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Abstract. – OBJECTIVE: Hypoxia-inducible 
factor (HIF) is considered an important tran-
scription factor due to its roles in glycolysis, an-
giogenesis, cell differentiation, apoptosis, and 
other cellular pathways. It takes the role in vari-
ous physiological and pathological states, such 
as solid tumors, vascular injury, and atheroscle-
rotic lesion progression. In recent studies, HIF 
is found as a master regulator of body inflamma-
tion and immunity, not only in hypoxia but also 
in normoxia. Nasal inflammation has a close re-
lationship with anoxia. But the role of HIF in na-
sal inflammation is still unclear.

MATERIALS AND METHODS: We searched 
the Pubmed using the key words: “Hypoxia-in-
ducible factor” and “nasal” or “Hypoxia-indu-
cible factor”, and reviewed the related articles.

RESULTS: HIF is composed of HIF-α and HIF-β 
subunits. HIF-α is an adjusting relational subunit, 
which is divided into three subtypes: HIF-1α, HIF-
2α, and HIF-3α. HIF-1α is the key component and 
best understood. HIF-1α can be activated under 
hypoxic conditions or by various cytokines and 
growth factors. HIF-1α accumulation is critical for 
sustaining human allergic effector cell survival 
and function. The level of HIF-1α is increased in 
the patients with allergic rhinitis and become a 
new therapeutic target. HIF-1α also plays an im-
portant role in the pathogenesis of CRS and polyp 
formation. Some research found that the expres-
sion of HIF-1α was increased in CRS with polyps.

CONCLUSIONS: HIF-1α takes an important 
role in allergic rhinitis and chronic sinusitis. It 
will be a key therapeutic target of these diseas-
es in the future.
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Introduction

Hypoxia-inducible factor (HIF) was first iden-
tified for its role in erythropoietin regulation1, and 
today it is considered an important transcription 
factor due to its roles in glycolysis, angiogenesis, 

cell differentiation, apoptosis, and other cellular 
pathways2. Recent studies have shown that HIF 
is a master regulator of body inflammation and 
immunity, not only in hypoxia but also in nor-
moxia3,4. It can affect antimicrobial and cytotoxic 
activities, and the recruitment and apoptosis of 
inflammatory cells.

Nasal inflammation has a close relationship 
with anoxia. Moreover, the nasal cavity is typi-
cally described as an “immune organ,” in whi-
ch systemic or local allergic inflammation can 
occur. However, there has been little research 
on the functions of HIF in nasal inflammation. 
Indeed, any relationship between HIF and nasal 
inflammation has remained unclear. The aim of 
this review was to investigate how HIF acts as a 
regulator in inflammation in the nasal cavity and 
sinuses and to define new therapeutic targets.

The structure of HIF

HIF, also known as ‘aryl hydrocarbon receptor 
nuclear translocator’ (ARNT), is a basic helix-lo-
op-helix transcription factor, composed of HIF-α 
and HIF-β subunits5. HIF-β is a constitutively 
expressed nuclear subunit6. In contrast, HIF-α 
is an oxygen-regulated subunit, which is mostly 
degraded in normoxia and physiological condi-
tions. For the HIF-1 transcriptional complex to 
be functional, HIF-1 levels must be induced7. The 
human HIF-1α gene is located on chromosome 14 
(14q21-q24), whereas the HIF-1β gene is located 
on chromosome 1 (1q21)7.

HIF-α is divided into three subtypes: HIF-1α, 
HIF-2α, and HIF-3α, of which HIF-1α is the best 
understood8. In most cases, HIF-1α and HIF-2α 
are closely related and have similar properties. 
However, they differ in tissue distribution: HIF-
1α is expressed in all kinds of tissue, whereas 
HIF-2α is expressed primarily in vascular en-
dothelial cells9. In contrast, little is yet known 
about the function of HIF-3α, and it may be 
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antagonistic to HIF-1α and HIF-2α. Although all 
subunits are apparently involved in the response 
to hypoxia, the key components are HIF-1α and 
HIF-1β10.

