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Abstract. - OBJECTIVES: Alternative splicing
of human telomerase reverse transcriptase
(hTERT) has an important effect on regulating
telomerase activity. Exonic splicing enhancers
(ESEs) are a family of conserved splicing factors
that participate in multiple steps of the splicing
pathway. Our aim is to analyze the ESEs for pre-
dicting the potential regulatory elements of
hTERT mRNA splicing.

MATERIALS AND METHODS: Enter the FAS-
TA format of hTERT total sequences or individ-
ual exon as the input data in the main interface
of ESEfinder3.0 and ESEfinder2.0 program. Ana-
lyze the data of output results and compare the
differences between ESEfinder3.0 and ESEfind-
er2.0 program.

RESULTS: Five ESEs were predicted in exon 5
to exon 9 of hTERT. They were at position 108 lo-
cated in hTERT exon 5, at position 92 located in
exon 6, at position 22 located in exon 7, at posi-
tion 73 located in exon 8 and at position 5 located
in exon 9. There were no differences between ES-
Efinder 3.0 and ESEfinder 2.0 in our case.

CONCLUSIONS: The identification of these po-
tential ESEs of hTERT might be helpful for the
design of antisense oligonucleotides, which
could modulate hTERT alternative splicing and
inhibit telomerase activity.
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Abbreviations

hTERT = human telomerase reverse transcriptase; hTR =
human telomerase RNA component; ASVs = alternative-
ly spliced variants; ESEs = Exonic splicing enhancers;
ORF = open reading frame; RRM = RNA-recognition
motif.

Introduction

Telomeres are specialized structures located at
the ends of eukaryotic chromosomes, that pro-
tect linear chromosome ends from unwanted re-
pair or recombination. Progressive telomere
shortening occurs in somatic cells due to incom-
plete replication of chromosome ends. Telom-
erase, a ribonucleoprotein complex, is capable of
adding telomere repeats to the 3’ end, which is
essential for the telomere length maintenance in
germ cells and stem cells!. Human telomerase
holoenzyme consists of three components: a
RNA component (human telomerase RNA com-
ponent, hTR), which serves as a template for
DNA replication., a catalytic subunit of telom-
erase with reverse transcriptase activity (human
telomerase reverse transcriptase, hTERT) and
the telomerase-associated proteins?3. Most of the
human tissues that lack detectable telomerase
activity also lack the expression of hTERT but
not hTR and telomerase-associated proteins.
This suggests hTERT acts as a rate-limiting fac-
tor for telomerase activity*>.

Telomerase activity is under precise control at
the transcriptional, translational, and post-trans-
lational level. hTERT gene pre-mRNA alterna-
tive splicing is thought be one of the most impor-
tant mechanisms for regulation of telomerase ac-
tivity. Alternative splicing is a process by which
the exons of the pre-mRNA produced by tran-
scription of a eukaryotic gene are reconnected in
multiple ways to form alternatively spliced vari-
ants (ASVs) during RNA splicing. ASVs may be
translated into different protein isoforms. Alter-
native splicing is a major method of gene regula-
tion for many proteins®’.
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The hTERT gene consists of 16 exons and 15
introns and full length of hTERT mRNA is about
4.0 kb long®. hTERT protein contains a telom-
erase-specific motif and seven reverse transcrip-
tase motifs. To date, seven alternatively spliced
sites in the hTERT mRNA have been identified,
including three deletion sites (o, 3, y) and four
insertion sites. Therefore, the alternate splicing
sites produce a large number of possible combi-
nations, resulting in different h\TERT ASVs. Cur-
rently, a few hTERT ASVs have been identified
in mammalian cells. However, only the full-
length hTERT mRNA without deletion or inser-
tion sites has telomerase activity in vivo.

