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pression of the bone formation/remodeling-as-
sociated biomarkers via antagonizing Wnt sig-
naling. It suggests that sclerostin might be an 
effective target for T2DM-associated bone frac-
ture and delayed fracture healing.
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Introduction

Increased fracture risk, traditionally conceived 
to be associated with type 1 diabetes, has recently 
been of great concern in patients with type 2 dia-
betes. Type 2 diabetes mellitus (T2DM) is usually 
complicated with a decreased bone mineral den-
sity1,2, which promotes the risk of fractures3,4, and 
delays the fracture healing5. A variable increase 
ranging from 20% to 3-fold in fracture risk has 
been reported in T2DM, depending on the skele-
tal site, diabetes duration and study design6,7. Also, 
there are significant local inflammation responses 
to bone fracture. Furthermore, there are increased 
levels in the local fracture site of inflammatory 
cytokines, which coordinate the balance between 
cartilage production and removal, the balance 
between bone formation and remodeling8. In mo-
lecular levels, bone formation/remodeling-associ-
ated biomarkers have been deregulated in T2DM 
patients. Osteocalcin, an osteoblast-produced cal-
cium-binding substance, can be taken as a nega-
tive biomarker for osteoporosis9,10 and significant 

Abstract. – OBJECTIVE: Bone formation/re-
modeling-associated biomarkers, such as os-
teocalcin, amino pro-peptide of type 1 collagen 
(P1NP) and CrossLaps (CTX) have been deregu-
lated in type 2 diabetes mellitus (T2DM) patients. 
In particular, the T2DM-associated sclerostin 
markedly inhibits the bone formation, suppress-
es the osteoblast activity and downregulates the 
bone turnover. 

PATIENTS AND METHODS: In the present 
study, we examined the serum levels of scle-
rostin, osteocalcin, P1NP and CTX in the T2DM 
patients. We evaluated the regulation on osteo-
calcin, P1NP and CTX by sclerostin treatment 
in osteoblast hFOB 1.19 cells. Finally, we deter-
mined the mediation of Wnt signaling in the reg-
ulation by sclerostin on osteocalcin, P1NP and 
CTX in human osteoblast hFOB 1.19 cells. 

RESULTS: It was demonstrated that osteocal-
cin, P1NP and CTX were downregulated in the fe-
mur fracture of patients with T2DM, whereas the 
serum level of the sclerostin was markedly high-
er in the femur fracture of patients with T2DM. 
Moreover, the downregulated osteocalcin, P1NP 
or CTX was negatively associated with the upreg-
ulated sclerostin. In vitro results confirmed that 
sclerostin downregulated the expression of os-
teocalcin, P1NP and CTX in hFOB 1.19 cells. Al-
so, our results demonstrated that Wnt/β-catenin 
inhibition was associated with the sclerostin-me-
diated inhibition of osteocalcin, P1NP and CTX 
in hFOB 1.19 cells. The Wnt/β-catenin level was 
markedly inhibited by sclerostin treatment, and 
the siRNA-mediated downregulation of β-catenin 
reduced the levels of osteocalcin, P1NP and CTX. 

CONCLUSIONS: Our study demonstrated 
that the upregulated serum sclerostin level in 
the T2DM patients with fracture inhibited the ex-
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inverse association between serum osteocalcin and 
T2DM occurred9,10. Amino pro-peptide of type 1 
collagen (P1NP) is also a serum biomarker of bone 
formation9,10. CrossLaps (CTX), as a predictor of 
changes in bone mineral density13, can also be 
used as biomarkers in osteoporosis patients. Scle-
rostin is a 213-amino acid residues long secreted 
glycoprotein, with a C-terminal cysteine knot-like 
(CTCK) domain and posing antagonizing activity 
against the bone morphogenetic protein (BMP)14. 
Sclerostin is produced by the osteocyte and has 
anti-anabolic effects on bone formation15, and 
suppresses osteoblast activity and downregulates 
bone turnover14. Circulating sclerostin is increased 
in T2DM independently of gender and age, and 
is also correlated with duration of T2DM16. The 
increased circulating sclerostin is also associated 
with the atherosclerotic lesions in T2DM patients, 
via modulating Wnt signaling17. Moreover, the in-
creased sclerostin production in men with T2DM 
may be involved in the pathogenesis of increased 
skeletal fragility18.

