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Abstract. – OBJECTIVE: Hepatocellular car-
cinoma (HCC) is the leading cause of cancer-re-
lated death, with high morbidity and low surviv-
al. Research on the relationship between cancer 
cells and oxidative stress has rapidly increased 
in recent years. Therefore, finding new thera-
peutic and prognostic targets for hepatocellu-
lar carcinoma based on oxidative stress-related 
genes (OSRGs) has far-reaching significance.

MATERIALS AND METHODS: We first ob-
tained OSRGs on GeneCards and then, based 
on the TCGA database, compared tumor tissues 
with normal tissues. Using the LASSO Cox re-
gression method, we obtained six differential-
ly expressed genes associated with progno-
sis. We also divided all HCC patients in the TC-
GA cohort into a low-risk group and a high-risk 
group based on these six genes and according-
ly performed a correlation analysis of differen-
tially expressed oxidative-stress-related genes 
(DEOSRGs). These analyses included GSEA, 
PPI, survival analysis, immune correlation anal-
ysis, tumor microenvironment correlation anal-
ysis, m6A analysis, gene mutation analysis, 
drug-sensitivity analysis, and molecular dock-
ing validation. The reliability of the model genes 
was further verified using a multi-platform data-
base, qRT-PCR and MTT assay.

RESULTS: These six genes may play an import-
ant role in the prognosis of hepatocellular carci-
noma patients by affecting the kinase, carboxylic 
acid synthesis and metabolism, ROS production, 
lipid oxidation and immune response. Validation 
experiment results further confirm that these 
model genes are good indicators for the diagno-
sis and prognosis of hepatocellular carcinoma.

CONCLUSIONS: This study analyzed the 
prognosis and function of HCC prognosis-relat-
ed differential genes, predicted that the progno-
sis-related differential genes played an essen-
tial role in HCC immunity, and proposed thera-
peutic targets and biomarkers for HCC.
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Introduction

Hepatocellular carcinoma (HCC) ranks seventh 
in the world in terms of incidence, has a high mor-
tality rate, and has no effective treatment1. Although 
HCC can be treated with surgery, it often recurs after 
surgery. HCC develops rapidly and insidiously and 
usually is not diagnosed until the disease progresses 
and has advanced in patients. In recent years, new 
molecularly targeted drugs have provided a new ther-
apeutic approach to treating advanced HCC. Many 
studies have focused on exploring more effective pre-
dictive signals that could better elucidate the factors 
that influence the prognosis and progression of HCC 
and provide more evidence for individual molecu-
lar therapeutic approaches. Some current diagnostic 
markers, such as alpha-fetoprotein (AFP), have many 
unrelated factors that interfere with their expres-
sion, which reduces their sensitivity and specificity2,3. 
Therefore, discovering new therapeutic and prognos-
tic models for HCC is of profound significance.

Oxidative stress refers to the excessive accu-
mulation of highly reactive molecules, such as 
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reactive oxygen species (ROS) and reactive nitro-
gen species (RNS), in the body when subjected 
to various harmful stimuli, resulting in an oxida-
tion imbalance and antioxidant balance, leading 
to physiological and pathological responses from 
cells and tissues. Various factors, such as radia-
tion, age, infectious diseases, and heat stress, may 
lead to increased intracellular ROS concentrations, 
triggering an intracellular oxidative stress respons-
es that can protect or destroy cells4-7. Reactive 
oxygen species (ROS) are oxygen-derived reac-
tive small molecules, including hydrogen peroxide 
(H2O2), superoxide anion (O2

·-), hydroxyl radical 
(OH), etc. The mitochondrial and reduced nicotin-
amide adenine dinucleotide phosphate (NADPH) 
oxidase families are the two major contributors to 
endogenous ROS8,9. The tight regulation of these 
ROS levels is essential for cellular life10. There are 
higher levels of ROS in cancer cells compared to 
normal cells. Sustained high levels of ROS can 
shift the metabolic pattern of cancer cells from 
aerobic phosphorylation to anaerobic glycolysis to 
promote oxidative stress in tumors, also known as 
the Warburg effect11,12. In conclusion, intracellular 
oxidation–reduction homeostasis mainly depends 
on the generation of ROS and a balance between 
enzymatic and non-enzymatic antioxidant sys-
tems; once this balance is disturbed, it promotes 
tumorigenesis and progression13. Recent studies14-17 
have shown that oxidative stress can inhibit cancer 
proliferation and metastasis, Therefore, exploring 
new OSRGs associated with hepatocellular carci-
noma will provide some new possibilities for the 
prognosis and treatment of HCC.

