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Abstract. – OBJECTIVE: In view of the im-
portant role of risk prediction models in the clin-
ical diagnosis and treatment of sepsis, and the 
limitations of existing models in terms of timeli-
ness and interpretability, we intend to develop a 
real-time prediction model of sepsis with high 
timeliness and clinical interpretability. 

PATIENTS AND METHODS: We used eight 
real-time basic physiological monitoring indica-
tors of patients, including heart rate, respirato-
ry rate, oxygen saturation, mean arterial pres-
sure, systolic blood pressure, diastolic blood 
pressure, temperature and blood glucose, ex-
tracted three-hour dynamic feature sequences, 
and calculated 3 linear parameters (mean, stan-
dard deviation, and endpoint value), a 24-dimen-
sional feature vector was constructed, and final-
ly a real-time sepsis prediction model was con-
structed based on the Local Interpretable Mod-
el-Agnostic Explanation (LIME) interpretability 
method. 

RESULTS: The area under the receiver oper-
ating characteristic curve (AUROC), Accuracy 
and F1 scores of Extremely Randomized Trees 
we built were higher than those of other models, 
with AUROC above 0.76, showing the best per-
formance. The Imbalance XGBoost has a high 
specificity (0.86) in predicting sepsis. The LIME 
local interpretable model we built can display a 
large amount of valid model prediction details 
for clinical workers’ reference, including the pre-
diction probability and the influence of each fea-
ture on the prediction result, thus effectively as-
sisting the work of clinical workers and improv-
ing diagnostic efficiency. 

CONCLUSIONS: This model can provide a re-
al-time dynamic early warning of sepsis for crit-
ically ill patients under supervision and provide 
reference for clinical decision support. At the 
same time, interpretive analysis of sepsis pre-
diction models can improve the credibility of the 
models.
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Introduction

Sepsis is a clinical syndrome of life-threat-
ening organ dysfunction caused by the body’s 
disordered response to infection. It has a high 
morbidity and mortality rate and is a serious 
threat to the life and health of all mankind in the 
world. The prospective study, which examined 
data from 730 medical centers in 84 countries, 
showed that 29.5% of intensive care unit (ICU) 
patients worldwide developed sepsis, with a mor-
tality rate of 25.8% in the ICU and 35.3% in the 
hospital, respectively. These data are significantly 
higher than the general population (ICU mean 
mortality 16.2%, hospital mean mortality 22.4%). 
In China, there are 20 cases of sepsis in every 
100 ICU patients, and the proportion of septic 
shock is as high as 53.3%. In addition, sepsis ac-
counted for 29.6% of total mortality and 32.1% of 
in-hospital mortality in ICU patients. Early iden-
tification of sepsis patients and the initiation of 
rapid and standardized cluster therapy (Bundle) 
have always been the core of the implementa-
tion of sepsis diagnosis and treatment guidelines. 
Patients with sepsis who completed the Bundle 
early after admission had a lower in-hospital 
mortality rate (22.6% vs. 23.6%), and a 1.04-fold 
increase in mortality for each hour of delay. Re-
cently, it has been proposed that the 1-hour Bun-
dle therapy strategy should replace the previous 
3-hour and 6-hour bundles and become the basic 
strategy for initial management of septic shock. 
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Real-time sepsis prediction based on basic physiological indicators

The pathogenesis of sepsis is complex, and the 
disease is difficult to control once it occurs, and 
the microbial diagnosis requires bacterial culture, 
which takes a long time. Therefore, it is of great 
significance to establish an intelligent system for 
real-time diagnosis of sepsis and early warning of 
the occurrence of sepsis for greatly reducing the 
clinical mortality of patients.

Currently, a variety of scoring systems have 
been created to evaluate the condition and prog-
nosis of critical diseases, including non-specific 
scoring systems, such as Acute Physiological and 
Chronic Health Score (APACHE II score) and 
modified Early Warning score (MEWS score), 
as well as sepsis specific scoring system such as 
emergency sepsis mortality Score (MEDS score) 
and sepsis related Sequential Organ Failure score 
(SOFA score). The MEDS score was designed 
to rapidly assess the prognosis of patients with 
suspected infection, but studies have shown that 
it may underestimate mortality in patients with 
severe sepsis. SOFA scores are based on relevant 
laboratory parameters to objectively and dynam-
ically assess the development and progression 
of organ dysfunction; however, each laboratory 
parameter is based on the patient’s worst-case 
scenario for the day, which can affect timely di-
agnosis. The MEWS score requires only six phys-
iological parameters and can be scored quickly, 
but it is not sensitive enough to assess the severity 
of sepsis. The APACHE II score is considered the 
gold standard for evaluating criticality and prog-
nosis, with the disadvantage that it requires 12 
clinical parameters and 7 laboratory parameters, 
and laboratory test parameters are not available 
in real time, making it a complex and time-con-
suming tool with limited application in emergen-
cy medicine. Therefore, a simple, real-time and 
accurate scoring system based on patients’ basic 
physiological parameters is urgently needed to 
evaluate the condition and prognosis of patients 
with sepsis.