Physiological and 
pathological roles of HIF

HIF-α is the subunit that can be regulated 
by hypoxia and helps to restore oxygen homeo-
stasis at a cellular, local, and systemic level11,12. 
In normoxia, HIF-α is degraded rapidly by hy-
droxylation reactions, which are catalyzed by 
oxygen-sensitive prolyl hydroxylases (PHD) in 
the ubiquitin-proteasome pathway13. HIF-α has an 
oxygen-dependent degradation domain (ODD), 
through which specific degradation of HIF-1 is 
triggered in normoxia. The level of HIF-α pro-
tein is low but present in the brain, liver, heart, 
and skeletal muscle tissues under normal oxygen 
conditions.

Hypoxia can arise in various physiological 
and pathological states, such as solid tumors, 
vascular injury, and atherosclerotic lesion pro-
gression. Under these hypoxic conditions, HIF is 
involved in the response to hypoxia and the regu-
lation of human intra-plaque angiogenesis14-16. In 
these cases, the degradation of HIF-α is inhibited 
because of substrate (O2) deprivation, and HIF-α 
accumulates, combines with HIF-β, and mediates 
profound changes in gene expression17. HIF-1 
targets many factors involved in metabolism and 
angiogenesis, such as the inducible form of nitric 
oxide (NO) synthase (iNOS), vascular endothelial 
growth factor (VEGF), glucose transporter-1, and 
several glycolytic enzymes18.

Apart from hypoxia, some non-hypoxic acti-
vators can also regulate the expression of HIF-
1, such as growth factors, cytokines, vascular 
hormones, and viral proteins19,20. In contrast to 
hypoxia, stabilization of HIF-1α does not seem to 
play a role in the non-hypoxic induction of HIF-1. 
The main mechanism implicated in this induction 
is an increase in HIF-1α protein translation. The 
degradation of HIF-1α does not seem to be inhibi-
ted in the non-hypoxic activation of HIF-17.

In recent research, HIF-1α has been found to 
be a central factor in inflammatory and immune 
reactions21,22. It has been demonstrated that HIF-
1α controls inflammatory responses via regula-
tion of the metabolic switch to glycolysis and that 
it plays a critical role in the HIF-1α pathway in 
inflammatory cell recruitment4.

HIF and cancer

Hypoxia is common in cancer tissue and can 
lead to necrotic areas, in which cancer cells have 
died due to inadequate oxygenation23. The ability 
to adapt to reduced O2 availability is important 
for the survival of cancer cells. A major mechani-
sm mediating this adaptive response is regulated 
by HIF-1 and HIF-224. As a result, the adaptation 
to hypoxia promotes many key aspects of cancer 
progression and patient mortality25,26. The HIFs 
play important roles during tumor cell expan-
sion by regulating energy metabolism and the 
induction of angiogenesis27.

HIF-1α and HIF-2α levels are increased in many 
human cancers28-30. Griffiths et al31 observed that 
HIF-1α was involved in gastric carcinogenesis and 
disease progression, but was only a weak progno-
stic factor for survival. Stoeltzing et al32 found that 
inhibition of HIF-1α activity impaired gastric tumor 
growth, angiogenesis, and vessel maturation. Using 
immunohistochemistry and in situ hybridization, 
expression of HIF-1α was recognized in 55.1% and 
69.6%, respectively, of transitional cell carcinomas 
of the upper urinary tract33. Krishnamachary et al35 
showed that hypoxia or HIF-1 overexpression sti-
mulated Matrigel invasion by HCT116 human colon 
carcinoma cells, whereas the process was inhibited 
by a small interfering RNA directed against HIF-
134. HIF-1α and HIF-2α are positive regulators of 
tumor and metastatic potential, and have become 
therapeutic targets for cancer.