Based on the TCGA database, we analyze this 
from the direction of OSRGs, and explore the 
prognosis and function of OSRGs in HCC using 
bioinformatics techniques. This study offers new 
directions for the prognosis of HCC, as well as 
drug-targeted therapy.

Materials and Methods

Reagent
FerriSeltz, G6PDi-1 and 3-(4,5-dimethyl-2-thi-

azolyl)-2,5-diphenyl- 2-H-tetrazoliumbromide 
were obtained from Aladdin (Shanghai, China). 
FerriSeltz and G6PDi-1 were first dissolved in 
dimethyl sulfoxide (DMSO, Sigma-Aldrich, St. 
Louis, MO, USA) and then diluted with culture 
medium. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphe-
nyl- 2-H-tetrazoliumbromide was dissolved in 
PBS (Aladdin, Shanghai, China).

Data Acquisition and Processing
We obtained the dataset using the Illumina 

Hiseq platform in the TCGA database (https://
portal.gdc.cancer.gov/repository), including RNA 
sequencing (RNA-seq) data and the correspond-
ing clinical characteristics of 374 HCC and 50 
normal samples. The clinical characteristics of 
the included patients are presented in the Supple-
mentary Table I. Data normalization correction 
was performed using the fpkm method, selecting 
a threshold value of |log2FC| >1.0 and an adjust-
ed p-value <0.05, while genes with an average 
expression level of less than 0.5 were eliminated 
to ensure that significantly expressed genes were 
used for the next evaluation. R package “limma” 
was used as a filter method18.

Acquisition of OSRGs
We extracted 77 OSRGs from GeneCards 

(https://www.genecards.org), all of which had 
correlation scores higher than 20, to identify OS-
RGs. These OSRGs and the HCC expression data 
extracted from the database were sorted to obtain 
the OSRGs related to the database samples.

Differential Expression Analysis
Tumor tissues were compared with normal 

tissues using the limma package, and differential 
analysis was performed (|Log2FC| >2, adjusted 
p-value <0.05), combined with the previously 
obtained OSRGs in the TCGA database HCC Ex-
pression of samples versus normal samples. On 
this basis, the differentially expressed heat map, 
protein interaction network (https://string-db.
org/), and co-expression network were obtained. 
The obtained DEOSRGs were genotyped and 
validated in the TCGA database of HCC samples 
and normal samples.

Biological Functions and 
Pathway Enrichment 

We used “clusterProfiler” package to perform 
ID transformation on the obtained differential 
genes and perform Gene Ontology and Kyoto 
Encyclopedia of Genes and Genomes analysis. 
Then, the “ggplot2”, “enrichplot” packages visu-
alized the analysis results19-21.

Construction and Validation of P
rognostic Models

Clustering analysis was first performed to ob-
tain the DEOSRGs associated with prognosis. 
Then, univariate Cox regression analysis was 
used to evaluate the correlation between each oxi-
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dative stress-related gene and survival status, and 
DOSRGs with prognostic value were selected. 
Then, the LASSO Cox regression model was used 
to further narrow the range of candidate genes, 
and a prognostic model was established. Finally, 
six survival-related model genes were screened 
out, and a model was established for subsequent 
analysis. After correcting for TCGA expression 
data, we calculated risk scores. The risk score 
formula is as follows: Risk score=∑7iXi×Yi (X: 
coefficient, Y: gene expression level). HCC pa-
tients were divided into two groups according 
to the median risk score for further analysis. 
Kaplan-Meier analysis was used to compare sur-
vival time between the two groups, followed by 
receiver operating characteristic (ROC) valida-
tion, t-SNE analysis, and principal component 
analysis (PCA).

Independent Prognostic Analysis of 
Risk Scores

Independent prognostic analyses of the vari-
ables of our prognostic model were performed 
using univariate and multivariate Cox regression 
models based on clinical information from HCC 
patients.

Functional Role Analysis of Differential 
Genes Based on Prognostic Model

Based on the obtained model genes, enriched 
enrichment pathways were displayed using the 
“enrichplot” R package.