Machine learning technology is playing an 
increasingly important role in medical research, 
especially in the field of critical care medicine. 
The application of machine learning technology 
can well help intensive care physicians diagnose 
specific diseases, predict the outcome of diseases, 
and make clinical decisions-][][. In recent years, re-
searchers-][][][ have proposed many machine learn-
ing methods for sepsis prediction. Compared with 
traditional methods, machine learning methods 
can effectively improve the accuracy of sepsis 
prediction. However, machine learning model is 

equivalent to a black box in the process of predic-
tion. It feeds back a decision result through input. 
Although it improves the accuracy of prediction, 
it lacks interpretation. In the medical field, the 
risk of misjudgment is too great. It is not enough 
to only know the prediction accuracy of the mod-
el. Practitioners also need to know the judgment 
basis of each prediction, so as to analyze whether 
the prediction results are reliable. The interpre-
tation model can make users trust the model and 
its prediction results, which is helpful for the 
popularization of the model. Local Interpretable 
Model-Agnostic Explanation (LIME) is a mod-
el-independent, locally interpretable explanation. 
The machine learning model is explained by the 
relationship between the individual features and 
the predicted results.

Therefore, in view of the important auxiliary 
role of risk prediction model in the clinical diag-
nosis and treatment of sepsis, as well as the lim-
itations of existing models in terms of timeliness 
and explanatory ability, this study built a fast 
and clinically explanatory intelligent early warn-
ing method of sepsis based on the interpretable 
machine learning model and the use of patients’ 
basic physiological monitoring indicators.

Patients and Methods

Data Sources
Data for this study were obtained from the 

medical information mark for intensive care IV 
(MIMIC-IV). Developed by MIT’s Computa-
tional Physiology Laboratory, it contains data 
on patients admitted to the ICU or Emergency 
Department at Beth Israel Deaconess Medical 
Center between 2008 and 2019. There are mainly 
two kinds of basic data. One is clinical data, in-
cluding demographic characteristics of patients, 
diagnostic information, laboratory testing infor-
mation, microbial culture, medical imaging infor-
mation, vital signs, etc. The other type of data is 
waveform data from bedside monitoring devices, 
which are vital sign parameters and event records 
(medical measures, medications). The database 
has been stripped of patient privacy information,, 
these parameters were used to determine the sur-
vival state of patients.

Study Cohort and Variable Selection
This study was conducted according to the 

Chinese Guidelines for Emergency Treatment of 
Sepsis/Septic Shock (2018) to screen patients with 
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sepsis. Patients with positive results of body fluid 
culture and antibiotics are considered infected. 
Infected patients with SOFA score ≥2 was con-
sidered as sepsis patients. ICU patients without 
sepsis were selected as control cohort. A total 
of 1,118 patients were screened, including 550 
patients with sepsis and 568 patients without sep-
sis. Based on the published methods, this study 
improved and used easy-to-collect real-time 
physiological indicators. There were 8 indicators 
included in the model: heart rate, systolic blood 
pressure, diastolic blood pressure, mean arterial 
pressure, respiratory rate, temperature, oxygen 
saturation and blood glucose. In order to reduce 
the dependence of sepsis prediction on long-
term feature sequence, the length of the feature 
sequence dependent on prediction was set as 3 
hours. This means that after the patient completes 
three hours of basic physiological indicators mon-
itoring, the model can start real-time prediction 
of sepsis. The extraction rules of dynamic fea-
tures were as follows: for patients with sepsis, the 
occurrence time of septic shock was taken as 0 
time, and the dynamic feature data was extracted 
3 hours before 0 time. For the control cohort: the 
end point of recording dynamic feature data was 
taken as time 0, and the dynamic feature data was 
extracted three hours before time 0.