In the present study, we examined the serum 
levels of sclerostin and other bone formation and 
remodeling-associated biomarkers, such as osteo-
calcin, P1NP and CTX in the T2DM patients; then, 
we evaluated the promotion to osteocalcin, P1NP 
and CTX by sclerostin treatment in osteoblast 
hFOB 1.19 cells. Finally, we determined the media-
tion of Wnt signaling in the regulation by sclerostin 
on osteocalcin, P1NP and CTX in hFOB 1.19 cells. 
Our study implies the regulation by sclerostin on 
bone formation in osteoblast cells.

Patients and Methods

Serum Samples from Femur Fracture of 
Patients with or without T2DM

32 T2DM patients with femur fracture were 
implicated in this study. 27 cases of non-T2DM 
patients with hip fracture were taken as control. 
All serum samples from venous blood were col-
lected from subjects with hip fracture when pa-
tients registered at the Emergency Department. 
Detailed characteristics of these subjects were de-
scribed in Table I. Written consent was obtained 
from each subject before the study. The study was 
approved by the Ethics Committee of Nanfang 
Hospital, Southern Medical University.

Cells Medium and Reagents
Human osteoblastic hFOB 1.19 cell line was 

purchased from the cell resource center of Chinese 

Academy of Medical Sciences (Beijing, China) 
and was cultured in Dulbecco’s modified Eagle’s 
medium (DMEM) (Invitrogen, Carlsbad, CA, 
USA), which was supplemented with 1% Non-Es-
sential Amino Acids (NEAA, Gibco, Rockville, 
MD, USA), 2 mM glutamine (Sigma-Aldrich Co., 
St. Louis, MO, USA), and 10% (v/v) fetal bovine 
serum (FBS) (Invitrogen, Carlsbad, CA, USA), at 
37°C in humidified incubator with 5% CO2. Cells 
with more than 80% confluence were harvested 
with 0.25% trypsin-EDTA solution (Ameresco, 
Framingham, MA, USA) and then seeded in dish-
es or in plates. Recombinant human sclerostin 
was purchased from ACRObiosystems (Newark, 
DE, USA) and was dissolved in dimethyl sulfox-
ide (DMSO) (Gibco, Rockville, MD, USA) with 
a storage concentration of 1 mg/ml. Wnt agonist 
(BML-284) (Santa Cruz Biotechnology, Santa 
Cruz, CA, USA) was also dissolved in DMSO 
at a concentration of 100 μM before use. siR-
NA-β-catenin (NM_001098209) or siRNA-con-
trol (Scramble RNA) were purchased from Santa 
Cruz Biotechnology (Santa Cruz, CA, USA) and 
were transfected with hFOB 1.19 cells by HiPer-
Fect Transfection Reagent (QIAGEN, Valencia, 
CA, USA), with a concentration of 25 or 50 nM.

Enzyme-linked Immunosorbent Assay 
(ELISA) for Sclerostin and Other 
Cytokines

Solid phase enzyme-linked immunosorbent assay 
(ELISA) was performed to quantify serum or super-
natant levels of osteocalcin, P1NP, CrossLaps (CTX) 
or sclerostin with the ELISA kit for each marker 
(osteocalcin, P1NP, CTX or sclerostin) (Abnova, 
Walnut, CA, USA) according to the kit’s manual. In 
brief, the antibody-precoated microplates (monoclo-
nal mouse anti-human antibody against osteocalcin, 
P1NP, CTX or sclerostin) were firstly blocked with 
1% Bovine Serum Albumin (BSA) (Ameresco, 
Framingham, MA, USA) at 4°C overnight, then 
were inoculated with serially-diluted standards or 
samples, and finally were incubated with the horse-
radish peroxidase-conjugated polyclonal antibody 
against osteocalcin, P1NP, CTX or sclerostin). Four-
time washing with 1x Tris-buffered saline contain-
ing 0.05% Tween 20 (TBS-T) was performed before 
each incubation. The optical density of each well was 
determined immediately at 450 nm. 