Immune-Related Analysis and 
Tumor Microenvironment Analysis

Using the “GSVA” R package, we performed 
ssGSEA analysis to quantify the level of cellular 
infiltration and then assessed the immune response 
of 22 immune cell subtypes using the CIBERSORT 
method. In addition, we evaluated the differences 
and expression levels of 13 immune functions and 
immune checkpoint expression in the two groups. 
Finally, we assessed the tumor microenvironment 
and m6A methylation modifications, and com-
pared the results for high- and low-risk groups, 
to discuss the impact of model genes on immune 
cells, stromal cells, and methylation.

qRT-PCR
The differences in the expression levels of the 

two core model genes in HCC and normal liver 
cells were confirmed by reverse transcription and 
quantitative real-time PCR. Quantitative PCR 
was performed on the QuantStudio 3 system 
(Thermo Fisher Scientific, Waltham, MA, USA) 
using ChamQ Universal SYBR qPCR Master 
Mix (Vazyme, China). After normalization, the 
relative expression of mRNA was calculated us-
ing the 2ΔΔCT method. The primer sequences 
are shown in Table I.

Cell Viability Assay
Cell viability assay was measured using 3-(4,5-di-

methyl-2-thiazolyl)-2,5-diphenyl- 2-H-tetrazoli um 
bromide (MTT) assay. The cytotoxicity of com-
pounds was tested in Hep3B, Huh7 cells. Cells were 
plated in 96-well plates at a density of 5×103 per 
well. After being incubated overnight, cells were 
treated with FerriSeltz and G6PDi-1 at 10 μM and 
incubated for 72 h. Then, 0.5 mg/ml of MTT 50 μL 
was added to each well and incubated for 4 h. The 
solution was removed, and 150 μM dimethyl sulf-
oxide was added to each well. Finally, we measured 
the absorbance at 490 nm.

Molecular Docking
We obtained the experimental crystal structure 

of the PON1 complex (Protein ID: 1V04) from 
Protein Data Bank. PubChem (https://pubchem.
ncbi.nlm.nih.gov/) provided the three-dimension-
al structure of the drug. The protein’s water 
molecules and ligands were removed, and polar 
hydrogen atoms and partial charges were added 
to MOE. The energy of the drug was then min-
imized. Using the all-atom docking method, the 
docked ligands continued to attack the pockets on 
the protein surface until the most stable docking 
complex was reached. Scoring energy is the aver-
age of trials using the London dG scoring func-
tion, upgraded with two uncorrelated refinements 
using the triangle Matcher method. Finally, the 
2D map, 3D map, and pocket docking map of the 
ligand-protein docking were obtained. All other 
parameters are set to default unless otherwise 
specified.

Table I. Primer Nucleotide Sequences for Verification of Differentially Expressed mRNAs.

	 Gene name	 Forward primer	 Reverse primer

GSR	 AGAAATCATCCGTGGCCATGCA	 ACCAACAATGACGCTGCGGC
G6PD	 TGAGCCAGATAGGCTGGAA	 TAACGCAGGCGATGTTGTC
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Statistical Analysis
One-way ANOVA was used to compare gene 

expression levels between normal lung tissue and 
HCC tissue, while Pearson’s chi-square test was 
used to compare categorical variables. We used 
the Kaplan-Meier method, Lasso regression, and 
two-sided log-rank test to compare the survival 
prognosis of normal liver tissue and HCC tissue. 
We assessed the independent prognostic value of 
risk models using univariate and multivariate Cox 
regression models. We used the Mann-Whitney 
test to compare immune cell infiltration, immune 
function activation, and immune checkpoints be-
tween different groups. All the statistical analy-
ses were performed using the R software (v4.1.2).

Results

To Identify OSRGs Associated with 
Hepatocellular Carcinoma

By comparing the differential expression of 
77 OSRGs between different tissues from TCGA 
data, we obtained 59 differentially expressed 
target genes (p-value <0.01). Protein–protein in-
teraction (PPI) analysis was then performed to 
explore the interaction between these DEOSRGs. 
The minimum interaction score required for PPI 
analysis was set to 0.9 (highest confidence), and 
the interaction is shown in Figure 1B. The DEOS-
RG correlation network is shown in Figure 1C.

Validation of Tumor Typing of 
DEOSRGs in HCC Samples

To further investigate the association between 
the expression of 59 DEORGs and HCC, we per-
formed a consensus clustering analysis on HCC 
samples from the TCGA cohort. By comparing 
the results of changing the clustering variable (k) 
from 2 to 10, we found that when k takes a value 
of 2, the intra-group correlation is highest, and 
the inter-group correlation is low. (Figure 2A). To 
further verify the accuracy of typing, we used the 
cancer marker CD274 to analyze the differences 
between the normal group and the HCC group and 
between the typing groups (Figure 2C, D). Then 
we compared 374 HCC patients’ gene expression. 
Spectral and clinical features such as survival 
status (alive or dead), age (≤65 or >65 years), and 
TNM stage (stage I-stage IV) were displayed (Fig-
ure 2E). In addition, we also combined the clinical 
data of TCGA to compare the survival curves of 
the two types, and the results showed that there 
was a difference (p-value <0.001, Figure 2B).