Data Preprocessing
In the data queue, if the dynamic feature data 

is missing, the linear interpolation method is used 
to fill the missing value. Three linear parameters 
(mean, standard deviation and end point) were 
calculated from the extracted three-hour dynamic 
characteristic sequence to form a 24-dimensional 
feature vector, which was used as an indicator 
to determine whether patients developed sepsis. 
Then, by stratified sampling, all samples are 
pressed by 8:2 and divided into the training set 
and the test set. For the imbalance of positive and 
negative samples in the training set and the test 
set, we did not adopt the over-sampling method 
to make the model better, because we believe 
that maintaining the imbalance of positive and 
negative samples is more applicable to the actual 
clinical situation, which is conducive to better 
judging the effect of the model in the actual clin-
ical application.

Model Training
We compared five machine learning algo-

rithms, including Random Forest (RF), XGBoost, 
Extremely Randomized Trees (ET), Support Vec-

tor Machine (SVM), and imbalance-XGBoost. 
XGBoost adds a regularization term to the cost 
function to control the complexity of the model. 
The regularization term contains the number of 
leaf nodes in the tree and the sum of squares 
of the L2 modulus of the score output at each 
leaf node. From the perspective of Bias-vari-
ance tradeoff, the regularization term reduces 
the variance of the model, making the learned 
model simpler and preventing overfitting, which 
is also a feature of XGBoost that is superior to the 
traditional GBDT. Meanwhile, XGBoost supports 
parallelism. The imbalance-XGBoost we used has 
the function of weighted and focal losses on the 
basis of XGBoost, which can tackle binary la-
bel-imbalanced classification tasks. AUROC, Ac-
curacy, Sensitivity, Specificity and F1 score were 
used to evaluate and compare the performance of 
the model. Finally, the feature importance rank-
ing is calculated according to the optimal model.

Statistical Analysis
In this study, independent sample t-test was 

used to determine if there was a statistical dif-
ference in physiological indicators between the 
two groups. In addition, the DeLong test method 
was used to calculate whether the area under the 
receiver operating characteristic curve (AUROC) 
difference of each model was statistically signifi-
cant, so as to compare the predictive performance 
of each model. All tests were single tailed with 
an alpha level of 0.05 and were performed using 
the MATLAB software (V.R2016a) developed by 
MathWorks (Natick, MA, USA).

Results

Basic Physiological Indicators of Patients
A total of 1,118 patients with sepsis who met 

the criteria of sepsis were included in the study. 
Patients were randomly divided into the training 
group (894 cases) and the test group (224 cases) 
by a ratio of 8:2. t-test analysis was performed on 
physiological indicators between the two groups, 
and the results showed that there was no statisti-
cal difference in physiological indicators between 
the two groups, as shown in Table I.

Feature Importance Ranking
Based on the data after linear interpolation, 

three linear parameters (mean, standard devia-
tion and endpoint value) were calculated for the 
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3-hour characteristic sequence of 8 indicators, 
finally 24 features were obtained. Then the Ex-
tremely Randomized Trees is used to analyze the 
feature importance, and the average Gini index 
of each feature in each decision tree is calculated 
to rank the feature importance. As can be seen 
from Figure 1, in the three-hour dynamic feature 
sequence, the mean heart rate, standard deviation 
of arterial pressure, standard deviation of final 
heart rate, standard deviation of diastolic blood 
pressure, average respiratory rate, mean arterial 
pressure, final arterial pressure, and standard de-
viation of body temperature rank at the top, and 
are far higher than other characteristic variables. 
This indicates that these eight features are the 
most important for the prediction of sepsis.

Model Performance
In this study, the Accuracy, Sensitivity, Speci-

ficity, F1 scores and AUROC of the sepsis predic-

tion model built based on five machine learning 
algorithms are shown in Table II and Figure 2. The 
AUROC, Accuracy and F1 scores of Extremely 
Randomized Trees were all higher than those of 
other models, with AUROC above 0.76, showing 
the best performance. Among them, the AU-
ROC of Random Forest (0.74) was slightly lower 
than Extremely Randomized Trees (0.76), the 
Accuracy of random forest (0.70) was lower than 
Extremely Randomized Trees (0.71). Because the 
data samples are not completely balanced, the 
imbalance-XGBoost has a high specificity (0.86) 
in predicting sepsis, which means that when 
imbalance-XGBoost predicts a patient’s sepsis. 
The probability of the patient being diagnosed 
with sepsis is high, but its AUROC (0.72) is not 
outstanding. The Extremely Randomized Trees 
model maintained the best AUROC and was sig-
nificantly better than XGBoost model (p=0.038, 
DeLong test), SVM model (p=0.004, DeLong 

Table I. Comparison of basic physiological indicators between the training group and the test group.

