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Abstract. – While the proportion of the Older 
Adults (OAs) population is growing, this shift rais-
es a challenging question: “How can we support 
OAs to lead independent and healthy lifestyle?”. 
Many researchers have been studying Ambient 
Assisted Living Technologies (or AALTs) over the 
last three decades to tackle this challenge. How-
ever, no literature can provide an overall view of 
research in the field of AALTs and linkages be-
tween technical development and related health-
care needs. Thus, we conducted a systematic 
mapping review of literature focusing on AALTs 
(N = 7006) to explore three main research ques-
tions: 1) When, where, and how AALTs are stud-
ied?; 2) What is the technological maturity lev-
el of AALTs used to support a health and well-
ness, and where were they evaluated and/or im-
plemented?; and 3) To which health and wellness 
purposes are AALTs deployed? We found sever-
al noticeable imbalances in literature and identi-
fied some strategies to move this field of inves-
tigation further and to bring AALTs applications 
closer to clinical practice. While research in the 
area is gradually blossoming, the area mainly 
leads in only a few countries. Furthermore, the 
majority of research targeted asymptomatic old-
er adults living at home. We hope this paper will 
help researchers easily understand what type of 
research, with whom, and where are available in 
AALT now. Potential challenges associated with 
AALTs research are also discussed.
Key Words:

Aging, Technology, Digital health, Telemonitoring, 
Telerehabilitation, Telemedicine.

Introduction

As the mean age of the population increases 
due to longer life expectancy, healthcare systems 

are challenged by the rising number of older adults 
(OAs) requiring services to maintain at-home inde-
pendence1-3. For example, according to a report re-
leased by Statistics Canada in September of 2019, 
the number of OAs aged 80 and older is expected 
to triple by 2068. This sizeable demographic shift 
will have wide-reaching effects on society, includ-
ing increases in healthcare strain2,3. Effective strat-
egies are thus needed to promote aging in place. 
Currently, OAs are aging in place with the help of 
assisted living, supportive housing, and home care 
solutions. Technology is a complementary solution 
to promote aging in place4. Over the last few de-
cades, emerging technologies, such as the internet 
of things (IoT), artificial intelligence (AI), sensors, 
cloud computing, wireless communication tech-
nologies, and assistive robotics have promoted the 
development of various ambient or active assisted 
living approaches for supporting OAs to live inde-
pendently and safely in their environment. These 
technologies further encourage OAs to participate 
in the activities of their choice within their com-
munity, thus supporting them to maintain their 
physical and mental health and enhancing their 
quality of life.

AALT could be defined as “technological 
solutions that enable the OAs to maintain their 
independence for a longer time than would oth-
erwise be the case”5. AALTs consist of a “set 
of ubiquitous technologies … embedded in the 
living space of the patient to monitor and react 
to his contextual needs by providing computer-
ized assistive services”6. As a result of automatic 
detection, AALTs can send alerts without being 
activated by the end-users, such as caregivers or 
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local emergency communication centers7. In ad-
dition, AALT provides an opportunity to monitor 
energy consumption and appliances in the home8. 
For example, if the stove has not been turned off 
physically by the user after some time has passed, 
an actuator switch can automatically turn it off 
instead, ensuring safety, efficiency, and comfort 
for the user and their family8.

Although there is a plethora of AALTs docu-
mented in the literature, exploring older adults’ 
health and wellness remains understudied from 
end users’ and real-life conditions perspectives7. 
There are numerous scoping reviews exploring 
AALTs from the technological performance9-17 
and user research4,7,11,12,18 perspectives. However, 
there are important questions about the clinical 
utility of AALTs that remain unanswered. Also, 
literature focusing on AALTs clinical relevance 
or user perspectives is sparse and hard to identi-
fy. Sensor research seems to lack in-situ imple-
mentation, and most of the research focuses on 
validating AALTs in laboratory settings when 
testing with persons with specific health condi-
tions7,19-22. Therefore, there is a need for a clear 
map of AALTs deployed successfully in mean-
ingful health applications to guide further explo-
rations. It is perceived that deploying AALTs in 
naturalistic settings (e.g., home setting) presents 
some implementation challenges, mainly due to 
potential risks associated with the vulnerability 
of the targeted population (OAs) including, for 
example, user and family acceptance, cost, in-
surability, technical challenges, as well as social 
desirability. This may explain why the actual 
application of research-based AALTs to the daily 
care of OAs is still challenging; the lack of user 
perspective in research raises questions about 

