
42

nically, DN is characterized by macroalbuminuria 
and decline in glomerular filtration rate (GFR), 
hypertension, and a high risk of cardiovascular 
morbidity and mortality6,7. However, its molecular 
mechanisms remain largely unexplored.

Excess carbohydrate or glucose has been shown 
to regulate de novo lipogenesis by inducing ge-
nes expression of liver pyruvate kinase (LPK) 
and stearoyl-CoA desaturase-1 (SCD-1)8,9. In this 
process, a protein named carbohydrate response 
element binding protein (ChREBP) play a critical 
role10. ChREBP could bind to the carbohydrate re-
sponse element (ChoRE) in the promoter regions 
of LPK and SCD-1, to activate their mRNA tran-
scription11,12. In the liver, the expression and acti-
vity of ChREBP are regulated by fasting and fe-
eding13,14. During feeding, xylulose-5-phosphate 
in the hexose monophosphate pathway activates 
protein phosphatase 2A, which dephosphorylates 
ChREBP and activates its transcriptional activi-
ty13,14. As a result, ChREBP knockout mice exhi-
bited reduced liver triglycerides and glycogen 
contents, compared to wild-type mice15,16. Besi-
des, ChREBP was markedly up-regulated in dia-
betic livers and knockdown of ChREBP in obe-
se mice improves metabolic disorders, including 
insulin resistance, glucose intolerance and liver 
steatosis17,18. 

In the present study, we examined the expres-
sion levels of ChREBP and its target genes in the 
kidney of streptozotocin-induced diabetic mice 
and further investigated the roles of ChREBP in 
diabetic nephropathy. 

Materials and Methods

Animals
Male C57BL/6 mice were purchased from the 

Shanghai Laboratory Animal Company (SLAC, 
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Introduction

Diabetic nephropathy (DN), a serious complica-
tion of type 2 diabetes, is one of the most common 
causes of chronic kidney disease globally1-5. Cli-
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Shanghai, China). ChREBP knockout mice were 
obtained from Jackson Laboratories (Bar Harbor, 
ME, USA) and backcrossed to C57BL/6 back-
ground for 5 generations. All animal experiments 
were performed with the approval of the Animal 
Ethics Committee of the Jining No. 1 People’s 
Hospital, China. 

Animal Experiments
Mice were fasted for 4 hours; then, they 

were injected intraperitoneally with 60 mg/kg 
STZ (Sigma-Aldrich, St. Louis, MO, USA) or 
vehicle control for 5 consecutive days. Mice 
with a blood glucose level over 16 mmol/L 
were considered to be diabetic. Animals were 
sacrificed at week 6, week 12 and week 24, 
respectively. 

Sample Harvest and Quantification of  
Albuminuria and Urine Creatinine

Urine was collected over 16 hours on the 
day prior to sacrifice. Blood and kidney tissues 
were harvested at sacrifice. Tissue slices were 
fixed with 10% neutral-buffered formalin for 
paraffin embedding, frozen in OCT compound 
(Sakura Finetek Inc., Torrance, CA, USA) or 
snap frozen in liquid nitrogen for mRNA ex-
traction. Urine albumin was quantified using 

the Mouse Albumin ELISA Quantitation Set 
according to the manufacturer’s instructions 
(Bethyl Laboratories, Montgomery, TX, USA). 
Urine creatinine was measured enzymatically 
by Creatinine Assay Kit (ab65340, Abcam, 
Cambridge, MA, USA). 

Real-Time RT-PCR
Total RNA was extracted using TRIzol (In-

vitrogen, Carlsbad, CA, USA). cDNA was 
amplified in Universal Master Mix (Applied 
Biosystems, Foster City, CA, USA) with ge-
ne-specific primers. Quantitative real-time PCR 
was performed by using an Applied Biosystems 
7300 Real-time PCR System and a TaqMan 
Universal PCR Master Mix. Expression levels 
of the target genes were normalized to that of 
the b-actin.

Western Blots
Tissues samples were harvested and lysed 

with ice-cold lysis buffer (50 mM Tris-HCl, 
pH 7.4, 100 mM β-Mercaptoethanol, 2% w/v 
SDS, 10% glycerol). Proteins in the superna-
tants were quantified by bicinchoninic acid as-
say (BCA), and an equally amount of proteins 
were separated by 12% SDS-polyacrylami-
de gel electrophoresis (PAGE). Immunoblots 

Figure 1. Expression of Chrebp and its target genes was upregulated in the early diabetic kidney in WT mice. (A-B) Relative 
mRNA and representative protein levels of Chrebp in wild-type mice after diabetes induction. (C-D) Relative mRNA levels of 
LPK and SCD-1 were determined.
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were performed using primary antibodies tar-
geting ChREBP, p65, p-p65, IRE1a, p-IRE1a, 
pERK, p-pERK, and CHOP. All antibodies 
were purchased from Abcam (Cambridge, MA, 
USA). Protein levels were normalized to total 

b-actin, using a rabbit anti-b-actin antibody 
(Abcam, Cambridge, MA, USA). The proteins 
were then visualized by a Millipore Immobi-
lon Western Chemiluminescent HRP Substrate 
(Merck KGaA, Darmstadt, Germany).