Quantitatively Real-time PCR (qRT-PCR) 
Analysis

mRNA samples were isolated with the Mag-
netic mRNA Isolation Kit (New England Biolabs, 
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Ipswich, MA, USA) following the kit’s manual 
and were added with the SUPERase•In™ RNase 
Inhibitor (Thermo Scientific, Rockford, IL, USA). 
qRT-PCR was performed with the SYBR green 
One-Step RT-PCR Kit (Takara, Tokyo, Japan) 
accordingly. Primers for osteocalcin (Primer 
Forward (PF): 5’-GGCAGATTCCCCCTAGAC-
CC-3’, Primer Reverse (PR): 5’-CGATGAGGAG-
GGGCATGCCt-3’), P1NP (PF: 5’-GCTGGC-
CCCAAAGGATCTCCT-3’, PR: 5’-GCAGAC-
CAGCTTCACCGGGACG-3’), Primers for CTX 
(PF: 5’-GAAGCTGGTCTGCCTGGTG-3’, PR: 
5’-ATCAGGACCAGGGCTGCCAG-3’), Primers 
for β-catenin (PF: 5’-AAGGAGCTAAAATGG-
CAGTGC-3’, PR: 5’-TGTTGAGCAAGGCAAC-
CATT-3’), or for β-actin (PF: 5’-GTA CGC CTC 
TGG CCG TAC C-3’, PR: 5’-TGG GCA CAG 
TGT GGG TGA-3’) were synthesized by Invit-
rogen China (Shanghai, China). qRT-PCR was 
performed at 42°C for 5 minutes, at 95°C for 10 
seconds, and then was performed at 95°C for 5 
seconds, 60°C for 20 seconds (for 40 cycles). Rel-
ative mRNA level was calculated by ∆∆Ct meth-
od, with β-actin as control19.

Western Blotting Assay
Cytosolic protein samples were prepared with 

Nuclear/Cytosol Fractionation Kit (BioVision, 
San Diego, CA, USA) following the kit’s manu-
al and were supplemented with a protease inhib-
itor cocktail (Abcam, Cambridge, UK). Cellular 
or nuclear protein samples were firstly separat-
ed with sodium dodecyl sulfate-polyacrylamide 
gel electrophoresis (SDS-PAGE) (10%); then, 
were transferred onto the polyvinylidene fluo-
ride hydrophobic membrane (Millipore, Bed-
ford, MA, USA). The non-specific binding sites 
were blocked overnight with 2% bovine serum 
albumin (BSA) (Sigma-Aldrich, St. Louis, MO, 
USA); specific binding to β-catenin (cytosolic) or 

to phospho-β-catenin (Ser675) (cytosolic) were 
examined post the incubation with rabbit-an-
ti-human polyclone antibody against β-catenin or 
against phospho-β-catenin (Ser675) overnight at 
4°C and post the incubation with the incubation 
with goat-anti-rabbit IgG conjugated to horserad-
ish peroxidase (Pierce, Rockford, IL, USA). Four-
time washing of the membrane was performed 
with 1x TBS-T, the specific binding band was 
visualized with enhanced chemiluminescence 
kit (Thermo Scientific, Rockford, IL, USA), with 
β-actin as control. 

Statistical Analysis
Data was presented as mean ± standard error of 

the mean (SEM) and was analyzed using Student’s 
t-test or using one-way ANOVA test on GraphPad 
Prism 5.0 (GraphPad Software, San Diego, CA, 
USA). A p-value=0.05 or less was considered sta-
tistically significant.

