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Abstract. – OBJECTIVE: Cells answer to bio-
chemical, electrical and mechanical signals in 
the environment, which regulate their behavior. 
Mechanical signals can propagate through me-
chanically stiff structures like focal adhesions 
(FAs). Zyxin, a LIM domain protein, is localized 
primarily at focal adhesion plaques. Growing ev-
idence suggests that zyxin is a vital mechano-
transductor to regulate the gene expression. In 
this review, we summarize the features of zyxin 
and the molecular mechanism of how zyxin par-
ticipate in the cellular activity. 

MATERIALS AND METHODS: An English-lan-
guage literature search is based on a key-
word-based query of multiple databases (MED-
LINE, Embase) and bibliographies from identi-
fied publications. The references in the select-
ed paper are also considered as an additional 
source of data. The search was last updated in 
April 2018; no limitations are applied.

RESULTS: Zyxin enhances actin polymer-
ization with the aid of Enabled (Ena)/vasodila-
tor-stimulated phosphoprotein (VASP) proteins 
in response to mechanical tension, to perform 
its role in stress fibers (SFs) remodeling and re-
pair. Zyxin can translocate from focal adhesions 
(FAs) to the nucleus responds to stretch, and 
regulate gene transcription by interaction with 
transcription factors like nuclear matrix protein 
4 (NMP4). Misregulation of nuclear functions of 
zyxin appears to be associated with pathogenic 
effects and diseases, such as prostate cancer 
and non-small-cell lung cancer.

CONCLUSIONS: Zyxin is a crucial ingredi-
ent of the cellular mechanotransducing system 
and can modulate the gene expression. Given 
its clinical relevance, zyxin is also a promising 
target for the diagnosis and treatment of cer-
tain diseases. Understanding the role of zyxin 
in force sensing and gene expression regulat-
ing provides a compelling challenge for future 
biomechanics studies, and offers attractive ev-
idence for zyxin as a potential diagnostic mark-
er and therapeutic target for clinical diseases.
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Introduction

During their lifetimes, cells encounter a vari-
ety of stimuli that can dramatically affect their 
behavior, such as mechanical stimulation, which 
can raise different kinds of signal pathways and 
regulate physiologic activity1. Dysregulation of 
mechanical force is responsible for a variety of 
diseases, including neuronal and muscular de-
generation2, potential immune system disorders3, 
hypertension4, and polycystic kidney disease5. 
Cells respond to mechanical properties such 
as stiffness, contractility and tensile strength 
through punctually, appropriately graded adjust-
ments to maintain tissue homeostasis6. Also, the 
gene expression in living cells can be regulated 
by mechanical stimuli7. Multiple studies8-10 have 
highlighted the mechanosensitive features of the 
protein zyxin. Zyxin may enter the nucleus as-
sociated with other proteins in response to me-
chanical force stimulation and is exported from 
the nucleus through intrinsic leucine-rich nuclear 
export sequences (NES). Due to the ability to 
shuttle between cytoplasm and nucleus, zyxin 
may mediate cell function in a force-dependent 
manner, and its ability to detect mechanical force 
could be an integral part of the regulation of the 
gene expression11,12. Zyxin has also displayed 
force sensitive translocation to focal adhesions 
(FAs) and stress fibers (SFs) in fibroblasts and en-
dothelial cells, helping the remodeling and repair 
of SFs10. Given the great importance of zyxin in 
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regulating cellular mechanical activities, under-
standing its role in force sensing and transduc-
tion is meaningful to biomechanics study. Focal 
adhesions and actin stress fibers are well-known 
structures that form and develop in a mechanical 
force-dependent manner13,14. Focal adhesions, al-
so referred to as focal plaques or focal contacts, 
are an integral component of the transmission of 
mechanical stimuli15-17. FAs are complex multi-
protein structures that form upon integrin en-
gagement with the extracellular matrix (ECM) 
and link the ECM to the intracellular cytoskel-
eton18. Moreover, FAs serve as critical signaling 
hubs that transmit chemical (extracellular protein 
ligands) and physical (rigidity, composition) cues 
about the extracellular environment13. Exoge-
nous mechanical forces in ECM are transduced 
through FAs to the actin cytoskeleton, which 
indicates that the FAs and SFs are mechanical 
mediums for maintaining the force balance in 
the changing mechanical environment and signal 
transmission8,19. It is intriguing to mention that, 
only partial focal complexes mature into large 
and stable focal adhesions, and then could recruit 
many more proteins like zyxin20. Zyxin disso-
ciates from FAs by reducing mechanical loads 
on the FAs and regains accumulation at FAs by 
stretching the substratum8. In other words, the 
application of external forces can change the lo-
calization of the FAs protein zyxin. For instance, 
zyxin proteins would be recruited to actin stress 
fibers when adherent cells are stretched by pull-
ing on the underlying flexible substrate. Mean-
while, actin assembly at FAs is enhanced8,10. By 
contrast, zyxin-deficient cells fail to respond to 
external strain21. Delocalization of zyxin from 
FAs or genetic ablation of zyxin leads to unusu-
al and integrin-independent migration of cells8. 
Zyxin is also recruited to stress fiber strain sites 
for SFs repair and stabilization22. Consequently, 
zyxin plays as a crucial ingredient of the mech-
anotransducing system. The focus of this review 
is the protein zyxin, an adhesion plaque compo-
nent that has been implicated in signaling events 
and mechanotransducing system at the adhesive 
membrane. 