Enrichment Analysis of DEOSRGs
Fifty-nine differential genes were subjected to 

function enrichment analysis. GO analysis results 
showed that the differential genes were mainly 
related to cellular response to oxidative stress, 
antioxidant response, cellular response to chem-
ical stress, response to reactive oxygen species, 
response to nutrient levels, stimulation of hydro-
gen peroxide, reactive oxygen species, metabolic 
processes, cellular responses to reactive oxygen 
species, mitochondrial gene expression, and mi-
tochondrial matrix processes. KEGG analysis re-
sults showed that differential genes were mainly 
associated with neurodegenerative mutations, lip-
ids and atherosclerosis, chemical carcinogenesis 
of reactive oxygen species, Parkinson’s disease, 
and the process of amyotrophic lateral sclerosis 
(Figure 3).

Analysis of Prognostic Model and 
Validation of Prognostic Model 
Genes Based on TCGA

Establishment of Prognostic Model
Based on 374 HCC samples in the TCGA da-

tabase, patients were screened for their complete 
survival information for subsequent analysis. 
Univariate Cox regression analysis was used for 
the initial screening of prognostic model genes. 
Twenty-five genes meeting the pFilter=0.05 cri-
teria were retained for further analysis, among 
which, 23 genes (TXN, NQO1, HMOX1, HAD-
HA, G6PD, GSR, CALM1, OSER1, MRPL44, 
CASP3, ADPRS, POLR1C, G3BP1, MAPK1, OS-
GIN2, GTPBP3, OXSR1, CRH, CARS2, MAPK8, 
OGG1, PNPT1, RYR1) with HRs >1, suggest-
ing risk genes, while the remaining two genes 
(PON1, CAT) had HRs <1, suggesting protection 
genes (Figure 4A). By performing the least abso-
lute shrinkage and selection operator (LASSO) 
Cox regression analysis, a prognostic model was 
constructed according to the optimal λ value 
(Figure 4B, C). The model was corrected with 
six genes involved in the construction of the 
model. The risk score was calculated by the for-
mula as follows: Risk Score = (0.029* CARS2) + 
(0.010* GSR) + (0.003* G6PD) + (-0.001* PON1) 
+ (0.024* ADPRS) + (0.007* OGG1). The medi-
an was calculated using the risk score formula 
as a reference; 92 patients were assigned to the 
low-risk group and 92 to the high-risk group. 
t-SNE and Principal component analysis (PCA) 
showed that HCC patients were divided into two 
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clusters according to the simulated risk score. 
Patients in the high-risk group had more deaths 
and shorter survival times than the low-risk 
group. Performing KM analysis between the 
low-risk and high-risk groups, we found a sig-
nificant difference (p-value <0.001). To further 
evaluate the sensitivity and specificity of the 
new model, we applied time-dependent ROC 
and clinical characteristics ROC survival anal-
ysis. The areas under the time-dependent ROC 

curve (AUC) at 1, 3, and 5 years were 0.768, 
0.696, and 0.698, indicating significant results 
(AUC > 0.650, Figure 5A-C).

Validation of the Gene Model in 
the TCGA Testing Set

In the testing set, 88 patients were assigned to 
the low-risk group and 95 to the high-risk group. 
t-SNE and principal component analysis (PCA) 
showed that HCC patients were divided into two 

Figure 1. DEOSRGs and their interactions. A, DEOSRGs between normal and tumor tissues (blue: low expression level; red: 
high expression level). B, PPI network (taken the highest confidence = 0.9). C, Gene correlation network (red line: positive 
correlation; blue line: negative correlation. Shades of color determined the strength of the correlation). *p < 0.05, **p < 0.001, 
***p < 0.0001.
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clusters according to the simulated risk score. Pa-
tients in the high-risk group had more deaths and 
shorter survival times than the low-risk group. 
After performing a KM analysis of the low-risk 
and high-risk groups, we found a significant dif-
ference. The areas under the ROC curve (AUC) 
at 1, 3, and 5 years were 0.767, 0.675, and 0.605 
(Figure 5B-D).

Independent Prediction of 
Prognostic Model

In the previous section, we obtained a prog-
nostic model. To verify the availability of the 
prognostic model, we used Cox regression analy-
sis to evaluate whether the risk score of the prog-
nostic model constructed from prognostic related 
DEOSRGs could be used as an independent prog-
nostic factor. Univariate Cox regression analysis 
showed that age, risk score, and stage were inde-
pendent factors for poor survival (p-value <0.05, 
Figure 6A). These three independent factors were 
further subjected to multivariate analysis, and the 
results showed that risk score was an independent 

factor for poor survival (p-value <0.001, Hazard 
ratio=1.487, Figure 6B). In addition, we generat-
ed a heatmap of clinical characteristics for HCC 
patients (Figure 6C). 

