including ro-
dents and humans43. Under normal conditions, 
active adult neurogenesis is primarily limited to 
two brain regions: the subgranular zone of the 
hippocampus and the dentate gyrus, and the sub-
ventricular zone of the lateral ventricles44. Learn-
ing and memory processes enhance neurogenesis 
in these regions, and spatial memory tasks spe-
cifically enhance hippocampal neurogenesis45. 
Oxidative stress causes memory impairment and 
reduces hippocampal neurogenesis46. Important-
ly, chemotherapeutic drugs can also reduce hip-
pocampal neurogenesis and cause cognitive im-
pairment18,47,48, but the underlying mechanisms 
have not been fully elucidated. 

It has been hypothesized that chemotherapeu-
tic drugs that cross the BBB cause a reduction in 
neurogenesis and lead to cognitive impairment27. 
The chemotherapeutic drugs cyclophosphamide, 
methotrexate, and fluorouracil, which can per-
meate the BBB, resulted in a 20% decrease in 
hippocampal cell neurogenesis that was proba-
bly caused by changes in histone modification in 
the hippocampus, that is, an increase in histone 
acetylation and a decrease in histone deacety-
lase activity26. Chemotherapeutic agents that 
cannot cross the BBB, such as paclitaxel and 
doxorubicin, also produce a similar reduction in 
neural cell proliferation and neurogenesis26,27,49. 
However, the mechanism by which chemother-
apeutic drugs that are unable to cross the BBB 
affect cognitive function remains unknown. 
Some studies50,51 have explored the mechanisms 
that are likely to be involved in their effects. For 
example, one study showed that a combination 
of doxorubicin and cyclophosphamide reduced 
the mRNA expression of nicotinic acetylcholine 
receptor50. In addition, a reduction in glutamate 
uptake in the mouse frontal cortex and hippo-
campus and a consequent increase in glutamate 
levels were observed in another study51. Al-
though glutamate plays a major role in regulat-
ing cognitive function, chronic excessive levels 
could lead to neurotoxicity and neurodegenera-
tive disease52,53. Glutamate levels could increase 
as a result of other mechanisms, such as an in-
crease in tumor necrosis factor-α (TNF-α) lev-
els54. Increased TNF-α levels have been reported 
during doxorubicin treatment and could inhibit 
excitatory amino acid transporter 2 (EAAT2) to 
ultimately cause an increase in glutamate levels. 
Thus, this TNF-α/EAAT2/glutamate pathway 
might be involved in the reduction in hippocam-
pal neurogenesis and the resulting chemobrain 
associated with chemotherapeutic agents that 
cannot permeate the BBB.

Another factor that could potentially play a role 
in the mechanism of chemobrain is insulin-like 
growth factor 1 (IGF-1). IGF-1 is a polypeptide 
hormone with a similar structure to insulin. IGF-
1 is primarily synthesized in the liver, and acts as 
a downstream target of growth hormone55. IGF-
1 activates different signaling pathways, such as 
the mitogen-activated protein kinase and phos-
phatidylinositol 3-kinase signaling pathways56,57, 
which are involved in many cellular and physi-
ological processes including differentiation, pro-
liferation, development, survival, apoptosis, and 
cognition58-60. IGF-1 activity is reduced during 
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aging61,62. Serum IGF-1 levels were also found to 
decrease by 10% after chemotherapy for breast 
cancer, but the IGF-1 levels rapidly returned to 
normal63. Additionally, when IGF-1 was admin-
istered in mouse models of chemobrain that were 
treated with cyclophosphamide, fluorouracil, 
doxorubicin, and paclitaxel, hippocampal neuro-
genesis was partially revived. This indicates that 
IGF-1 might have potential for therapeutic appli-
cation in the prevention of chemobrain after che-
motherapy for cancer64.

Chemobrain and Oxidative Stress
Excessive oxidative stress in the brain is one 

of the causes of cognitive impairment65. The for-
mation of ROS and other free radicals during me-
tabolism is an essential and regular process that 
is typically balanced by an endogenous antioxi-
dant system66. However, excessive production of 
free radicals results in oxidative stress, which is 
responsible for oxidative injury of neurons and 
membranes due to lipid peroxidation and eventu-
ally results in cellular damage67.