Molecular Structure of Zyxin
Zyxin is primarily localized at focal adhesion 

plaques, actin stress fibers, and cell-ECM and 
cell-cell junction areas, transiently exist in some 
nuclei11,23. FAs are structures located at the ends 
of actin fibers and serve as force transmission 
sites24. Zyxin is one of the FAs constituents 

(82KDa molecular weight), that possesses two 
distinct motifs: N-terminal proline-rich domain 
and C-terminal LIM domain25,26. The N-termi-
nus of zyxin has been reported to bind some 
partners, including the actin filament cross-
linker α-actinin27,28, the actin assembly modula-
tor Ena/VASP29, the cytoskeletal proteins LIM 
and SH3 domain protein 1 (LASP-1) and the 
LIM-nebulette (LASP-2)30. Among which, the 
VASP family proteins form complexes with 
four proline-rich ActA repeats to facilitate ac-
tin-polymerization at FAs and SFs31. The over-
expressed zyxin LIM domain substitutes the 
endogenous zyxin from FAs would induce 
the mislocalization of VASP and mammalian 
Ena8,32. The C-terminus LIM domains of zyxin 
that consist of three motifs (termed by the ini-
tials of LIN-11, Isl-1 and MEC-3) are essential 
for its force sensing function by accumulating 
at FAs or force-bearing sites33. LIM domains are 
dual zinc-finger protein-protein or protein-DNA 
binding interfaces. Some LIM proteins which 
localize to the nucleus have been proved to per-
form a transcriptional role9,33. Two leucine-rich 
NES lie in the central region of zyxin are be-
lieved to mediate nuclear export (Figure 1)34. 
Additionally, the zyxin-nectin interaction proves 
that amino acids 230-280 of zyxin are required 
for localization to cell-cell adhesions35. 

The functional diversity of LIM proteins sug-
gests that the LIM domain plays a unique role in 
various cellular processes. 

Figure 1. Molecule structure of zyxin and its domains. 
The N-terminus of zyxin has four proline-rich ActA repeats 
(amino acids 50-120) for the interaction with actin regula-
tors VASP and Mena, which also has α-actintin binding sites 
(amino acids 1-50)36. C-terminal LIM domains (after ami-
no acids 392) contain cysteine/histidine zinc-coordinating 
LIN-11, Isl-1 and MEC-3, which are essential for its location 
to FAs, force-induced targeting and protein interactions33,37. 
Two leucine-rich nuclear export sequences and relevant ser-
ine phosphorylation sites lie in the central region of zyxin36.
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Zyxin As a Mechanotransductor
Stress fibers, whose formation and develop-

ment are mechanical force-dependent, are formed 
through a combination of actin de novo polym-
erization that occurs at FAs and the merging 
of previously formed fragments38. It has been 
illustrated that actin-regulatory proteins, Arp2/3 
complex, mammalian Diaphanous (mDia)-related 
formins and Ena/VASP proteins are involved in 
the process of actin polymerization39-42. Com-
pared to mDia and Arp2/3, Ena/VASP proteins 
are noticeably localized at FAs, which demon-
strates a role of Ena/VASP in the local actin 
polymerization at FAs. The recruitment of Ena/
VASP to FAs depends on the accumulation of the 
LIM protein zyxin at FAs8.