HIF and inflammation

In recent years, many scientists have found 
that HIF expression in immune cells can be 
triggered not only by hypoxia and cancer, but 
also by other pathological conditions, such as 
inflammation and infection36. It is usually regu-
lated via the phosphoinositide 3-kinase/protein 
kinase B/mammalian target of rapamycin (PI3K/
AKT/mTOR) and nuclear factor-kappa B (NF-
κB) pathways. In inflammatory and infectious 
conditions, HIF can be upregulated by viral and 
bacterial proteins, growth factors, proinflamma-
tory cytokines, and “inflammatory hypoxia”37. 
HIF transcription factors are key elements in the 
control of immune cell metabolism and function 
and play important roles in innate and adaptive 
immunity38. HIF induces a number of immune ro-
les in T-cells, dendritic cells (DCs), macrophages, 
neutrophils, and epithelial cells, from boosting 
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macrophages microbicidal capacity to driving T 
cell differentiation and cytotoxic activity39.

Activation of HIF during inflammation
Apart from hypoxia, cytokines released du-

ring inflammation, such as TNF-α and IL-1β, can 
activate HIF-140. TNF-α activates HIF-1 by multi-
ple pathways, including ROS and NO production, 
PI3K, and/or NF-κB activation41,42. IL-1β upregu-
lates HIF-1α levels at the level of translation. Du-
ring inflammation, bacteria or bacterial cell wall 
components, such as lipopolysaccharides (LPS), 
can stimulate HIF-1α protein accumulation and 
HIF-1 activation through an increase in HIF-1α 
mRNA levels43,44. This mechanism is induced 
primarily by NF-κB, which is a master transcrip-
tional regulator during inflammation and beco-
mes activated via Toll-like receptor stimulation45. 
NF-κB is a mandatory transcriptional activator 
of HIF-1α46,47. NF-κB is a family of transcription 
factors that play key roles in a wide variety of 
physiological (such as immunity) and pathophy-
siological cellular responses, such as chronic in-
flammation, diabetes, and cancer48. However, the 
exact mechanisms involved in the activation of 
NF-κB and the upregulation of HIF-1α induced 
by NF-κB remain to be determined40,49. Moreo-
ver, HIF-1α can regulate NF-κB50.

The PI3K/AKT/mTOR pathway plays a role 
in many cellular processes, such as metabolism, 
inflammation, cell survival, motility, and cancer 
progression51. PI3K, a classical upstream kinase in 
the mTOR pathway, has been implicated in various 
immune response and inflammatory processes. 
The kinase AKT is the main intermediate between 
PI3K and mTOR kinase52. mTOR is an important 
factor because it stands at the intersection of mul-
tiple important signaling pathways53. Activated 
mTOR phosphorylates at least two targets, p70S6K 
and 4E-BP153,54. These two components lead to 
active translation of mRNAs in which HIF-1α 
expression is involved55. So, it could upregulate 
the expression of HIF-1α in inflammation through 
the PI3K/AKT/mTOR pathway56-58. Thus, mTOR 
inhibition can reduce HIF-1α activity59.

Role of HIF in inflammation
First, HIF can regulate macrophage and DC 

activity60. Macrophages coordinate inflamma-
tion, and together with DCs, they link innate 
and adaptive immune responses45. Macropha-
ges usually accumulate in large numbers wi-
thin O2-deprived areas, suggesting that hypoxic 
responses regulate the biological activities of 

macrophages. Moreover, HIF-1α appears to be 
required for macrophage maturation61. HIF-1α 
can also mediate macrophage inflammatory re-
sponses and act as an important transcriptional 
effector, regulating hypoxic gene expression in 
macrophages4,61. Hypoxia and HIF-1α can also 
modulate DC maturation, activation, and anti-
gen-presenting functions44.

Second, HIF can regulate the function of neu-
trophils, key mediators of the innate immune re-
sponse62. Inflammatory hypoxia and HIF can lead 
to the early accumulation of neutrophils63. HIF-1α 
and HIF-2α are essential for neutrophil survival in 
hypoxia and inflammation. In an in vivo model of 
LPS-mediated lung injury, HIF-2α deficiency was 
associated with reduced neutrophilic inflammation 
during resolution, with fewer neutrophils in BAL 
samples, an increase in neutrophil apoptosis, and 
a reduction in lung damage and vascular leaka-
ge64. Moreover, HIF-1α can delay the resolution 
of inflammation. This delay is a consequence of 
both reduced neutrophil apoptosis and increased 
retention of neutrophils at the site of tissue injury65.