	 Training group (n = 894)	 Test group (n = 224)	 p-value

Heart rate (times/min)	 86.1 (30.5-157.0)	 86.5 (43.0-137.5)	 0.814
Systolic blood pressure (mm/Hg)	 119.6 (48.0-191.0)	 115.5 (36.8-187.0)	 0.075
Diastolic blood pressure (mm/Hg)	 61.5 (10.0-116.0)	 61.9 (19.0-121.0)	 0.674
Mean arterial pressure (mm/Hg)	 77.8 (24.3-149.0)	 75.7 (8.0-127.0)	 0.081
Respiratory rate (times/min)	 19.8 (5.0-44.0)	 19.6 (6.0-52.0)	 0.594
Temperature (°C)	 36.8 (31.7-40.4)	 36.8 (33.1-39.9)	 0.738
Blood oxygen (%)	 96.0 (28.4-100.0)	 95.6 (23.0-100.0)	 0.418
Blood glucose (mg/dL)	 140.6 (42-309.0)	 139.3 (63.0-326.0)	 0.754

p < 0.05, the difference between groups was statistically significant.

Figure 1. Feature importance ranking.
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test), Random Forest model (p=0.025, DeLong 
test) and imbalance-XGBoost model (p=0.016, 
DeLong test).

We believe that only knowing the machine 
learning model to predict various performance 
indicators is not enough. In order to reduce the 

Table II. Comparison of results of different models.

	 Models	 Accuracy	 Specificity	 Sensitivity	 F1 scores	 AUROC 

ET	 0.71 (0.69-0.73)	 0.68 (0.67-0.69)	 0.71 (0.70-0.73)	 0.69 (0.68-0.71)	 0.76 (0.75-0.77)
XGBOOST	 0.65 (0.62-0.67)	 0.70 (0.70-0.71)	 0.63 (0.62-0.65)	 0.66 (0.65-0.68)	 0.73 (0.71-0.75)*
SVM	 0.60 (0.60-0.61)	 0.46 (0.45-0.47)	 0.62 (0.61-0.63)	 0.53 (0.51-0.54)	 0.65 (0.63-0.67)*
RF	 0.70 (0.69-0.71)	 0.71 (0.70-0.72)	 0.68 (0.68-0.69)	 0.70 (0.69-0.71)	 0.74 (0.71-0.76)*
Imb-XGBoost	 0.63 (0.62-0.64)	 0.86 (0.84-0.88)	 0.59 (0.58-0.60)	 0.70 (0.69-0.72)	 0.72 (0.70-0.74)*

*Using random forest model as reference, the difference of AUROC was statistically significant (p < 0.05).

Figure 2. ROC curves of different models. A, Extremely Randomized Trees (AUC=0.761), B, Imbalance-XGBoost (AUC=0.722), 
C, Random Forest (AUC=0.740), D, SVM (AUC=0.651), E, XGBoost (AUC=0.727).



Real-time sepsis prediction based on basic physiological indicators

4353

risk of using this model in clinical practice, it 
is also necessary to know the judgment basis of 
each prediction and the probability value of the 
predicted results. Therefore, we built the LIME 
local interpretable model to make clinical users 
trust the predicted results of this model. 

The LIME local interpretable model works as 
follows: taking the 32nd ICU patient in the test set 
as an example, as shown in the prediction prob-
abilities on the left side of Figure 3, the model 
predicts that this patient has a 77% probability 
of developing sepsis, and a 23% probability of 
not developing sepsis. This indicates that this pa-
tient has a high probability of developing sepsis, 
which can indicate that clinical workers should 
pay special attention to this patient. The basis for 
this prediction is shown in Figure 3, which shows 
the level of influence of each physiological indi-
cator on whether the patient has sepsis from top 
to bottom. The yellow bar represents the positive 
influence of the patient on sepsis, the blue bar 
represents the negative influence of the patient on 
sepsis, and the length of the bar represents the de-
gree of influence. Therefore, it can be seen from 
the figure that the standard deviation of 3-hour 
body temperature greater than 0.14 is the most 
important reason for the patient to suffer from 
sepsis. Other important reasons include that the 
standard deviation of the patient’s 3-hour systolic 
blood pressure is greater than 8.99 and the end-
point value of the patient’s systolic blood pressure 
is lower than 105, which can prompt clinical 
workers to pay attention to the large fluctuation of 
the patient’s body temperature and systolic blood 
pressure, as well as the low systolic blood pres-
sure. The features on the right of Figure 3 include 
mean-HR (mean of 3-hour heart rate), mean-SP 
(mean of 3-hour systolic blood pressure), var-HR 