Hirata et al8 concluded previous experimental 
results from Rottner K, Lele TP and some other 
researchers, then put forward the role of zyxin 
as a crucial element of the mechanotransduc-
ing system at FAs. Proteomic studies43,44 have 
indicated that LIM domain proteins such as 
Hic-5, paxillin, CRP2 and zyxin are sensitive 
to mechanical stress in the actin cytoskeleton. 
Among them, three LIM domain proteins have 
been shown to be recruited to SFs in response 
to stretch: Hic-5, CRP2 and zyxin45,46. Zyxin 
exhibits an expeditious and intensive mobili-
zation from FAs to actin filaments in response 
to a unidirectional cyclic stretch of cells, while 
other FAs proteins remain concentrating at the 
substratum attachment sites10. Therefore, zyxin 
is the only LIM domain protein proved mecha-
noresponsive. 

As mentioned above, zyxin is rapidly mobi-
lized from FAs to the remodeling actin filaments 
responds to stretch. Zyxin flows away from FAs 
in synchrony with newly assembled actin bundles 
during SFs assembly45. In answer to a uniaxial 
cyclic stretch, zyxin-null cells fail to strengthen 
the actin SFs commonly, elucidating zyxin-inde-
pendent and zyxin-dependent facets of the stretch 
response47. Live-cell imaging technology is ap-
plied to investigate zyxin dynamics in response 
to actin SFs thinning. Actin incorporation is high 
at zyxin-rich FAs but decreases when over-ex-
pressed LIM domains replace zyxin36. Moreover, 
after knocking down zyxin’s expression with 
RNAi, a perinuclear actin cap structure induced 
by mild shear stress would be failed to form, 
and a reduction happened in the pulling force 
at cell-fibronectin bead contact sites48. Lastly, 
zyxin dissociates from SFs with relief of tension 
through laser severing and is reversibly recruited 

to SFs in response to atomic force microscopy 
(AFM) stylus-driven tension induction49. Zyxin 
enhances actin polymerization with the aid of 
Ena/VASP proteins in response to mechanical 
tension in FAs, to perform its role in SFs remod-
eling and repair. In other words, mechanical sig-
nals are transduced into the actin polymerization 
response via zyxin accumulation accompanied 
by Ena/VASP recruitment. 

Externally Applied Force: 
Zyxin Mobilizes to FAs 

Zyxin is recruited to Force-Bearing Sites
Researechers49,50 showed that zyxin shuttles 

from FAs to tension zones within SFs and trig-
gers local recruitment of α-actinin and VASP 
that thickens and reinforces SFs. In other words, 
zyxin accumulates in the sites of externally 
applied forces. However, Uemura et al12 put 
forward their experimental results: zyxin only 
accumulates at the leading edge, it does not 
indiscriminately localize to force-bearing sites; 
instead, it is capable of distinguishing between 
these distinct adhesion sites. These results indi-
cate that force-dependent zyxin accumulation 
occurs at the leading edge but not at the trailing 
edge of migrating cells. 

Scholars51,52 have reported the crucial role of 
the C-terminus LIM domain of zyxin in medi-
ating zyxin binding to force-bearing sites. The 
LIM domain consists of three motifs. Studies 
have found that multiple zyxin LIM domains fail 
to increase force sensitivity while single zyxin 
LIM domain has the best force-sensitivity. These 
results demonstrate the essentiality of all three 
LIM motifs for linking binding partners with 
zyxin at force-bearing sites, while the impossible 
interaction occurs to multiple LIM domains29. 
The yet known partners have been already im-
plied dropping out of the process that zyxin lo-
calized to force-bearing places, such as p130Cas, 
Cysteine-Rich Protein (CRP), and synemin53-56. It 
ought to be other zyxin binding partners partici-
pating in this process. However, Hoffman et al47 

prove that force-induced zyxin phosphorylation 
relies on the activation of the MAPK signaling 
pathways, rather than p130Cas, indicating that 
there is the possibility that zyxin would be re-
cruited to force-bearing sites without binding 
any partners. The underlying mechanism of how 
zyxin is recruited to force-bearing sites remains 
to be clarified. 
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Zyxin Recruits VASP to the 
Force-Bearing Sites