Finally, HIF can regulate T cell develop-
ment, differentiation, and function66,67. HIF-1 has 
important roles in negatively regulating T cell 
function in vivo68 and in vitro69. Beyond that, it is 
involved in the regulation of the balance between 
Treg and Th17 cell differentiation70. Indeed, it 
can promote Th17 differentiation and inhibit Treg 
differentiation71-73.

HIF expression 
in body inflammation

HIF levels tend to be upregulated in the in-
flammation of many organs and tissues. Deng et 
al74 showed that HIF-1α was highly expressed in 
both glomerular and tubulointerstitial tissues in 
lupus nephritis. HIF-1α may promote mesangial 
cell growth through the induction of proliferation 
and inhibition of apoptosis74. Kim et al75 indica-
ted that HIF-1α mediated prostate enlargement 
under inflammatory conditions. Some research 
has implied that HIF-1α expression is strongest in 
the sub-lining layer of rheumatoid arthritis (RA) 
synovium and is related to both angiogenesis and 
inflammation in synovium from RA patients76. 
HIF-1α also plays an important part in the fibrosis 
and inflammation of adipose tissue77, skin in-
flammation78, wound healing79, gastroesophageal 
reflux disease80, systemic lupus erythematosus81, 
and middle ear cholesteatoma82.
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HIF also plays an important role in lower airway 
inflammation, under hypoxic or normoxic condi-
tions. It can induce the proliferation of smooth 
muscle cells of the pulmonary artery under hypoxic 
conditions83. HIF-2α is involved in arsenite-induced 
inflammation of human bronchial epithelial cells84. 
HIF-1α plays an important part in protection against 
pulmonary Aspergillus fumigatus infection85. HIF 
also acts at a key point in allergic or eosinophilic 
inflammation of the lower airway86-90.

Anoxia and HIF expression 
in nasal inflammation

Allergic rhinitis
As described above, HIF-1α can be activated 

under hypoxic conditions or by various cytokines 
and growth factors. Much evidence suggests that 
HIF expression is elevated in asthma patients 
and plays an important role in allergic airway in-
flammatory responses91-93. HIF-1α accumulation 
is critical for sustaining human allergic effec-
tor cell survival and function94. Allergic airway 
inflammation is regulated by the PI3K/AKT/
mTOR/HIF-1α/VEGF pathway95. However, little 
is known about the exact role of HIF in allergic 
rhinitis (AR)96. Han et al reported that HIF-1α 
and VEGF levels were locally upregulated in 
nasal mucosa during AR and could be attenua-
ted by the HIF-1α inhibitor 2-methoxyestradiol 
(2ME2)96. Mo et al97 detected an increase in HIF-
1α and VEGF expression in the nasal mucosa of 
patients with AR. Moreover, they reported that 
the HIF-1α inhibitor 2ME2 induced antiallergic 
effects by decreasing both local and systemic Th2 
cytokine (IL-4 and IL-5) production, IgE pro-
duction, and eosinophil infiltration into the nasal 
mucosa in an AR mouse model. The levels of 
HIF-1α and VEGF increased in the nasal fluid of 
AR patients after challenge98. Benzaldehyde can 
have antiallergic effects in murine AR, possibly 
through inhibition of HIF-1α and VEGF98. Thus, 
HIF may become a new therapeutic target in AR.

Sinusitis and nasal polyps
Sinusitis can be divided into two major types: 

acute and chronic sinusitis (CRS). CRS is persistent 
inflammation of the nasal cavity and sinus membra-
nes, with a duration of longer than 12 weeks. It has 
become a common health problem with significant 
morbidity, which impacts the general health of 
affected individuals and increases medical costs99. 
According to whether nasal polyps (NPs) are pre-

sent, CRS has been divided into two subtypes: CRS 
with polyps (CRSwNP) and CRS without them 
(CRSsNP). CRS has an extremely complex patho-
genesis, especially CRSwNP, however, the exact 
origin of CRSwNP is still unclear. According to 
the type of inflammatory cell infiltration, CRSwNP 
can be divided into two subgroups: eosinophilic and 
non‑eosinophilic or neutrophilic100. The subgroups 
have varying pathogeneses and may require diffe-
rent therapeutic options.