(standard deviation of 3-hour heart rate), var-SP 
(standard deviation of 3-hour systolic blood pres-
sure), etc. Taking the prediction probabilities of 
the 56th ICU patient in the test set as an example, 
as shown in the left part of Figure 4, the model 
predicts that this patient has a 26% probability 
of developing sepsis and a 74% probability of 
not developing sepsis, indicating that this patient 
has a high probability of not developing sepsis. 
Therefore, prompt clinical staff may slightly re-
duce their attention to the patient. The basis for 
this prediction is shown in Figure 4. It can be 
seen from the figure that the standard deviation of 
3-hour body temperature being almost zero is the 
most important reason why this patient will not 
develop sepsis. Other important reasons include 
that the 3-hour mean systolic blood pressure of 
this patient is greater than 131.7 and the endpoint 
value of systolic blood pressure is greater than 
132. Therefore, LIME local interpretable model 
can display a large amount of valid model predic-
tion details for clinical workers’ reference, thus 
effectively assisting clinical workers’ work and 
improving diagnostic efficiency.

Discussion

As a clinical syndrome caused by infection, 
sepsis has high morbidity and mortality. The high 
mortality caused by septic shock can be better re-
duced only by effective early warning and timely 
and effective treatment of patients with sepsis. At 
present, although SOFA can predict sepsis devel-
opment and mortality to a certain extent, the clin-
ical application of real-time monitoring and early 
warning is limited because the laboratory param-
eters used in SOFA are based on the worst situa-

Figure 3. Interpretable sepsis prediction model (Take the 32nd ICU patient in the test set as an example).
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tion of the patient on the day. SOFA score can be 
used for rapid assessment of patients with sepsis, 
but it is not sensitive enough to assess the severity 
of sepsis. At present, researchers use the method 
of artificial intelligence machine learning to build 
a logistic regression warning model of sepsis 
based on the dynamic data of patients’ basic vital 
signs and laboratory results. The above methods 
still have room for improvement in terms of im-
proving the real-time and interpretability of the 
sepsis prediction model. In this study, an inter-
pretable artificial intelligence model of real-time 
sepsis prediction was built by extracting 3-hour 
dynamic time series data of 8 non-invasive phys-
iological indicators of patients, including heart 
rate, systolic blood pressure, diastolic blood pres-
sure, mean arterial pressure, respiratory rate, 
body temperature, oxygen saturation and blood 
glucose. Three linear parameters, mean, standard 
deviation and end point value, were calculated. 
In this study, we compared the predictions of 
five machine learning models: Random Forest, 
XGBoost, Extremely Randomized Trees, Sup-
port Vector Machine and imbalance-XGBoost. 
The accuracy rate of Extremely Randomized 
Trees (0.71), sensitivity (0.71) and AUROC (0.76) 
are the highest. Imbalance-XGBoost has a high 
specificity in predicting sepsis (0.86). Therefore, 
a combination of Extremely Randomized Trees 
and Imbalance-XGBoost can be used to predict 
sepsis.

Limitations
Although this model achieves the expected 

effect, our study still has some limitations: 1. 
Some data in the cohort of patients with septic 
shock are missing, and the data finally applied 

to model training is linear interpolation, so it 
is not possible to evaluate the large fluctuations 
of indicators that may occur in the stage of data 
missing. If the model can be trained and verified 
with the same amount of data without missing, 
the accuracy of the results will be better. 2. Due 
to the small sample size, the relationship between 
each characteristic variable and sepsis cannot be 
fully explained. As the abundance and order of 
magnitude of subsequent data increase, it can 
be combined with deep learning models, such as 
long-term memory (LSTM) and convolutional 
neural network (CNN). In the future studies, 
more real-time parameters will be extracted from 
the sepsis database to further construct more 
effective features, so as to better explain the 
internal meaning of the dynamic changes of indi-
cators and study the internal relationship between 
various physiological indicators and their impact 
on sepsis, so as to further improve the prediction 
accuracy and predict the occurrence of sepsis 
earlier.

Conclusions

In conclusion, compared with previous models, 
the explainable model of real-time sepsis predic-
tion proposed in this study has higher accuracy 
and earlier prediction time. In addition, only eight 
of the most common non-invasive monitoring da-
ta were used in this study, which were obtained 
in real-time at the bedside and would not cause 
twice harm to patients. Meanwhile, LIME was 
used to interpret the model, which showed im-
portant features affecting each prediction in real 
time and improved the reliability of the model 

Figure 4. Interpretable sepsis prediction model (Take the 56th ICU patient in the test set as an example).
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prediction. This model can be used for equipment 
in hospital emergency and intensive care units. 
In future work, further improving the predictive 
ability of the model and interpreting the predic-
tive model from different directions can be im-
portant research directions for the management 
of sepsis.
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