the usability of these technologies for home-
care. Indeed, there is a gap in AALTs research 
between the end users’ wants and needs (e.g., 
engineers, researchers’ perspectives of what 
needs to be implemented) in terms of health and 
wellness. The latter is in fact multifaceted. OAs 
may suffer from various physical, cognitive, and 
even social problems due to processes occurring 
in aging13. These often include impairment of 
physical functions (e.g., decreased mobility and 
walking speed, falls, frailty, difficulties in basic 
and instrumental activities of daily living) lead-
ing to poor quality of life, and even decline of 
cognitive functions (e.g., memory-related issues, 
decrease in sensory functioning, hearing loss, 
cataracts and refractive errors, presbyopia, de-
creased vestibular function, increased agitation, 
apathy, and social isolation)23. From time to time, 
these difficulties in turn lead them to behavioral 
disturbances and poor social participation. To 
move AALT research forward, there is a need 
to review the existing literature on AALT for 
OAs with a focus on health and wellness appli-
cations. Therefore, this study aims to provide an 
exhaustive overview of the field of AALT from 
health and wellness perspectives by mapping the 
purposes and functions of AALT as well as the 
targeted settings and user profiles. 

Materials and Methods 

Design: Systematic Mapping Study
This study follows the process of conducting a 

systematic mapping study described by Petersen 
et al24 (Figure 1).

Figure 1. The systematic mapping process [Petersen et al (24)].
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Research Questions
RQ1: When, where, and how AALTs are studied? 
RQ2: What is the technological maturity level 

of AALTs used to support health and wellness 
and where were they evaluated and/or imple-
mented? 

RQ3: To which health and wellness purposes are 
AALTs deployed? 

Search Strategy
A search strategy has been developed to find 

published literature following the Arksay and 
O’Malley framework for scoping studies25. A 
literature search was conducted in CINAHL 
(EBSCOhost), MEDLINE (OVID), and EI En-
gineering Village to harvest terminology. At 
this stage, text words in the title and abstract of 
retrieved articles and the index terms assigned 
to the articles were extracted and analyzed. A 
second round of comprehensive searching was 
performed in each of the following databases 
using the relevant text words and index terms: 
EMBASE (Ovid), MEDLINE (Ovid), CINAHL 
(EBSCOhost), and Web of Science. Engineering 
and computer databases were excluded as this 
review focuses on health outcomes when using 
non-wearable technology targeting the activities 
of daily living. The search included English and 
French articles, and it is not limited by years. 
A final search for additional studies was done 
by examining the reference lists of all literature 
meeting the inclusion criteria of this review. A 
full search strategy for EMBASE (Ovid) is in-
cluded in Appendix 1.

 
Screening of Articles

Two independent reviewers performed the lit-
erature selection. Each paper was included only 
when the reviewers agreed on the inclusion. A 
third reviewer was consulted when consensus 
could not be reached between the two reviewers. 
To be included, the articles had to be written in 
English or French and present original results 
(qualitative or quantitative empirical data) related 
to the use of AALT. In this paper, we narrowly 
focused on AALTs, but not wearable devices nor 
mHealth. We made this distinction based on the 
fact that mHealth generally requires other avail-
able technologies on the market: Current mHealth 
relies on a sensorized device to collect data (i.e., 
commonly requires wearables). To the best of our 
knowledge, AALTs have not yet been deployed 
in mHealth applications. Thus, exceptions were 
made to the solutions involving AALTs that are 

paired with wearables. The articles had to include 
health-related outcomes evaluated with the use 
of ambient sensors. Articles including functional 
combinations of ambient technologies and wear-
ables were included, whereas articles focusing on 
solely wearable technologies were excluded. Ad-
ditionally, papers also had to be focused on OA 
and AALT(s) to support independent functioning 
and improved safety in the home or in a similar 
environment. Search results reporting technical 
papers, guidelines, literature reviews, and opin-
ion papers were excluded.

Study Selection Process
Seven thousand six (7006) entries were iden-

tified (Figure 2). After the removal of the dupli-
cates, 7005 entries remained. Based on the titles/
abstract screening, 683 full-text articles were 
selected for further eligibility assessment. As 
detailed in Figure 2, 450 articles were excluded 
from the analysis, and a total of 233 studies was 
included in this systematic mapping review.