Most studies on h'TERT ASVs involve dele-
tions at the two main splicing sites. Deletion of
the a splicing site leads to a deletion of 36 nu-
cleotides in exon 6, which removes most of the
reverse transcriptase (RT) motif without disrupt-
ing the open reading frame (ORF). Splicing at
the f site (deletion of exons 7 and 8) results in a
182-nucleotide deletion that causes a premature
termination codon, generating a truncated protein
lacking the C-terminal and RT motifs B to E.
Splicing at either site, occurring alone or in com-
bination, produces a number of ASVs at different
levels and proportions. So far, none of the ASVs
identified retains the telomerase catalytic activity
of the full-length product. Nevertheless, some re-
cent data suggests that splicing patterns of
hTERT may play a role in physiological and
pathological regulation of telomerase activity,
and that ASVs are also possibly involved in other
cellular functions®!°.

Exonic splicing enhancers (ESEs) are the regula-
tors of pre-mRNA alternative splicing* and partici-
pate in the splicing of constitutive exons''"!3, ESEs

bind to the members of the serine/arginine-rich
(SR) protein family, which function both as general
splicing factors and as regulators of alternative
splicing'*!7. SR proteins have a motif consisting of
one or two copies of an RNA-recognition motif
(RRM) followed by a C-terminal domain highly en-
riched in argine/serine dipeptides (RS domain)!®!,
ESE-bound SR proteins recruit the splicing machin-
ery through their RS domains, and/or antagonize
the splicing silencer elements®*2!,

hTERT, the rate-limiting subunit, plays a cru-
cial role in regulating telomerase activity. There-
fore, the alternative splicing of the hTERT gene
may make significant influence on telomerase ac-
tivity at the transcriptional level. In this article,
we will analyze the ESEs of hTERT to predict
the potential regulatory elements of telomerase
activity, which might become attractive gene
therapy targets.

Materials and Methods

Principle of ESEfinder

ESEfinder is a web-based program applied in
rapid analysis of exon sequences to identify puta-
tive exonic splicing enhancers (ESE) responsive to
the human SR proteins SF2/ASF, SC35, SRp40 and
SRp55, and to predict whether exonic mutations
disrupt such elements. This program was released
by Cold Spring Harbor Laboratory (Krainer’s Lab
and Zhang’s Lab) and has been updated to Version
3.0 since 2007. The homepage for ESEfinder3.0 is
http://rulai.cshl.edu/cgi-bin/tools/
ESE3/esefinder.cgi?process=home and the home-
page for ESEfinder2.0 is http://rulai.cshl.edu/tools/
ESE2/ (Figure 1). The ESEfinder 2.0 program
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Figure 1. The main operating interface of ESEfinder 3.0 (leff) and ESEfinder 2.0 (right).
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searches for sequences that act as binding sites for
four members of the SR splicing enhancer proteins.
Input sequences are screened for consensus binding
sequences for the SR proteins SF2/ASF, SRp40,
SRp55 and SC35, using the SELEX (systematic
evolution of ligands by exponential enrichment)
method. The program scores the input sequences
according to fit with the loose consensus sequences.
The scores above a default threshold value are pre-
dicted to act as binding sites with SR protein and
thus function as ESEs. Increased threshold values
of ESEfinder 2.0 program for SF2/ASF (from
1.956) and ESEfinder 3.0 for SRp40 (from 2.670),
SRp55 (from 2.676) and SC35 (from 2.383) were
used in order to minimize false-positive results. In
ESEfinder 2.0, only the high-score values (the val-
ues above the selected threshold) are represented.
There are two options for output information in ES-
Efinder 3.0, one is “Report only the best hit in each
sequence (instead of hits above the thresholds)” and
the other is “Report all scores in each sequence (in-
stead of hits above the thresholds)’”?>%*,