Gene Enrichment Analysis and 
Clinical Characteristics Correlations 
of Different Risk Subgroup

We used GSEA analysis to compare gene ex-
pression between different groups based on the 
prognostic model. The KEGG pathway enrich-
ment results revealed that apoptosis-related cell 
adhesion molecules cam, cytokine receptor inter-
actions, Ecm-receptor interactions, hematopoietic 
cell lines, and Leishmania infection were signifi-
cantly increased in high-risk HCC patients. In 
contrast, multiple cancer-related functions such 
as drug metabolism cytochrome P450, fatty acid 
metabolism, glycine serine, threonine metabolism, 
primary gallbladder acid biosynthesis, and reti-
nol metabolism were up-regulated in the low-risk 
group (Figure 7A). GO pathway enrichment results 
showed that immune responses were up-regulated 

Figure 2. HCC typing based on DEOSRGs. A, The 374 HCC patients were divided into two clusters according to the consensus 
clustering matrix (k = 2). B, Kaplan-Meier OS curves of the two clusters. C, Difference analysis of the cancer marker CD274 
between the normal group and the HCC group. D, Difference analysis of the cancer marker CD274 between subgroups. E, Heatmap 
of clinicopathological features of the two clusters of differentially expressed genes. *p < 0.05, **p < 0.001, ***p < 0.0001.
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in the high-risk group, while drug- and fatty ac-
id-metabolism-related functions were up-regulated 
in the low-risk group (Figure 7B). Then, we inves-
tigated the relation of different risk subgroups with 
clinical characteristics, in which Grade, stage and 
T were statistically significant (Figure 7C).

Immune-Related Analysis
For immune-related analysis, based on enrich-

ment analysis (ssGSEA), we further compared 
immune cell correlations and immune-related 
pathway immune checkpoints between different 
groups. In the analysis of immune cell infiltration 

Figure 3. Bar and bubble charts of GO and KEGG enrichment (longer bars and larger bubbles indicated more gene enrichment).
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in different groups combined with the simulation 
analysis results of different platforms (Figure 
8A), we found that the immune cell infiltration re-
sponse of novel oxidative stress-related gene mod-
els was significantly upregulated in HCC. In the 
analysis of immune-related functions, we found 
that the expression of immune-related functions 
in the high-risk group was higher than that in the 
low-risk group, except for Type_I_IFN_Reponse 
and Type_II_IFN_Reponse. This indicates that 
inhibiting the production and release of inter-
feron I and II is one of the leading causes of 
hepatocarcinogenesis (Figure 8B). Considering 
the importance of checkpoint inhibitor-based im-
munotherapy for HCC, a differential analysis 

of immune checkpoints in different groups was 
conducted. The expression of all checkpoints in 
the high-risk group was higher, and the differ-
ences were significant (Figure 8C). By analyzing 
the effect of oxidative stress-related gene models 
on m6a-related modifications, the methylation 
expression levels of METTL3, FTO, YTHDF1, 
YTHDF2, RBM15, WTAP, YTHDC1, YTHDF2, 
ALKBH5 and HNRNPC were found to be high-
er in the high-risk group (Figure 8D). Through 
tumor microenvironment correlation analysis, a 
significant correlation can be seen between the 
content of immune cells and stromal cells and 
the patient’s risk score (Figure 8E). Finally, the 
results of a stem cell correlation analysis showed 

Figure 4. Screening of genes in model construction. A, Univariate cox regression analysis. B, LASSO regression of DEOSRGs. 
C, Cross-validation of parameter selection in LASSO regression. *p < 0.05, **p < 0.001, ***p < 0.0001.
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that RNA stem cells were significantly correlated 
with risk scores, while DNA stem cells had no 
correlation with risk scores (Figure 8F).