The US-FDA has approved 132 chemother-
apeutic drugs, of which 56 have the potential to 
induce oxidative stress68. For example, doxorubi-
cin led to excess production of ROS69, which are 
known to be neurotoxic at high concentrations20. 
Accordingly, doxorubicin was also associated 
with cognitive dysfunction24, even though it is 
unable to cross the BBB. Thus, the cognitive im-
pairment associated with doxorubicin is probably 
caused by excessive ROS generation. Further, 
doxorubicin has also been found to reduce neu-
rogenesis, and this effect could be associated with 
excessive ROS generation and increased lipid 
peroxidation that led to neuronal apoptosis and, 
eventually, cognitive dysfunction70.

The N-methyl-d-aspartate (NMDA) receptor 
is a glutamate receptor that is required for syn-
aptic plasticity, learning, and memory. It modu-
lates calcium ion entry into the neuron and the 
subsequent cascade that culminates in increased 
transcription71. Oxidative stress upregulates 
NMDA receptor function and expression on 
the cerebrovascular endothelium, and this caus-
es disruption of the BBB72 and, consequently, 
the passage of neurotoxic compounds into the 
brain73. A pharmacokinetic study74  showed that 
low concentrations of doxorubicin can cross the 
BBB during chemotherapy. However, it is un-
likely to induce apoptosis in the brain at such 
low concentrations. Therefore, the mechanisms 
by which chemotherapy affects the BBB are 

unclear and need to be studied, particularly in 
terms of its direct and indirect effects on the de-
crease in neurogenesis.

Chemobrain and Neuroinflammation
Inflammation is one of the mechanisms un-

derlying cognitive impairment75. Inflammation 
has been associated with neuropathological pro-
cesses related to the development of Alzheimer 
disease and dementia76. Further, inflammation, 
cytokine levels, and cognitive dysfunction are 
closely associated77. Several chemotherapeutic 
drugs can promote inflammation30. For instance, 
cyclophosphamide, which is commonly used to 
treat brain tumors, can cross the BBB and induce 
hippocampal inflammation78, thereby disrupt-
ing hippocampus-dependent memory tasks79. 
Inflammatory cytokines, such as TNF-α, inter-
leukin (IL) 6, and IL-1β, play an important role 
in regulating brain function80, and high levels 
of these cytokines lead to changes in cognitive 
function81-83. In fact, an increase in the levels of 
cytokines has been speculated to be one of the 
causes of chemobrain. Additionally, peripheral 
cytokines can also cross the BBB and induce the 
release of central cytokines that lead to cogni-
tive impairment84,85. For example, doxorubicin 
peripherally induces the production of TNF-α, 
which crosses the BBB, enters the brain, and en-
hances TNF-α release centrally, eventually caus-
ing cognitive impairment20. Further, altered glu-
cose metabolism is observed in the hippocampus 
and brain cortex in diabetes and Alzheimer’s 
disease86,87. Based on this finding, it is specu-
lated that one of the mechanisms of chemobrain 
could be inflammation-induced reduction in glu-
cose metabolism in the hippocampus that leads 
to spatial memory impairment88. 

Acetylcholine (ACh) is a neurotransmitter that 
plays a significant role in the regulation of sev-
eral physiological functions, including synaptic 
plasticity and cognitive function89. Behavioral 
and electrophysiological studies have shown that 
nicotinic acetylcholine receptor stimulation im-
proves memory function in several conditions 
such as Alzheimer disease, stress, and sleep 
deprivation90-92. Nicotine also enhances glutama-
tergic transmission by activating alpha-7 nicotin-
ic receptors in the hippocampus, thereby activat-
ing hippocampal function93,94. Acetylcholine is 
metabolized primarily by enzymatic hydrolysis 
through acetylcholinesterase (AChE)95. The first 
line of treatment for Alzheimer disease includes 
AChE inhibitors, such as donepezil, galantamine, 
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and rivastigmine, which increase ACh levels in 
the brain and thereby slow disease progression96. 
Interestingly, pro-inflammatory cytokines such 
as IL-1β impair cognitive function by increasing 
AChE levels97,98. Based on these findings, one of 
the mechanisms underlying chemobrain could in-
volve inflammation-induced increase in cytokine 
levels that subsequent causes an increase in AChE 
activity. 