Data Extraction and Data Analysis
Two reviewers extracted the data independent-

ly, and a third reviewer revised the information 
extracted by both and adjusted and/or completed 
extraction if needed. This set of data allowed us 
to identify the location and year of publication 
of the included articles. Data about AALTs and 
their functions, status of development, context 
of use, and focus population for the study were 
gathered, charted, and underwent thematic anal-
ysis. The mapping process followed several iter-
ations until consensus was reached among team 
members. 

Results 

This section includes the findings related to 
each of the three research questions, followed by 
a discussion. 

 
When, Where, and How AALTs 
Are Studied? (RQ1)

Figure 3 shows the frequency of publications 
between 1993 and 2020. Articles were rare before 
2006; only 7 over 13 years, and then, emerged 
at a frequency of ~15 articles per year over the 
next 15 years (Figure 3). While the development 
of AALTs has emerged after the 2000s and the 
advancement of information and communications 
technology e.g.,27, interest in developing AALTs 

https://www.europeanreview.org/wp/wp-content/uploads/Appendix-1-10713.pdf
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for health purposes has intensified around 2006. 
More than 80% of the literature included in this 
systematic mapping study is published between 
2010 and 2020. Based on the trend, we predict 

more research will be conducted in this area and 
the advancement in AALT. 

While included articles were published in 40 
countries, approximately half of them (48.6%) 

Figure 2. Literature selection 
process (26).

Figure 3. Frequency of publication by year.
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originated in only 5 countries: United States of 
America (18%), United Kingdom (9.4%), and 
France (8.2%) followed by Japan and Canada 
(6.4%, each) (Figure 4). Overall, the develop-
ment of AALTs seems related to the prevalence 
of aging in these countries. Interestingly, these 
five countries have a relatively lower fertili-
ty rate (M = 1.7 per woman while the world 
average was 2.415 in 2018) and higher life 
expectancy (M = 81 while the world average 
was approximately 73)28. These factors could 
have potentially, at least partly, contributed to 
the higher frequency of identified papers (i.e., 
ageing and AALT are highly relevant in these 
countries)29. If this is indeed the case, consid-
ering how the average fertility rate continues to 
drop, we might see more research in this area. 
Countries ranking high in Figure 4 have a quite 
high prevalence of aging and are more likely to 
drive technology development initiatives than 
low-ranking countries. 

Most of the articles reported findings from 
quantitative studies (91.8%), with only a few be-
ing qualitative (7.3%) or mixed design (12.5%). 
The majority of the papers were peer-reviewed 
journal articles (58.4%) and conference papers 
(38.6%). 3% of the papers were book chapters. 
Overall, the papers included in this systematic 

mapping study are published by technology 
developers and researchers, making it plausible 
to think that they tend to use quantitative meth-
odologies. While qualitative methods are not 
widely used among these authors, it is highly 
recommended to involve qualitative methods 
and mixed methods in research on AALTs. The 
use of quantitative methods is understandable 
considering how quantitative data could be 
more readily collected from many participants. 
In contrast, qualitative data requires more time 
and intensive data collection steps and data 
coding process (usually by more than two 
coders). However, to capture OAs’ attitudes 
and perceptions regarding AALTs entirely, it 
is necessary that we explore qualitative data 
as well. 

What is the Technological Maturity 
Level of AALTs Used to Support Health 
and Wellness, and Where Were 

They Evaluated and/or Implemented? (RQ2).
Most of the AALTs retrieved in the literature 

focused on prototyping (95%, 411 occurrences). 
Only a few solutions were commercialized (4.4%, 
19 occurrences).  

AALTs were evaluated in seven different set-
tings: more than half were evaluated in home 

Figure 4. Country of origin.
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settings (57.2% occurrences), followed by smart 
homes (27.6%), nursing homes (7.7%), hospitals 
(5.8%), public spaces (1.3%), and smart hospitals 
and smart offices (0.2% each).

A very small number of AALTs is tested in 
more than one environment. The range of loca-
tions where AALTs were tested varies from one 
to four: 
•	 Single location (93%): “home”, “smart home”, 

“nursing home”, “hospital” or “public spaces” 
•	 Two locations (6%): “home and nursing home”, 

“home and hospital”, “home and smart home”, 
“home and public space”, “hospital and nurs-
ing home’, “hospital and smart home”, “smart 
home and smart office”, or “smart home and 
smart hospital”,

•	 Three locations (0.5%): “home, nursing home, 
and hospital”

•	 Four locations (0.5%): “home, hospital, nurs-
ing home, and public spaces”.