Validation of the Role of Model Genes 
in Hepatocellular Carcinoma

The expression levels of six genes in HCC and 
paired adjacent normal tissues were compared to 
explore the clinical significance of this feature. To 
investigate the protein expression of model genes, 

we investigated the immunohistochemical results 
of these six differential genes in normal liver 
tissue and tumor tissue using the Human Protein 
Atlas database (https://www.proteinatlas.org/). 
The results showed that the expression of these 
six genes was significantly different in the two 
tissues (Figure 9B). To investigate the mRNA ex-
pression of model genes, we used the UALCAN 
tool (http://ualcan.path.uab.edu/) to study their 
mRNA expression levels and found that CARS2, 

Figure 5. Build self-validated risk prediction model. A, 185 patients in TCGA cohort were included in the training set (B) 184 
patients in TCGA cohort were included in the validation set (C-D) ROC, t-SNE, PCA analysis was performed on patients with 
different risk levels.
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GSR, G6PD, ADPRS, OGG1 were up-regulated, 
while PON1 was down-regulated (Figure 9A). 
Next, we constructed a PPI network from the 
six model risk genes using the String database. 
Figure 9C shows that GSR and G6PD are at the 
center of the network, suggesting that these genes 
may be the core genes in oxidative stress-related 
risk models. Therefore, we used real-time quanti-
tative PCR technology to confirm the expression 

levels of these two key genes in HCC and human 
normal hepatocytes. As shown in Figure 9D, the 
expression levels of GSR and G6PD were higher 
in HCC than in normal hepatocytes LO2. We ver-
ified the biological functions of GSR and G6PD in 
hepatocellular carcinoma by further in vitro ex-
periments. The proliferation ability of cells was 
evaluated by MTT assay. The use of FerriSeltz 
(GSR inhibitors) and G6PDi-1 (G6PD inhibitors) 

Figure 6. Univariate and multivariate Cox regression analysis to evaluate the clinical prognostic value of the signature. A, 
Univariate analysis. B, Multivariate analysis. C, Heat map of associations between clinicopathological features and risk groups. 
*p < 0.05, **p < 0.001, ***p < 0.0001.
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inhibited the proliferation of Huh7 and Hep3B 
cells (Figure 9E.F). Therefore, we determined 
that GSR and G6PD function as oncogenes in 
hepatocellular carcinoma, again showing that 
oxidative stress model genes are closely related 
to the progression of hepatocellular carcinoma.

Analysis of Gene Mutation Results 
To further understand the genetic characteristics 

of differential gene, mutation analysis was performed 

using the cBioPortal database (https://www.cbiopor-
tal.org/). TP53 had the highest mutation frequency 
(Figure 10A) among the different risk subgroups. 
The mutation evaluation rates of these six differential 
genes were all at low levels (Figure 10B).

Drug Sensitivity Analysis
The six model genes associated with prog-

nosis were analyzed with drug sensitivity and 
transcriptomic data, obtained from the Genomics 

Figure 7. Gene enrichment analysis and clinical characteristics correlations of different risk subgroup. A, KEGG pathway. B, 
GO pathway. C, Correlation analysis of different clinical features and risk subgroup. *p < 0.05, **p < 0.001, ***p < 0.0001.
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and Pharmacology Facility (https://discover.nci.
nih.gov/). The drug sensitivity analysis of the six 
model genes and the top 16 drug-related genes 
were selected for scatter plot drawing (Figure 11).

Molecular Docking Validation 
Drug Sensitivity Analysis

To further verify the sensitivity analysis results 
of model genes and drugs, PON1 (protein ID: 
1V04) was selected for molecular docking with four 
drugs (Asparaginase, Dexamethasone, Fludarabine, 
Fluphenazine, and Nelarabine). The docking re-
sults of PON1 and the highest-scoring Fluphenazine 

showed that Fluphenazine was wholly inserted in-
to the active pocket and formed hydrogen bonds 
at His115, His134, and Asp183, with a minimum 
binding energy(S) of -7.29 (Figure 12). The dock-
ing scoring results showed that the five drugs all 
matched well with the active region of PON1, in line 
with drug sensitivity results (Table II).

Discussion

In this study, we first investigated the differen-
tial expression of 77 OSRGs in HCC and normal 