Hypoxia may play an important role in the 
pathogenesis of CRS and polyp formation101-104. 
First, hypoxia can impair sinonasal transepithe-
lial ion transport and cause mucociliary dysfun-
ction, which may lead to CRS105,106. However, other 
studies have suggested the opposite107. Second, 
hypoxia may reduce nitric oxide output in the nasal 
airways, which may induce CRS108. Third, hypoxia 
may lead to the formation of NPs109. Chronic in-
flammation of the nasal mucous membrane, as a 
major cause of NPs, is common. Local hypoxia 
usually takes place in CRS, especially in the mi-
croenvironment of the middle meatus, from where 
NPs commonly arise. Blocking of the ostium by 
swelling of the nasal mucosa may induce hypoxia 
and secondary mucosal swelling in the sinuses110. 
Under a hypoxic microenvironment, HIF-1α and 
VEGF expression are upregulated109. These could 
then increase vascular permeability and lead to tis-
sue edema, which might be a pathological change 
in the early stages of NP formation.

Some research has been reported on the role 
of the PI3K/AKT/mTOR/HIF/VEGF pathway in 
CRS111. Shin et al112 showed that the expression of 
the HIF-1α and HIF-2α proteins was upregulated 
in NPs. They may induce the formation of NPs by 
causing an epithelial-to-mesenchymal transition. 
Chien et al113 used real-time quantitative reverse 
transcription-polymerase chain reaction (RT-PCR) 
and immunohistochemistry methods to detect le-
vels of HIF-1α protein and mRNA. They found 
that levels of HIF-1α protein, but not mRNA, 
were significantly increased in NPs. Expression of 
VEGF was also upregulated in NP tissue114-116. Liu 
et al117 found essentially the same results as Chien 
et al. Yang et al118 observed that expression of HIF-
1α protein was increased in the epithelial cells of 
NPs. The upregulation of HIF-1α and VEGF could 
be suppressed by dexamethasone119.

Fibroblasts are found in the stroma and are 
actively involved in the accumulation of the ex-
tracellular matrix and can be further activated by 
pro-inflammatory cytokines. They show strong 
correlations with CRS, especially CRSwNP120. 
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Some researchers121,122 have investigated the upre-
gulation of HIF-1α protein and mRNA in NP 
fibroblasts. VEGF levels are also increased in NP 
fibroblasts123. This upregulation of VEGF can be 
inhibited by macrolides124.

CRSwNP subgroups have different pathogene-
ses. In Asians, patients with CRSwNP usually ma-
nifest a non-eosinophilic or neutrophilic subtype 
and Th17-related inflammation. As described abo-
ve, HIF can induce neutrophilic inflammation and 
promote Th17 differentiation and inhibit Treg dif-
ferentiation. Hypoxia may induce this neutrophilic 
inflammation in NPs125. Some investigations126-128 
have implied that the HIF pathway plays an impor-
tant role in neutrophilic CRSwNP. HIF-1α also can 
promote Th17 differentiation in NPs129.

HIF inhibitors
Given the important roles of HIF in cancer 

and inflammation, HIF inhibitors could be useful 
for the development of novel therapeutics. HIF 
inhibitors can be tentatively divided into agen-
ts that modulate HIF-1α mRNA levels, protein 
translation, protein degradation, DNA binding, 
or transcriptional activity130. HIF inhibitors have 
shown positive results in animal models. Howe-
ver, those described to date lack specificity and 
none specifically targets HIF-1131. Further transla-
tion of basic scientific research into clinical appli-
cations will require new methods for establishing 
the proper context for the administration of HIF-1 
inhibitors and improved specificity132.
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