AALTs were tested with targeted OAs (i.e., 
OAs with a specific condition) in 81.9% of cases 
(352 occurrences) and were tested with non-tar-
geted users in 27.4% of the cases (118 occurrenc-

es). The manuscripts generally evaluated AALTs 
based on a range of characteristics except for 
one paper that related to more than one AALT. 
Thus, we used the number of occurrences as the 
counting method to determine the number of total 
evaluations for each AALT. Figure 5 shows the 
breakdown of health conditions or OA profiles on 
a logarithmic scale. Asymptomatic participants 
represented 74.9% of occurrences. OAs with de-
mentia represented 12.1% of occurrences. The 
rest of the profiles were sparse and represented 
13.2% of occurrences altogether.   

To Which Health and Wellness Purposes 
Are AALTs Deployed? (RQ3)

Table I was created to guide researchers in 
their literature review. It summarizes the pur-
poses and the functions of the AALTs, ranked by 
many occurrences. Twelve clinical purposes (see 
Purpose of ambient sensing in Table I29-253) have 
been identified primary, functions were classified 
based on the primary purpose of the study. Rou-
tine action monitoring was the most frequently 
focused clinical purpose with 42.7% of the occur-
rences with quite diverse (16 unique) functions: 

Figure 5. Breakdown of health condition/profile of the AALT users.
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activity of daily living (ADL) was the most com-
mon function in the category (42.2% of the oc-
currences). Many papers focused on this purpose 
presumably because many of the functions asso-

ciated with this purpose (e.g., ADL) allow family 
and the caregivers of OAs to monitor the OAs’ 
routine behaviors before any serious issues arise. 
In this regard, these technologies could be seen 

Table I. Purposes and health-related functions of ambient sensing solutions.

	Purpose of ambient sensing 		  Number of	
	 (occurrences in %)	 Function of the ambient sensors	 occurrences	 References

Routine action monitoring	 ADL	 84	 (6, 18, 73)
(42.7%)	 Activity monitoring	 46	 (6, 34, 39, 41, 63, 74-105)
	 Movement monitoring	 34	 (41, 47, 68, 70-72, 92, 94, 106-128)
	 Posture analysis	 7	 (119, 129-134)
	 Functional health monitoring	 5	 (135, 136)
	 Multiple residents movement monitoring	 4	 (58, 137-139)
	 Medication adherence monitoring	 4	 (47, 92)
	 Food and drink intake monitoring	 3	 (92, 122, 140)
	 Stand up notification	 2	 (141)
	 Restlessness prediction	 2	 (142)
	 Fainting prediction	 2	 (142)
	 Running away prediction	 2	 (142)
	 Phone use	 1	 (39)
	 TV use	 1	 (143)
	 Security monitoring	 1	 (144)
	 Drowning prevention	 1	 (122)
Fall detection (13.7%)	 Fall detection	 64	 (6, 40, 70, 76, 77, 85, 103-105,
			   107, 109, 115, 127-129, 132, 
			   139, 142, 145-183)
Physiological parameters 	 Breathing monitoring	 17	 (106, 122, 123, 130, 167, 184-194)
tracking (8.6%)	 Heart rate monitoring	 12	 (121, 130, 189, 192-197)
	 Weight measurement	  4	 (77, 121, 194, 195)
	 Body temperature	 2	 (77, 198)
	 Excretion weight	 2	 (194, 195)
	 Blood pressure measurement	 1	 (194)
	 Nerve activity monitoring	 1	 (196)
	 Urination speed	 1	 (194)
Presence detection (7.7%)	 Presence detection	 15	 (34, 41, 42, 89, 95, 105, 
			   141, 199, 200)
	 Exiting/entering	 15	 (32, 33, 70, 72, 79, 94, 95, 
			   113, 116, 117, 122, 125, 
			   127, 141, 201)
	 Identifying individuals 	 5	 (139, 202-205)
	 Speech recognition	 1	 (151)
Gait analysis (6%)	 Gait analysis	 28	 (36, 79, 206-219)
Assessment of environment 	 Temperature	 12	 (39, 41, 63, 68, 71, 72, 87, 94,
(6%)			   121, 122, 124)
	 Humidity	 6	 (41, 122, 124, 134, 220, 221)
	 Light	 4	 (41, 42, 71, 94, 220) 
	 Brightness	 2	 (71, 220)
	 Levels of CO2	 2	 (121, 122)
	 Well being 	 1	 (128)
	 Pressure	 1	 (122)
Sleep monitoring (5.8%)	 Sleep monitoring	 27	 (114, 121, 130, 134, 194, 222-238)
Estimation of level of 	 Emergency detection	 15	 (36, 51, 77, 95, 134, 239-242)
activity (4.3%)	 Detecting abnormal behaviors	 3	 (243, 243)
	 Behaviour change tracking 	 2	 (42)
Routine support (1.7%)	 ADL support	 8	 (95, 127, 245-248)
Gesture recognition (1.5%)	 Gesture recognition	 4	 (123, 132, 249, 250)
	 Hand tremor sensing	 3	 (123, 167, 250)
Indoor localization (1.5%)	 Localization	 6	 (58, 70, 199, 251-253)
	 Visitor tracking	 1	 (79)
Wandering study (.4%)	 Wandering 	 2	 (6)
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as one of the “first phase” technologies, followed 
by more specific and/or crucial purposes (e.g., fall 
detection, breathing monitoring, and so on). 