Figure 8. Analysis of immune cells, immune function and immune checkpoints in different risk subgroup. A, Immune cell 
correlation analysis between high-risk groups and low-risk groups. B, Immune-related pathway analysis. C, Immune checkpoint 
analysis. D, m6A modification expression analysis. E, Tumor microenvironment correlation analysis. F, Stem cell correlation 
analysis. *p < 0.05, **p < 0.001, ***p < 0.0001.
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Figure 9. Valida-
tion of mRNA and 
protein expression 
of model genes. A, 
mRNA expression 
levels of six model 
genes in HCC sam-
ples and normal 
samples. B, Protein 
expression levels 
of six model genes 
in HCC samples 
and normal sam-
ples. C, PPI analy-
sis of model genes. 
D, The differences 
in the expression 
levels of the two 
core model genes 
in Huh7 cells and 
LO2 cells. E,F, 
Inhibition of GSR 
and G6PD expres-
sion could inhibit 
the proliferation of 
Huh7 and Hep3B. 
*p < 0.05, **p < 
0.001.
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tissues based on the TCGA database and the Gen-
eCards database, found 59 genes with differential 
expression associated with prognosis, and investi-
gated their impact on patient overall survival. We 
then found that the two clusters generated based on 
a consensus clustering analysis of DEOSRGs dif-
fered significantly in terms of their clinical charac-
teristics. To further evaluate the prognostic value 
of DEOSRGs, we constructed a prognostic model 
using Cox univariate and multivariate analysis and 
LASSO Cox regression analysis. Functional anal-
ysis showed that antioxidant responses, cellular 
responses to chemical stress, cellular responses 
to oxidative stress, responses to reactive oxygen 
species, responses to nutrient levels, stimulation of 
hydrogen peroxide, metabolic processes of reactive 
oxygen species, cellular responses to reactive ox-
ygen species, mitochondrial gene expression, and 
the mitochondrial matrix were significantly en-
riched in numerous differentially enriched results. 
These functions mainly focus on the accumulation 
of ROS in vivo and may participate in the form 
of lipid peroxidation caused by ROS. The results 
of the enrichment analysis were all closely related 
to the occurrence of HCC, and these relationships 
were found to be of profound significance for the 
deeper analysis of these model genes.

Then, we explored these six model genes 
(CARS2, GSR, G6PD, PON1, ADPRS, OGG1) 
and used them to predict the prognostic model 
of OS in HCC patients. CARS2 is a mitochondri-
al cysteine-specific aminoacyl-tRNA synthetase. 
Studies have shown that CARS2 can regulate 
the metabolism of sulfide and glutathione in 
cancer cells. Sulfide and glutathione are relat-
ed to the formation of reactive oxygen species 
and the sensitivity of cells to ferroptosis caused 
by the accumulation of reactive oxygen species; 
therefore, the regulation of CARS2 may promote 
tumor ferroptosis22,23. However, CARS2 has not 
been reported on HCC to date, and is expected to 
become a new prognostic marker for HCC. GSR 
is a glutathione reductase that forms an integrat-
ed network with the antioxidant system of TrxR1 
(thioredoxin reductase-1) and Nrf2 transcription 
factors against potentially oncogenic oxidative 
damage, as well as protecting cancer cells from 
oxidative death. When GSR mutations are inac-
tivated, the level of intracellular oxidative stress 
increases and the incidence of malignant tumors 
also increases. This study proves that GSR and 
oxidative stress determine the malignancy of 
hepatocellular carcinoma24. GSR is also closely 
related to the prognosis of hepatocellular carci-

Figure 10. Analysis of gene mutation results. A, Mutation frequencies of genes in different risk subgroup. B, Genetic variation 
of model genes.
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Figure 11. Drug Sensitivity Analysis. Sensitivity analysis of the top 16 pairs of genes and drugs for correlation. *p < 0.05, **p 
< 0.001, ***p < 0.0001.

Figure 12. Molecular docking results.A, 2D structure of Fluphenazine. B, 2D docking diagram of PON1 and Fluphenazine. C, 
Display of the active docking pocket of PON1 and Fluphenazine. D, 3D docking diagram of PON1 and Fluphenazine.
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noma. ADPRS, an ADP-ribosylserine hydrolase, 
has been implicated in hormonal status, tumor 
proliferation, and clinical outcomes25. However, 
there are few studies related to cancer at present, 
and ADPRS is also expected to become a new 
prognostic marker of HCC. 8-Oxoguanine DNA 
glycosylase (OGG1) is a critical functional pro-
tein in the human body. It is an essential protein 
for oxidative, stress-induced DNA demethylation 
and plays a crucial role in repairing DNA oxida-
tive damage. Oxidative damage caused by stress 
can easily lead to inflammatory reactions, and 
the inhibition of OGG1 can alleviate this to a 
certain extent. The inhibition of OGG1 in cancer 
cells is expected to be a new method of cancer 
treatment26. Studies have found that it is closely 
related to the clinical prognosis of thyroid cancer, 
pancreatic duct adenocarcinoma, leukemia, and 
lung adenocarcinoma27-30.Glucose-6-phosphate 
dehydrogenase (G6PD) is the primary regulator 
of the pentose phosphate pathway and plays an 
essential role in maintaining the balance of in-
tracellular NADPH and redox reactions. G6PD 
deficiency is the most common hereditary cel-
lular enzyme disease in humans, and previous 
studies have focused on hemolysis and anemia. 
In recent years, increasing attention has been paid 
to the importance of G6PD at the cellular level, 
development, and disease progression. Decreased 
G6PD activity, i.e., the disruption of intracellular 
redox balance, will lead to the dysregulation of 
cell growth and signaling, abnormal embryonic 
development, susceptibility to viruses, and the 
promotion of degenerative diseases31-33. Redox 
processes lead to oxidative stress in cancer cells 
and play an essential role in cancer cell growth 
and development34-38. Paraoxonase1 (PON1), the 
full name of aryldialkylphosphatase, is an es-
ter hydrolase present in serum and liver, which 
catalyzes hydrolysis xenobiotics such as organic 
phosphorus, unsaturated aliphatic esters, aromat-
ic carboxylic acid esters, carbamates, Etc. The 
liver is the only synthesis organ of this enzyme39. 
PON1 can hydrolyze ester bonds to generate 