Results

Deregulated Bone Formation and 
Remodeling-associated Biomarkers in 
T2DM Patients with Femur Fracture

We examined serum levels of bone formation/
remodeling-associated biomarkers and sclerostin, 
such as osteocalcin, P1NP and CTX in the T2DM 
patients. Detailed clinicopathological character-
istics of the femur fracture of T2DM patients or 
of non-T2DM patients were indicated in Table 
I. The serum levels of LDL, fasting glucose and 
HbA1c were significantly higher in the T2DM pa-
tients. However, there was no difference in age 
and gender between the two groups. As shown 
in Figure 1A-C, the levels of osteocalcin, P1NP 
and CTX were significantly lower in the T2DM 
group of patients (p<0.001 or p<0.0001). Notably, 

Table I. Characteristics of patients with tibial fracture (T2DM/Non-T2DM).

Characteristics	 T2DM (n=32)	 Non-T2DM (n=27)	 p-value

Age (years)	 47.46 ± 6.28	 44.75 ± 4.80	 0.4361
Gender (M/F)a	 21/11	 17/10	 0.8315
BMI (kg/m2)b	 28.26 ± 0.92	 21.54 ± 0.75	 <0.001
LDL (mg/dL)	 2.76 ± 0.98	 2.12 ± 0.63	 <0.001
HDL (mg/dL)	 1.11 ± 0.28	 1.29 ± 0.29	 <0.001
Fasting glucose (mM)	 8.10 ± 2.57	 4.92 ± 0.64	 <0.001
DM duration (years)c	 14.52 ± 2.91	 /	 /
HbA1c (%)d	 8.94 ± 2.73	 5.24 ± 0.55	 <0.001

aM: Male, F: Female; bBMI: Body Mass Index; cDM: Diabetes mellitus; dGlycated hemoglobin A1c.
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the serum level of sclerostin was markedly higher 
in these T2DM samples (p<0.0001, Figure 1D). 
Furthermore, to evaluate the association of down-
regulated osteocalcin, P1NP and CTX with the 
upregulated sclerostin, linear regression analysis 
was performed. Figure 2A demonstrated that the 
serum osteocalcin was negatively associated with 
serum sclerostin level (R2=0.4707, p<0.0001). 
And such negative association was also found 
between the downregulated P1NP (R2=0.6746, 
p<0.0001, Figure 2B) or CTX (R2=0.4106, 
p<0.0001, Figure 2C) with the upregulated scle-
rostin. Taken together, we found the upregulation 
of sclerostin in association with the downregulat-
ed osteocalcin, P1NP and CTX in the femur frac-
ture of patients with T2DM.

Sclerostin Downregulates the Expression 
of Osteocalcin, P1NP and CTX in hFOB 
1.19 Cells

To further determine the possible regulation by 
sclerostin on the expression of bone formation/
remodeling-associated biomarkers, we treated 

 

hFOB 1.19 cells with recombinant sclerostin and 
re-examined the mRNA levels of osteocalcin, 
P1NP and CTX. As shown in Figure 3A, 5 or 10 
μg/ml of sclerostin markedly reduced the mRNA 
level of osteocalcin in hFOB 1.19 cells (p<0.01 
respectively). Figure 3B indicated that P1NP 
was also significantly downregulated by 2, 5 or 
10 μg/ml sclerostin (p<0.05, p<0.01 or p<0.001), 
dose-dependently. And the CTX mRNA level 
was also markedly lower in the sclerostin-treated 
hFOB 1.19 cells (p<0.05 or p<0.01, Figure 3C). 
Thus, we confirmed the downregulation by scle-
rostin on the expression of osteocalcin, P1NP and 
CTX in hFOB 1.19 cells.