Methods and Procedure

Find nucleic acid sequence of hTERT (Gen-
Bank: AHO007699.1) from NCBI
(http://www.ncbi.nlm.nih.gov/) and save the in-
formation in FASTA format. Open the homepage
of ESEfinder2.0 and ESEfinder3.0. The a splic-
ing site is located in exon 6 and deletion of the 3
site is located in exon 7 and exon 8, therefore, the
sequences of each exon between exon 5 and exon 9
were chosen as the input sequences. The sequences
of hTERT exon 5 to exon 9 were shown in Table 1.
They were predicted both by ESEfinder 3.0 and by
ESEfinder 2.0. In ESEfinder 3.0, “Report only the
best hit in each sequence (instead of hits above the

Table I. The sequences of hTERT exon 5 to exon 9.

thresholds)” was checked and the “Send” button
was clicked to generate output data. In ESEfinder
2.0 “Send” button was clicked to generate output
data directly.

Results

Prediction of Each Exon Between
Exon 5 and Exon 9 of hTERT by
ESEfinder3.0 (Table 1)

Predicted by ESEfinder 3.0, the highest scored
position for each SR protein in each exon be-
tween exon 5 and exon 9 is presented here. Suc-
cessfully, we predicted the ESEs at position 108
(from 5’ end), which got the highest score in ex-
on 5 of hTERT, the SR protein was SRSF5
(SRp40) and the motif was CCACAGG. In exon
6, the ESEs was at position 92, the SR protein
was SRSF6 (SRp55) and the motif was
TGCGTC. In exon 7, the ESEs was at position
22, the SR protein was SRSF1 (SF2/ASF) and
the motif was CAGCCGT. In exon 8, the ESEs
was at position 73, the SR protein was SRSF6
(SRp55) and the motif was CGCATC. In exon 9,
the ESEs was at position 5, the SR protein was
SRSF6 (SRp55) and the motif was TACGTC
(Table II, Figure 2 to 6).

Prediction of Individual Exon 5 to
Exon 9 of hTERT by ESEfinder2.0

Only the high-score values (above the selected
threshold) are mapped on the output graph. In the
color-coded bars, the height of the bars repre-
sents the motif scores, the width of the bars indi-
cates the length of the motif (6, 7 or 8 nu-
cleotides), and the color of the bars indicates var-

Exon of hTERT

Sequence

Exon 5 (180 nt)

GAGCTGTACTTTGTCAAG
Exon 6 (156 nt)
Exon 7 (96 nt)
Exon 8 (86 nt)

Exon 9 (114 nt)

GCCGAGCGTCTCACCTCGAGGGTGAAGGCACTGTTCAGCGTGCTCAACTACG-
AGCGGGCGCGGCGCCCCGGCCTCCTGGGCGCCTCTGTGCTGGGCCTGGACGATATC-
CACAGGGCCTGGCGCACCTTCGTGCTGCGTGTGCGGGCCCAGGACCCGCCGCCT-

GTGGATGTGACGGGCGCGTACGACACCATCCCCCAGGACAGGCTCACGGAGGTC-
ATCGCCAGCATCATCAAACCCCAGAACACGTACTGCGTGCGTCGGTATGCCGTG-
GTCCAGAAGGCCGCCCATGGGCACGTCCGCAAGGCCTTCAAGAGCCAC
GTCTCTACCTTGACAGACCTCCAGCCGTACATGCGACAGTTCGTGGCTCACCTG-
CAGGAGACCAGCCCGCTGAGGGATGCCGTCGTCATCGAGCAG
AGCTCCTCCCTGAATGAGGCCAGCAGTGGCCTCTTCGACGTCTTCCTACGCTTCATG-
TGCCACCACGCCGTGCGCATCAGGGGCAA
GTCCTACGTCCAGTGCCAGGGGATCCCGCAGGGCTCCATCCTCTCCACGCTGCTCTG-
CAGCCTGTGCTACGGCGACATGGAGAACAAGCTGTTTGCGGGGATTCGGCGGGACGG
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Table Il. Prediction of individual exons by ESEfinder3.0.