hydroxyl radicals (a type of ROS), and the high-
ly accumulated ROS can induce ferroptosis in 
cancer cells. There have been studies on the cor-
relation between PON1 and the development of 
liver, kidney, breast, lung, and colon cancers40-44, 
proving that this gene may have important signif-
icance for cancer prognosis.

We performed an enrichment analysis of mod-
el genes, which showed that apoptosis-related 
cell adhesion molecules cam, cytokine receptor 
interactions, Ecm–receptor interactions, hema-
topoietic cell lines, Leishmania infection, and 
immune responses were up-regulated in the high-
risk group. Mutation analysis showed low mu-
tation frequencies in different risk subgroups, 
and few mutations in the domains of the six 
differential genes. To further verify the reliabil-
ity of model genes, we used the Human Protein 
Atlas database (https://www.proteinatlas.org/) 
and the UALCAN tool (http://ualcan.path.uab.
edu/) to verify model genes’ mRNA and protein 
expression, respectively. The results showed that 
CARS2, GSR, G6PD, ADPRS and OGG1 were 
up-regulated, while PON1 was down-regulated. 
Next, we used the string database to perform 
PPI analysis on six model genes. Using GSR and 
G6PD as core genes, we used qRT-RCR to verify 
that the expression of these two genes in HCC 
was higher than that in normal hepatocytes, and 
then used inhibitors to inhibit the expression of 
these two genes. The results showed that GSR and 
G6PD were oncogenes, again proving that the 
model genes are closely related to the occurrence 
of hepatocellular carcinoma.

From the perspective of drug analysis, the 
screened drugs are related to the corresponding 
target genes and the functions and pathways of 
enrichment analysis, mainly the production and 
accumulation of ROS caused by the imbalance 
of oxidants and antioxidants in the body. In ad-
dition, modulating the sensitivity of cancer cells 
to ferroptosis is the point of action of most drugs. 
A three-dimensional, longitudinal depth analysis 
network of target genes, functional pathways, and 

Table II. Binding energy of compounds with PON1.

	 Name	 S	 rmsd_refine	 E_conf	 E_place	 E_score1	 E_refine	 E_score2

Asparaginase	 -4.361905	 1.5004048	 -76.84069	 -36.11869	 -7.854554	 -20.03699	 -4.361905
Dexamethasone	 -6.354526	 1.074874	 169.44592	 -30.55642	 -5.635973	 -26.72658	 -6.354526
Fludarabine	 -5.916238	 2.1401742	 67.819473	 -59.29392	 -7.632897	 -32.57115	 -5.916238
Fluphenazine	 -7.294916	 1.5899478	 145.59474	 -48.47486	 -6.076586	 -36.45817	 -7.294916
Nelarabine	 -5.946387	 2.7024329	 18.972719	 -66.56839	 -7.129909	 -30.77202	 -5.946387
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drugs was established. Finally, we also performed 
a molecular docking between the target gene and 
the corresponding target drug, which theoretical-
ly proved the existence of a possible combination 
of the target gene and the target drug. However, 
this still needs to be further verified by experi-
ments.

Conclusions

Taken together, based on the DEOSRGs be-
tween the normal group and the HCC patient 
group, the score generated by the risk model of 
the six model genes is an independent risk factor 
for predicting overall survival in HCC patients. 
We believe that these six model genes are closely 
related to HCC. Combined with the relationship 
between differentially expressed genes in low-
risk and high-risk groups and the immunity and 
drug sensitivity of HCC, our study provides a 
new independent prognostic indicator for HCC 
patients. It also provides a necessary theoretical 
basis and direction for the immunotherapy and 
drug treatment of oxidative stress and HCC-relat-
ed genes in the future.
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