Chemobrain and Neuronal Plasticity
Long-term potentiation (LTP) is a considered 

as a measure of the strength of synapse activity, 
which is an indicator of learning and memory for-
mation, and it is defined as a persistent increase 
in the excitatory postsynaptic current following 
stimulation99. The hippocampus is responsible for 
learning and memory consolidation, and these 
processes occur because of changes in the syn-
aptic structure, which are also referred to as syn-
aptic plasticity100. Several studies have examined 
the effects of chemotherapy on LTP19,31. In certain 
types of cancer, however, it is challenging to dis-
tinguish whether memory impairment is caused 
by chemotherapy or is an adverse effect of the 
cancer. 

Several studies have evaluated learning and 
memory at different time points after cyclophos-
phamide treatment31. The Morris water maze, 
T-maze techniques, and novel location recogni-
tion are some of the tests that were used to eval-
uate spatial memory in rodents22,31. In one such 
study, LTP was used to measure synaptic plas-
ticity and strength31 with the Schaffer collateral 
pathway during cyclophosphamide treatment, and 
after 8 and 53 weeks of recovery in rats. The find-
ings showed that LTP was not induced during cy-
clophosphamide treatment, and the LTP response 
was higher than that in the controls after 8 and 
53 weeks of recovery31. Alhowail et al19 (2019) 
evaluated the effect of doxorubicin treatment on 
brain slices by using a low concentration of doxo-
rubicin that is similar to the concentration which 
reaches the brain under in vivo conditions, and 
they showed that doxorubicin reduces LTP in a 
dose-dependent manner. Thus, one of the mech-
anisms underlying chemobrain is probably a re-
duction in synaptic plasticity.

Chemobrain and Mitochondrial Function
Mitochondria are present in the cytoplasm 

of most eukaryotic cells, including neurons101, 
and play a vital role in energy production, cal-
cium regulation, cell metabolism, and synaptic 

transmission101-103. Mitochondria contain their 
own genome in the form of mitochondrial DNA, 
which encodes important subunits of the respi-
ratory chain, where electrons are combined with 
oxygen to enable the flow of energy through the 
mitochondria104. The energy produced by mito-
chondria is stored in the form of the small mol-
ecule adenosine triphosphate or ATP, which is 
used in endocytosis, ion transport, and biosyn-
thesis of ROS and neurotransmitters105,106. Mito-
chondria also respond directly to extracellular 
signaling: for example, estrogen and its recep-
tors modulate ROS and calcium levels via mi-
tochondria107. Mitochondrial dysfunction is as-
sociated with several diseases and aging108, and 
can cause cognitive impairment, particularly in 
hippocampus-dependent tasks such as learning 
and memory formation109. Interestingly, several 
chemotherapeutic agents, such as doxorubicin, 
cisplatin, and cyclophosphamide, can induce 
cognitive impairment via mitochondrial dys-
function110-112. Other chemotherapeutic agents, 
such as trastuzumab, sunitinib, and methotrex-
ate, have been found to induce mitochondrial 
dysfunction in the kidney113, there have been 
very few studies on the association between 
these drugs and the onset of chemobrain.

Chemobrain and Transglutaminase 2
Transglutaminase 2 (TG2) is the most widely 

distributed and abundantly expressed member 
of the transglutaminase family of enzymes114, 
which comprises a group of intracellular and ex-
tracellular proteins that catalyze Ca2+-dependent 
posttranslational modification of proteins115. TG2 
regulates several functions such as cell adhesion; 
protein disulfide isomerase, kinase, and scaffold 
activities; and cell growth, differentiation, and 
apoptosis116. TG2 also plays an important role in 
the regulation of cognitive function and neuro-
degenerative disease progression116,117. Increase 
in TG2 activity in the brain could cause memory 
impairment118. The association between chemo-
therapy, cognitive function, and TG2 activity is 
unclear. However, some chemotherapeutic agents, 
such as doxorubicin, can cause an increase in 
TG2 activity119 and could potentially cause mem-
ory impairment. Further studies are required to 
clarify the association between chemotherapy, 
TG2 activity, and cognitive function. 

Chemobrain and Estrogen
Estrogen is an important steroidal sex hormone 

involved in many signaling pathways in the hu-
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man body120. The biosynthesis of estrogen is me-
diated by aromatase, which converts androgen 
to estrogen121. Estrogen is released by the adre-
nal cortex, which is stimulated by the hypothal-
amus. The hypothalamus releases adrenocorti-
cotropic hormone, which stimulates the adrenal 
cortex, causing the biosynthesis and release of 
estrogen122. Estrogen binds to estrogen receptors, 
which belong to the steroid hormone superfamily 
of nuclear receptors, and have α and β isoforms123. 
Estrogen has shown neuroprotective effects in the 
central nervous system against injuries, such as 
traumatic brain injury and ischemic brain inju-
ry, in rodent models124,125. Additionally, estrogen 
plays an important role in cognitive function126. 
Estrogen receptors are found in many areas of the 
brain that are associated with cognition, including 
the hippocampus, prefrontal cortex, and amyg-
dala127, and therefore, probably play an essential 
role in regulating learning, memory, and synaptic 
plasticity128. However, the exact molecular mech-
anisms underlying the neuroprotective effects of 
estrogen are not fully understood. 