Exon of hTERT SR Protein Position” Motif Score
Exon 5 SRSF1 (SF2/ASF) 109 (-72) CACAGGG 5.25819
SRSF1 (SF2/ASF, IgM-BRCA1) 109 (-72) CACAGGG 475761
SRSF2 (SC35) 71 (-110) GCCTCCTG 4.18474
SRSF5 (SRp40) 108 (-73) CCACAGG 5.96771*
SRSF6 (SRp55) 59 (-122) CGCGGC 4.49126
Exon 6 SRSF1 (SF2/ASF) 47 (-110) CGGAGGT 4.93828
SRSF1 (SF2/ASF, IgM-BRCA1) 47 (-110) CGGAGGT 4.88224
SRSF2 (SC35) 41 (-116) GGCTCACG 4.29958
SRSF5 (SRp40) 144 (-13) CTTCAAG 4.04055
SRSF6 (SRp55) 92 (-65) TGCGTC 6.13588*
Exon 7 SRSF1 (SF2/ASF) 22 (-75) CAGCCGT 4.99607*
SRSF1 (SF2/ASF, IgM-BRCA1) 22 (-75) CAGCCGT 4.38164
SRSF2 (SC35) 16 (-81) GACCTCCA 4.23723
SRSF5 (SRp40) 2 (-95) TCTCTAC 3.62094
SRSF6 (SRp55) 32 (-65) TGCGAC 3.53067
Exon 8 SRSF1 (SF2/ASF) 21 (-66) CAGCAGT 2.47234
SRSF1 (SF2/ASF, IgM-BRCA1) 66 (-21) CGCCGTG 3.10673
SRSF2 (SC35) 18 (-69) GGCCAGCA 3.96960
SRSF5 (SRp40) 60 (-27) CCACCAC 2.82027
SRSF6 (SRp55) 73 (-14) CGCATC 4.69647*
Exon 9 SRSF1 (SF2/ASF) 27 (-88) CACAGGG 4.81097
SRSF1 (SF2/ASF, IgM-BRCA1) 27 (-88) CACAGGG 5.05584
SRSF2 (SC35) 21 (-94) GGATCCCG 4.56569
SRSF5 (SRp40) 40 (-75) CCTCTCC 3.52645
SRSF6 (SRp55) 5(-110) TACGTC 5.52722%

#Positions from 5'end (through 1) and 3'end (through -1) are given; *The highest score (the best hit) in prediction of each exon

of hTERT by ESEfinder 3.0.

ious SR protein, other motifs or the splicing fac-
tor predicted. The score value is the most intu-
itive and the highest bar represents the motif of

the maximum score value, where the probability
of the position to become an ESE is the highest
(Figure 7 to 11) The summarized results and

SRGF (SF2AER
SREFT (lgM-BRCAT)
SREF2 (5035
SREFE (SR pHT)

57 5FE (ERpSS)

Exon & of hTERT

SEH SFUASE)
SREF1 gWHERCAT)
S9EFI (3035
S3FE FRpA)
S73FE [SRp59)

Ixon 6 of hTERT

Figure 2. Graph output of hTERT exon 5 by ESEfinder3.0
(*Indicates SRp40 protein gets the highest score of
5.967709 in position 108, green bar).

Figure 3. Graph output of hTERT exon 6 by ESEfinder3.0.
(*Indicates SRp55 protein gets the highest score of
6.135878 in position 92, yellow bar).
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Exon 7 of hTERT
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Figure 4. Graph output of hTERT exon 7 by ESEfinder3.0.
(*Indicates SF2/ASF gets the highest score of 4.996070 in
position 22, red bar).

comparisons by ESEfinder 3.0 and ESEfinder 2.0
are shown in Table III. There is no difference ob-
served from different versions of this ESEfinder
program in our present case.