Figure 2. Chrebp deficiency attenuated albuminuria in DN compared to WT mice. (A-D) UACR, glomerular volume, glome-
rular cellularity and glomerular mesangial matrix was determined in WT and KO mice.

Figure 3. Expression of pro-inflammatory cytokines. (A) Representative protein levels of phosphorylated p65 in two groups of 
mice. (B) Relative mRNA levels of TNFa, IL-1b and Cox2 in two groups of mice
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Statistical Analysis
All data are presented as mean ± SEM. The dif-

ferences between two groups were analyzed by 
Student t-tests. p-values less than 0.05 were con-
sidered statistically significant.

Results

Expression of ChREBP were Upregulated 
in Kidneys of Diabetic Mice

Firstly, to examine the expression levels of 
ChREBP in diabetic mice, C57BL/6 mice were 
treated with streptozotocin (STZ) or vehicle con-
trol to induce diabetic models. 10 weeks later, 
mice were sacrificed and kidneys were removed 
to analyze genes expression. As a result, mRNA 
and protein levels of ChREBP were significantly 
up-regulated in the kidneys of diabetic mice (Fi-
gure 1A and 1B). Besides, mRNA expression of 
its target genes, LPK and SCD-1, were also up-re-
gulated (Figure 1C and 1D).

ChREBP Deficiency Attenuated 
Albuminuria

The up-regulation of ChREBP in kidneys of 
diabetic mice suggested that ChREBP might play 
a role in the development of DN. Therefore, wild-
type (WT) and ChREBP knockout mice were tre-

ated with STZ for several weeks. As a result, urine 
albumin-to-creatinine ratio (UACR), glomerular 
volume, glomerular cellularity and glomerular 
mesangial matrix were all reduced in ChREBP 
knockout mice (Figure 2A-2D).

Expression of Inflammatory Molecules 
was Reduced in Kidneys of ChREBP 
Knockout Mice

Aberrant activation of inflammation and endo-
plasmic reticulum stress play an important role in 
the development of DN19,20. Therefore, the expres-
sion of inflammatory markers, including pho-
sphorylated p65 and mRNA levels of pro-inflam-
matory cytokines were determined. As shown in the 
Figure 3A-3D, phosphorylated p65 was attenuated 
in ChREBP knockout mice (Figure 3A). Besides, 
expression of inflammatory molecules was also re-
duced (Figure 3B-3D). Moreover, phosphorylated 
IRE1a and PERK were also reduced in ChREBP 
knockout mice (Figure 4A-4B). In agreement, 
expression of CHOP, markers of cell apoptosis, 
was significantly decreased (Figure 5A-5B).

Discussion

Although the role of ChREBP in the regulation 
of hepatic glycolysis and de novo lipogenesis has 

Figure 4. Expression of endoplasmic reticulum stress-makers. (A-B) Representative protein levels of phosphorylated IRE1a 
and PERK in two groups of mice
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been well-established, its expression and function 
in the development of DNA remain incompletely 
understood. Notably, a recent study investigated 
the role of ChREBP in mesangial cells in diabe-
tic nephropathy21. They found that treatment with 
high glucose increased cellular O-GlcNAc and 
O-GlcNAcylated ChREBP in mesangial cells 
compared with normal glucose21. Here, our in vivo 
results showed that expression of ChREBP was 
increased in mice treated with hyperglycemia. 
We speculate that these results were consistent, 
suggesting that up-regulation of ChREBP activity 
and (or) expression might be an important event 
in the development of DN. 

To further confirm the role of ChREBP, wild-
type and ChREBP knockout mice were used. We 
treated these two groups of mice with STZ to in-
duce hyperglycemia and diabetes. As a result, uri-
ne albumin-to-creatinine ratio (UACR), glomeru-
lar volume, glomerular cellularity and glomerular 
mesangial matrix were all reduced in ChREBP 
knockout mice, suggesting ablation of ChREBP 
protects diabetic mice from kidney injury. Moreo-
ver, at the molecular level, we found that expres-
sion of inflammatory and endoplasmic reticulum 
stress were also attenuated in ChREBP knockout 
mice, further confirm the roles of ChREBP in the 
development of DN. However, whether ChREBP 
could directly or indirectly regulate inflammation 
or endoplasmic reticulum stress in kidneys re-
mains to be determined in future studies.

Conclusions

Our studies identified ChREBP as a key me-
diator in DN. Given the involvement of ChREBP 
signaling in these pivotal phases of diabetic ne-
phropathy, strategies to down-regulate or suppress 
the expression or activity of ChREBP should be 
explored to target DN.
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