Wnt Signaling involves in the 
Sclerostin-mediated Downregulation on 
the Expression of Osteocalcin, P1NP 
and CTX in hFOB 1.19 Cells

The activation of the Wnt signaling by the sta-
bilization of β-catenin20, which was accumulated 
in the cytoplasm, then, was translocated to the nu-
cleus to activate the transcription of target genes 

Figure 1. Serum levels of osteocalcin, P1NP, CTX and sclerostin in the femur bone fracture of patients with or without 
T2DM. Serum levels of osteocalcin (A), P1NP (B), CTX (C) and sclerostin (D) were examined with enzyme-linked immu-
nosorbent assay (ELISA) in femur bone fracture of patients with (n = 32) or without (n = 27) T2DM. Data were presented as 
means ± SEM. Statistical significance was considered when p=0.05 or less.
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by the binding of T-cell factor/lymphoid enhancer 
factor21. On the other side, the phosphorylation 
of β-catenin enables the recognition by ubiquitin 
and, then, leads to the degradation of β-catenin in 
the proteasome22. We supposed that Wnt/β-caten-
in signaling pathway might involve in the scleros-

Figure 2. Association of the reduced osteocalcin, P1NP or 
CTX level with the promoted sclerostin level in the femur 
bone fracture of patients with T2DM. Linear-regression 
analysis between the level of osteocalcin (A), P1NP (B) or 
CTX (C) and the level of sclerostin in the femur bone frac-
ture of patients with T2DM (n = 32). Statistical significance 
was considered with a p-value=0.05 or less.

Figure 3. mRNA levels of osteocalcin, P1NP and CTX 
in the sclerostin-treated hFOB 1.19 cells. hFOB 1.19 cells 
were treated with 0, 1, 2, 5 or 10 μg/ml sclerostin for 12 h; 
then, the mRNA levels of osteocalcin (A), P1NP (B) or CTX 
(C) was quantified with specific primers for each biomark-
er. Data are presented as means ± SEM for triple indepen-
dent assays. Statistical significance was shown *: p<0.05, **: 
p<0.01, ***: p<0.001, ns: no significance.
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tin-mediated downregulation on the expression of 
bone formation/remodeling-associated biomark-
ers and, therefore, we examined the level of β-cat-
enin with or without phosphorylation. Western 
blotting results (Figure 4A) demonstrated that, 
though the Wnt agonist (1 μM) or the sclerostin 
treatment (2 or 5 μg/ml) did not regulate the pro-
tein level of β-catenin in the cytoplasm (Figure 

Figure 4. Promotion of Wnt/β-catenin signaling in scle-
rostin-treated hFOB 1.19 cells. A, Western blot analysis 
of β-catenin with or without phosphorylation (Ser675) in 
hFOB 1.19 cells, post the treatment with 2 or 5 μg/ml scle-
rostin or with 1 μM Wnt agonist (BML-284) for 24 h; B and 
C, Relative level of β-catenin without phosphorylation (B) 
or with phosphorylation (C) in the sclerostin or Wnt ago-
nist-treated hFOB 1.19 cells, with β-actin as internal con-
trol. Each experiment was performed independently in trip-
licate. Statistical significance was shown as *p <0.05 or **p 
<0.01, ns: no significance.

3B), the phosphorylated β-catenin (Ser675) in the 
cytoplasm was significantly downregulated by the 
Wnt agonist (p< 0.001, Figure 3C), whereas the 
sclerostin treatment with 5 μg/ml markedly up-
regulated the phosphorylated β-catenin (Ser675) 
(cytoplasm) in hFOB 1.19 cells.

To reconfirm the involvement of Wnt signaling 
pathway in the sclerostin-mediated downregula-
tion on the expression of osteocalcin, P1NP and 
CTX, we then knocked down β-catenin expres-
sion with RNAi technology. As shown in Figure 
5A, either 25 or 50 nM siRNA-β-catenin mark-
edly reduced the β-catenin mRNA level in hFOB 
1.19 cells, compared to siRNA-control. And the 
Western blotting (Figure 5B) demonstrated that 
β-catenin (cytoplasm) was significantly downreg-
ulated by 25 or 50 nM siRNA-β-catenin (p<0.001 
respectively, Figure 5C) than siRNA-control. 
More interestingly, the transfection with 25 or 
50 nM siRNA-β-catenin also markedly reduced 
the expression of osteocalcin in hFOB 1.19 cells 
(p<0.05 or p<0.01, Figure 5D). The mRNA lev-
el of both P1NP and CTX was downregulated by 
siRNA-β-catenin (p<0.01 or p<0.001, Figure 5E 
and 5F). Therefore, we confirmed the involvement 
of Wnt signaling pathway in the sclerostin-medi-
ated downregulation on the expression of bone 
formation/remodeling-associated biomarkers in 
hFOB 1.19 cells.