Discussion
Processing of pre-mRNA is a very important as-

pect of gene regulation. It has been estimated that
more than 15% of point mutations that give rise to

SAAF1 (338 3F)
SRSEF (g ORC A1)
SRS (3035)
SREFS (F.phl)
SAEFE (.55
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[
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Exon ¥ of h1ERI

Figure 5. Graph output of hTERT exon 8 by ESEfinder3.0.
(*Indicates SRp55 protein gets the highest score of
4.696469 in position 73, yellow bar).
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Figure 6. Graph output of hTERT exon 9 by ESEfinder3.0.
(*Indicates SRp55 protein gets the highest score of
5.527218 in position 5, yellow bar).

human genetic diseases cause mRNA splicing de-
fects®. Most of the eukaryotic genes are composed
of several relatively short exons that are interrupted
by much longer introns. The exons must be joined
together before generating the mature mRNAs and
this process requires the coordinated operation of
five small nuclear (sn) RNAs (U1, U2, U4, U5 and
U6) and some polypeptides®®?’. In higher eukary-
otes, the requirement for accurate splicing is met
by exon-intron junctions, which are intronic cis-el-
ements including the 5° splice site, 3° splice site
and branch site®.

Several cis-elements that are important for ac-
curate splicing site recognition and are distinct
from the classical splicing signals have been
identified. These cis-elements, including exonic
splicing enhancers (ESEs), exonic splicing si-
lencers (ESSs), intronic splicing enhancers (IS-
Es), and Intronic splicing silencers (ISSs), can
act either by enhancing or by silencing splicing,
thus modulating alternative splicing. In particu-
lar, ESEs appear to be very prevalent and may be
present in most exons. ESEs participate in both
alternative and constitutive splicing, and act as
binding sites for members of SR proteins. SR
proteins are a family of structurally related pro-
teins that share a conserved structural feature
called the RS domain, which is highly enriched
in RS dipeptides and one or two RNA-recogni-
tion motifs (RRM)?»-32, The RRMs mediate se-
quence-specific RNA binding and determine sub-
strate specificity, whereas the RS domain is
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SIASE 5035 SApSS
The=1.356 Thr=1.363 Thr=2.676
Position  Motif  Score Positien  Maotif  Score Positien  Motil  Score
10 CTCALCT 2535587 33 GTTCAGCG 3. 202884 S AGCGTC 4245103
52 GAGCERGE 2441108 70 GGCCTECT 2737809 53 CGECEGE 4481257
58 TGGACGA 2945149 71 GLLICCTG 4.184737 B1 CGCCTC 3.001157
109 CACAGGE 5238181 ‘81 CGCCTCTE 3.583903 174 TGETCAAG 7753 131 TGCTGC 3.018034
121 CGCACCT 3210889 99 GGACGATA 2.516605 b 134 TEOGTG 4.372567
145 CCCAGGA 4235518 106 ATCCACAG 2556382 140 TGOGGHE 2358835
158 CGCCTGA 2624531 443 GGGCCCAG 3.120373
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Figure 7. Graph output of hTERT exon 5 by ESEfinder2.0. (*Indicates SRp40 protein gets the highest score of 5.967709 in
position 108, green bar).

SE2/ASE ETE SRpSS
Thi=1 956 Tht=2,363 Tiw=2 676
Fosition  Motit | Score Position  Motit Score Position  Matit  Score
7 GTGACGGE 2916245 13 GQOGGE‘IAL!ES!!Z 15 CGCGTA 4.53%E30
17 CoTACGA 3.531851 2B ATTCCITA 2.%‘_!5?2 1% TACGAC 2922013
22 GACACCA Z434044 41 GGCTCACS 4. 299581 45 CACGGA 31517358
32 CCCAGGA 4.259518 51 GGTCATCG 3.036856 6l AGCATC 3840443
37 GACAGGC Z.201027 ﬂm-115523 Bl CACGTAa 4331230
43 CTCACGG 4.7397TE2 B4 GTACTGOS 2 474308 B8 TGCGTG 4.372557
47 CGGAGGT 4538281 95 GTATGOCS 3 020338 52 TGOGTC 0139878
79 AACACGT 3.7I0663 109 GTCOCAGAA 2 543245 130 CACGTC 4656455
112 CAGAAGG 3.082349 117 GGCOGLLC 2.649371
120 CGOTCAT 2217341 120 CGCCCATE 3146348
128 GGCACGT £.21131% 133 GTCCGCAR 3.433238
136 COCAAGG I 851357 141 GECCTTOA 2 BOSUOO
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Figure 8. Graph output of hTERT exon 6 by ESEfinder2.0. (*Indicates SRp55 protein gets the highest score of 6.135878 in
position 92, yellow bar).
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14 CAGACCT 3411881 16 GACCTOCA 4237229 28 TACATG 3155247
& 22 CAGOCGT 4596070 3B AGTTCETG 2.954504 32 TGOGAC 35306873
47 CTCACCT 2535587 65 GOCOGLTG 3517899 2 CGTGGL 21839581
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Figure 9. Graph output of hTERT exon 7 by ESEfinder2.0. (*Indicates SF2/ASF gets the highest score of 4.996070 in posi-