Discussion 

Three research questions were explored to un-
derstand the general research trends in the field of 
AALTs: (RQ1 – When, where, and how AALTs 
are studied? RQ2 – What is the technological 
maturity level of AALTs used to support health 
and wellness, and where were they evaluated 
and/or implemented?; RQ3 – To which health and 
wellness purposes are AALTs deployed?). First, 
we found that five countries (USA, UK, France, 
Canada, and Japan) have been leading research in 
the area of AALTs so far. Indeed, these countries 
contributed to approximately half of the literature 
we focused on in this paper (48.5%). Interesting-
ly, among these five countries, only one country 
(Japan) has a collectivistic cultural background. 
This cultural factor could reflect the fact that 
people with different cultural backgrounds might 
pursue different types of assistance for OAs. 
For example, people in individualistic cultures 
might be more interested in deploying AALTs 
than those who have a collectivistic cultural 
background. To support this view, China, for ex-
ample, despite its substantial population (18.47% 
of the world population)254, is reflected only in 10 
publications identified with our literature search. 
This lack of use of AALTs in China, for example, 
could be in part because they might have a fami-
ly-based assistive system embedded in their cul-
ture/lifestyle (i.e., extended family living togeth-
er)255,256. To further understand this aspect, more 
research from diverse cultures will be crucial so 
AALTs can accommodate families with various 
cultural backgrounds. The goal would not be to 
generalize the use of AALTs across all the coun-
tries and cultures, but to have AALTs adapted to 
every context. 

Our exploration of the second question re-
vealed that many researchers started focusing 
on AALTs around 2006, with 4/5 of the litera-
ture published between 2010 and 2020. Further, 
we identified some research gaps among the 
questions they have investigated thus far (e.g., 
research focusing on public space setting is 
only 1.3% while 57.1% of research focused on 
home setting). More than a quarter of the papers 
included in this review tested technology with 
either the younger population (192 papers) or 

actors rather than the intended population (i.e., 
older adults). While necessary for assessing 
the general functionality of the AALTs, these 
tests are preliminary, and more targeted re-
search is required to address the needs specific 
to OA population. Moreover, a large majority 
of AALTs research focused on asymptomatic 
individuals (81.9% of total occurrences). We 
suggest that this could be reflecting the fact that 
recruiting OAs with a condition might be more 
challenging than recruiting asymptomatic OAs. 
Recruiting OAs is generally more challenging 
than recruiting younger adult counterparts and 
looking for individuals with any specific condi-
tion would be naturally more difficult. Although 
these issues are hard to solve and probably are 
labor-intensive, more research in each subdivi-
sion (e.g., OAs in smart home or hospital set-
tings) is needed to make AALTs truly useful. We 
strongly advocate for conducting more research 
in diverse subdivisions because of the variability 
in OAs’ health status, as well as their lifestyles. 
Somewhat understandably, most of the research 
explored in this study focused on quantitative 
data. There are two possible explanations for 
this finding. First, this could be due to our inclu-
sion criteria as we have excluded the papers that 
do not report on empirical data related to health 
outcomes collected as part of clinical stud-
ies. Secondly, collecting qualitative data (e.g., 
via interviews and observations) is often more 
challenging than collecting quantitative data, 
which the technologies themselves could col-
lect. However, qualitative data is often crucial 
in this context as they allow us to understand 
people’s perceptions, feelings, and ideas, all of 
which play a significant role in the wellbeing of 
an individual257. Therefore, this area of research 
would greatly benefit from the implementation 
of more mixed methods approaches to gather as 
much information as possible.