Discussion

T2DM is associated with increased fracture 
risk and delayed fracture healing. The previous 
studies23 recognized the inhibited maturation 
of primary human osteoblasts and reduced os-
teoblast function. The current study identified 
the inhibition by sclerostin on the expression of 
bone formation/remodeling-related biomarkers, 
such as osteocalcin, P1NP and CTX. Sclerostin 
is increased in the T2DM patients16 and inhib-
its the bone formation15 or is associated with an 
increased bone fracture24. Increased sclerostin 
production in men with T2DM may be involved 
in the pathogenesis of increased skeletal fragili-
ty18. However, it is not clear the molecular mech-
anisms. In the present study, we recognized the 
deregulated bone formation and remodeling-as-
sociated biomarkers in the T2DM patients with 
femur fracture, such as osteocalcin, P1NP and 
CTX. However, the serum level of sclerostin was 
markedly higher in the femur fracture of patients 
with T2DM. Moreover, the downregulated osteo-
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calcin, P1NP or CTX was negatively associated 
with the upregulated sclerostin. Therefore, the 
upregulation of sclerostin was associated with the 
downregulated osteocalcin, P1NP and CTX in the 
femur fracture of patients with T2DM. Further in 
vitro results confirmed that sclerostin downreg-
ulated the expression of osteocalcin, P1NP and 
CTX in hFOB 1.19 cells. 

Wnt/β-catenin signaling pathway has been rec-
ognized to positively regulate the bone formation 
and maintenance25, whereas such signaling path-

way was inhibited by sclerostin26,27. The activated 
Wnt signaling is accumulated in the cytoplasm 
and then, is translocated to the nucleus to activate 
the transcription of target genes21. The previous 
studies28 have already identified the involvement 
of Wnt signaling pathway in the abnormal metab-
olism and β-cell biology in diabetes mellitus. Pa-
tients with T2DM showed higher levels of circu-
lating sclerostin that were associated with disease 
duration but inversely related to bone turnover 
markers (BTMs)18,29. However, little is known 

Figure 5. Promotion of Wnt/β-catenin signaling in sclerostin-treated hFOB 1.19 cells. A, mRNA level of β-catenin in the 
hFOB 1.19 cells, which were transfected with 25 or 50 nM siRNA-β-catenin or siRNA-control and were inoculated for 12 h. B 
and C, Western blot analysis (B) and relative level (C) of β-catenin to β-actin in the siRNA-β-catenin- or siRNA-control-trans-
fected hFOB 1.19 cells post an inoculation for 24 h. D-F, Relative mRNA levels of osteocalcin (D), P1NP (E) or CTX (F) in the 
siRNA-β-catenin- or siRNA-control-transfected hFOB 1.19 cells post an inoculation for 24 h. Each experiment was performed 
independently in triplicate. Statistical significance was shown as * p <0.05, ** p <0.01 or *** p <0.001, ns: no significance.
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about the Wnt-targeted bone formation/remodel-
ing-associated biomarkers in T2DM. Our findings 
found that Wnt/β-catenin inhibition was associat-
ed with the sclerostin-mediated inhibition of bone 
formation/remodeling-related biomarkers, such as 
osteocalcin, P1NP and CTX in human osteoblast 
hFOB 1.19 cells. The Wnt/β-catenin level was 
markedly inhibited by sclerostin treatment, and 
the siRNA-mediated downregulation of β-catenin 
reduced the levels of osteocalcin, P1NP and CTX. 

Conclusions

Our work demonstrated that the upregulated 
serum sclerostin level in the T2DM patients with 
fracture inhibited the expression of bone forma-
tion/remodeling-associated biomarkers via antag-
onizing Wnt signaling. It suggests that sclerostin 
might be an effective target for T2DM-associated 
bone fracture and delayed fracture healing.
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