tion 22, red bar).

SF2/ASF <035 SRpSS
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21 CAGCAGT 2472343 18 GGCCAGC 3.969598 15 TGAGGC 3.182341
28 A !_.45_2249 3¥ calCa¥™C 2.71785d
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o SF2IASF
B S35
4 B9 SRp40
SRp55
& %
o3
k!
rT111 1 Trrr 1 1 riraa 10 rEiw Trrek rrariran
([F1S) R Sg A | LLUNVLUNEIJGLUU IL T LUUnusI Ly 15 LU TAMT ST PUUNUUTRLVL LG TGN | OB UL EL M

Figure 10. Graph output of hTERT exon 8 by ESEfinder2.0. (*Indicates SRpSS5 protein gets the highest score of 4.696469 in
position 73, yellow bar).
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SE2/ASF S35
Thr=1.956 The=2 383
Position Motil  Score Position Maotl  Score
3 OCTACGT 2.2DDSTE 1 GTCCTACG 3.123503
17 CAGGGGA 2.830165 B GYCCAGTG 4.416256
27 CGCAGGG 4810569 21 GGATCCCG 45656595
58 CAGLCTG 1.502499 32 GGCTCCAT 2937538
104 CGGOGGEE 3.571191 59 AGCCTGTG 3.025056
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10 CCAGTGC 3.155022
14 tGG'AGG 3.107305
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40 CCTCTCC 3526450
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10E GGGALCGG 3.591547
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B SRpdo
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Figure 11. Graph output of hTERT exon 9 by ESEfinder2.0. (*Indicates SRp55 protein gets the highest score of 5.527218 in

position 5, yellow bar).

thought to be involved mainly in protein-protein
interactions. ESE-bound SR proteins can pro-
mote exon definition by directly recruiting com-
ponents of the splicing machinery through their
RS domain, and/or by antagonizing the action of
nearby silencer elements. There are basically two
models of SR protein action in exonic-splicing-
enhancer-dependent splicing, one is an RS-do-
main-dependent mechanism and the other is an
RS-domain-independent mechanism. These mod-
els are not mutually exclusive, and the splicing of
some introns might involve a combination of
these mechanisms**3,

The ESE motifs are identified using human SR
proteins in ESEfinder program and their rele-
vance to other species depends on the extent of
conservation of each SR protein. The presence of
a high-score motif in a certain sequence does not
necessarily identify that sequence as an ESE in
its native context. For instance, a nearby silencer
element may prevent the SR protein from bind-
ing. The default threshold values are still some-
what arbitrary, although they are based on statis-
tical analysis and empirical data. In the results of
ESEfinder, the maximum score is not necessarily
the most effective ESE. The score values of ESEs

Table Ill. Comparison of prediction of each hTERT exon with highest score by ESEfinder3.0 and ESEfinder2.0.