Endocrine therapies are one of the most com-
mon adjuvant therapies used in the treatment of 
breast cancer. The drugs used in this therapy in-
clude aromatase inhibitors, such as anastrozole, 
and estrogen receptor blockers such as tamoxi-
fen6. A reduction in estrogen levels and blockage 
of estrogen receptors are associated with cogni-
tive impairment129-131. Therefore, based on what is 
currently known about the mechanisms by which 
estrogen and estrogen receptors affect cognitive 
function, it is possible that aromatase inhibitors 
and estrogen receptor blockers cause or exacer-
bate chemobrain. 

Conclusions

Chemobrain is one of the most common com-
plications of chemotherapy, and it has a consider-
able effect on a patient’s cognitive abilities and, 
consequently, their quality of life. To reduce the 
incidence of chemobrain and prevent its occur-
rence in patients undergoing chemotherapy, the 
mechanisms by which chemobrain occurs must be 
elucidated. Research on the link between adverse 
effects of chemotherapy and cognitive dysfunc-
tion is ongoing, but the causes and mechanisms 
of chemobrain are poorly understood. This study 
has reviewed the relevant papers published on this 
topic to bring together what is known about the 
mechanisms of chemobrain:

–	 Chemobrain has a strong anatomical basis: it 
affects the frontal lobes, limbic system, central 
functional connectivity, and hippocampal neu-
ronal architecture.

–	 Chemotherapeutic drugs that can cross the 
BBB, such as cyclophosphamide, affect neuro-
genesis via histone modifications. On the oth-
er hand, chemotherapeutic drugs that cannot 
cross the BBB, such as doxorubicin, indirectly 
affect neurogenesis via pathways that involve 
TNF-α, EAAT2, and glutamate.

–	 Several chemotherapy drugs are associated with 
an increase in oxidative stress, which causes 
neuronal injury and, therefore, impacts neuro-
genesis and cognitive function. In turn, there 
is some preliminary evidence to show that ox-
idative stress disrupts the BBB, and this causes 
neurotoxic substances to permeate the BBB.

–	 In terms of inflammatory mechanisms, chemo-
brain could be caused by an inflammation-in-
duced reduction in glucose metabolism in the 
hippocampus that leads to spatial memory im-
pairment. Alternatively, chemobrain could be 
caused by an inflammation-induced increase 
in cytokine levels that leads to an increase in 
AChE activity.

–	 A reduction in synaptic plasticity and, there-
fore, neuron regeneration and function, is 
another possible mechanism underlying the 
effects of chemotherapy on memory and learn-
ing.

–	 A few chemotherapeutic drugs (doxorubicin, 
cisplatin, and cyclophosphamide) have been 
found to cause cognitive impairment via mito-
chondrial dysfunction, but this mechanism has 
not been studied in the case of other drugs, such 
as trastuzumab, sunitinib, and methotrexate.

–	 Chemobrain could potentially be caused by 
chemotherapy-induced increase in the enzyme 
TG2, as increased levels of TG2 were found to 
be associated with memory impairment.

–	 Aromatase inhibitors and estrogen receptor 
blockers, which are used in endocrine therapy 
for cancer, may cause or exacerbate chemo-
brain, as estrogen is known to play an import-
ant role in cognitive function.

–	 IGF-1 might have beneficial effects against 
chemotherapy-induced cognitive impairment.

To summarize, while the effects of inflam-
mation and oxidative stress on neurogenesis and 
their role in chemotherapy-induced cognitive 
impairment have been widely studied, the che-
motherapy-induced cognitive impairment mech-
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anisms that involve mitochondrial dysfunction, 
estrogen dysregulation, and increased transgluta-
minase 2 are still unclear and need to be investi-
gated in future studies. Investigations into these 
mechanisms could shed light on preventive and 
therapeutic strategies against chemobrain.
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