Finally, with our third research question, we 
learned that much research focuses on individ-
uals’ daily routines. We contemplate this could 
be partially due to the fact that the AALTs are 
still in the beginning phase of their progress, and 
hence, their research and development are focus-
ing on a broader topic that could benefit the larger 
population. Wandering, medication adherence, 
blood pressure, and behavioral change tracking, 
among other functions, are considered very rel-
evant to the wellbeing of older adults as aging 
involves gradual physical and mental deteriora-
tion. However, sensors addressing these functions 
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were discussed in only a few papers. Targeting a 
group of people with specific medical conditions 
might eventually increase the risk of conducting 
research, and hence, ethical approval for such 
research might be harder to obtain, which might 
discourage some research initiatives. This bar-
rier to researching AALTs could be a common 
challenge that many researchers in the area could 
be facing. However, once substantial research 
methodologies are established in the field, new 
research could follow their paths. Again, re-
search targeting various goals in various cultural 
contexts will be crucial in moving the field of 
AALTs forward. Thus, this paper has provided a 
systematic map for researchers interested in this 
multidisciplinary field of investigation. Current 
literature includes narrative and scoping reviews; 
therefore, further systematic reviews are needed 
to focus on the clinical outcomes from the use 
of AALTs based on technology types or patient 
profiles.

Limitations
Although a systematic map is presented and 

discussed in this paper, this review suffers from 
two weaknesses. First, due to the diversity of 
papers, a high number of articles appeared in the 
initial searches leading us to focus the search on 
the bibliographic databases that are more likely to 
show articles, including health-related outcomes. 
Therefore, we have not explored engineering 
databases because articles in these databases are 
written by engineers and therefore could not in-
clude health-related outcomes. The readers of this 
paper should keep this in mind, and our pragmat-
ic decisions may have hidden a few articles from 
appearing in our search results.

Conclusions 

One of our primary goals was to provide a 
systematic map for researchers with interests 
in this multidisciplinary field of investigation, 
covering computer science and engineering and 
ethics and health, for instance. Therefore, this 
paper focused on AALTs to provide a scope 
and report on the progress in the area in terms 
of health outcomes in older adults. We learned 
that AALTs research is probably still in its 
beginning phase but will continue to expand 
rapidly, at least partly due to low fertility rate, 
growing life expectancy, and rapid technologi-
cal progress. We identified that some countries’ 

contribution to this field of research are dispro-
portional to their population, contributing to 
the research of AALTs more than others. Sur-
prisingly, the emergence of research in AALTs 
from engineering disciplines does not have the 
same breadth of empirical research. This re-
search area has immense potential for growth, 
which could greatly benefit from more focus 
on structure and applicability. Specifically, we 
found this area would greatly benefit from more 
holistic, mixed-method evaluations that focus 
on addressing needs specific to OA population 
while directly involving OAs in assessments. 
Interdisciplinary collaborations involving sci-
ence, engineering, psychology, social work, 
and health professionals would be beneficial 
for developing AALTs addressing the needs of 
OAs, since aging is a multifaceted process af-
fecting all areas of an individual’s life. Due to 
its scarcity, future research should explore the 
challenges of implementing AALTs in clinical 
settings as part of empirical research. Exploring 
both quantitative and qualitative data will be 
important in understanding the actual effect of 
AALTs. In addition, fine-tuning of evaluations 
to the intended locations of use (i.e., home, 
hospital, public spaces) and more culturally re-
sponsive assessments could further enrich this 
area of research and may provide additional 
insights into AALT development. To conclude, 
this paper has revealed some of the potential 
challenges that AALTs implementation may 
face. Family and cultural dynamics have been 
discussed as one of the potential underlying 
factors affecting acceptance and adoption of 
AALTs for healthcare purposes. This inter-user 
variability would imply the need for different 
business frameworks based on the socio-cul-
tural characteristics in the users’ environment. 
Therefore, future research should determine 
the most appropriate business frameworks and 
models that determine the implementation of 
AALTs in healthcare.
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