Exon of hTERT Program version SR protein Position Motif Highest score
Exon 5 ESEfinder3.0 SRp40 108 CCACAGG 5.96771
ESEfinder2.0 SRp40 108 CCACAGG 5.96771
Exon 6 ESEfinder3.0 SRp55 92 TGCGTC 6.13588
ESEfinder2.0 SRp55 92 TGCGTC 6.13588
Exon 7 ESEfinder3.0 SF2/ASF 22 CAGCCGT 4.99607
ESEfinder2.0 SF2/ASF 22 CAGCCGT 4.99607
Exon 8 ESEfinder3.0 SRp55 73 CGCATC 4.69647
ESEfinder2.0 SRp55 73 CGCATC 4.69647
Exon 9 ESEfinder3.0 SRp55 5 TACGTC 5.52722
ESEfinder2.0 SRp55 5 TACGTC 5.52722
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corresponding to different SR proteins cannot be
compared to each other. The program currently
searches the ESE motifs corresponding to four
SR proteins, including SF2/ASF, SC35, SRp40
and SRp55. Yet there are several other SR pro-
teins for which the ESE motifs have not yet been
identified?>-3.

The prediction of ESEs has great value not on-
ly for genetists to better understand the effect of
mutations on mRNA splicing, but also for clini-
cal researchers to design new therapeutic ap-
proaches based on splicing interference. An ex-
ample is the exon-skipping strategy used in
Duchenne Muscular Dystrophy (DMD) or gene
and exon silencing through regulating of mRNA
splicing. It is very crucial to identify the most ap-
propriate antisense sequences to be able to pro-
vide the highest possible skipping efficiency. An-
tisense oligonucleotides (AOs) can be used to
correct the disrupted reading frame of Duchenne
muscular dystophy (DMD) patients. Aartsma-
Rus et al*? reported that they synthesized 121
AOs, of which 79 are effective in inducing the
skipping of 38 out of the 79 different exons. All
AOs are located within DMD exons and act by
steric hindrance of SR protein binding to ESE
sites. Predicted by the ESEfinder program, retro-
spective in silico analysis of effective versus inef-
fective AOs indicated that the efficacy of AOs
was correlated to the presence of putative ESE
sites. The ESE predicting software program was
a valuable tool for the optimization of exon-inter-
nal antisense target sequences®’*. Oligonu-
cleotides complementary to exonic splicing en-
hancer elements (ESE) have been shown to in-
duce exon skipping*'. This approach has been
shown to induce an isoform switch from an anti-
to a pro-apoptotic form of Bcl-X for cancer ther-
apy*?, isoform switching to a proapoptotic form
of WT1 for leukemia*®’, and from a transmem-
brane to a cytoplasmic form of FOLHI for
prostate cancer*.

By using ESEFinder software, we predicted
the ESEs of hTERT and found 5 motifs in exon 5
to exon 9. They were at position 108 located in
hTERT exon 5, at position 92 located in exon 6,
at position 22 located in exon 7, at position 73 lo-
cated in exon 8 and at position 5 located in exon
9. In our future study, we will design and opti-
mize exon-skipping antisense oligonucleotides
that are complementary to the sequences of the
ESEs. This could potentially increase 3 site
hTERT ASV (or other non-functional hTERT
ASVs) and decrease the full-length h'TERT, ulti-
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mately inhibiting the telomerase activity and
shortening the telomeres of cancer cells. Further-
more, we consider designing other antisense
oligonucleotides that can increase the full-length
hTERT and prolong telomeres in senescent cells
for some neurological diseases.

Conclusions

Five ESEs were predicted in exon 5 to exon 9
of hTERT. They were at position 108 located in
hTERT exon 5, at the position 92 located in exon
6, at the position 22 located in exon 7, at position
73 located in exon 8 and at position 5 located in
exon 9. Compared the ESEfinder 3.0 and ES-
Efinder 2.0 program, there were no significant
differences between the two program versions in
our case. The finding of these potential ESEs of
hTERT might be helpful for the design of the an-
tisense oligonucleotides, which could modulate
hTERT alternative splicing and finally inhibit
telomerase activity.
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