The Ena/VASP family is a growing collection 
of related proteins that have been implicated 
in the Abl signaling pathway and the assembly 
of the actin cytoskeleton57. VASP, the vasodi-
lator-stimulated phosphoprotein, is a member 
of the Ena/VASP family. VASP is identified as 
a prominent 46 kDa substrate for cAMP- and 
cGMP-dependent kinases in platelets58. Immu-
nolocalization works34 have revealed that VASP 
is localized at integrin-rich adhesion plaque. 
Molecular cloning of VASP cDNAs established 
that human VASP is a protein of 380 aa with a 
central proline-rich core that is quite distinct 
from the proline sequence found in zyxin59. 
The proline region of VASP interacts directly 
with profilins, the small actin monomer binding 
proteins that have been demonstrated in the 
actin filament assembly regulation and signal 
transduction60,61. The direct interaction between 
VASP and ActA proteins of bacterium Listeria 
further confirms the role of VASP in actin fil-
ament dynamics39. As described above, ActA 
is required for the ability of the bacterium to 
assemble actin filaments on its surface. Inter-
estingly, VASP has been shown to associate 
directly with zyxin31. VASP interacts with a 
proline repeat region of ActA that resembles the 
sequences found in zyxin26,62. The zyxin-defi-
cient cells would not determine the position of 
VASP to FAs anymore63, so does the mislocal-
ization of zyxin26. Moreover, zyxin-dependent 
recruitment of VASP to sites of tension-induced 
cytoskeletal damage is found to regulate actin 
filament repair64. 

We can see the prevailing thought is that zyxin 
acts merely as a scaffold protein for VASP bind-
ing26. However, Grange et al65 refute this view 
by identifying the LIM domain-VASP interac-
tion. The series of four proline-rich (FPPPPP) 
motifs can bind zyxin with VASP31,66,67, as well 
as through the LIM domain region68. It is in-
triguing that defects in SFs reinforcement fol-
lowing stretch stimuli are also observed in cells 
lacking zyxin10, which highlights a critical role 
for VASP in organizing actin at FAs. They dis-
cover that zyxin-VASP binding through both 
the proline-rich motifs and the LIM domains 
alters specific VASP functions; neither individ-
ual interaction alters VASP’s actin regulatory 
activities. Of interest, full-length zyxin dramati-
cally reduces VASP-mediated actin bundling and 
actin assembly. These results suggest a model 

where zyxin-VASP complexes occur in complex 
organizations with suppressed actin regulatory 
activity65.

The LIM domain of Zyxin is Sufficient for 
Force-Dependent Recruitment

Many studies tried to find out which molecule 
recruits zyxin to FAs in a force-dependent man-
ner and which structure of zyxin play the core role 
in this process8,12,29. Yi et al56 reported that protein 
p130Cas, which is the FAs-associated adapter, in-
teracts with the LIM region of zyxin. Crawford69 
found the direct interaction between zyxin and 
α-actinin and soon after an α-actinin-binding site 
was identified in the N-terminal region of zyx-
in26,28. That leads to a long period in which zyxin 
N-terminal region was believed to be necessary 
for force-dependent localization of zyxin to FAs. 
However, Hirata et al8 observed the accumulation 
of the separate LIM region of zyxin at FAs in a 
force-dependent manner. Also, they found that 
the force-induced accumulation of endogenous 
zyxin at FAs was inhibited by the expression of 
the LIM region8. These consequences suggest 
that the LIM region of zyxin is crucial for the 
force-dependent recruitment of zyxin to FAs, and 
raise the possibility that the LIM domain of zyx-
in is sufficient for force-dependent recruitment. 
Uemura et al12 conducted the experiments and 
published their results in 2011. By analyzing the 
zyxin mutants with the truncated LIM-domain 
(ΔLIM-GFP) and with only the LIM domains 
(LIM-GFP), they concluded that the LIM domain 
of zyxin is sufficient for responding to the trac-
tion force generated by migrating cells. Further-
more, individual or truncated LIM motifs are not 
sufficient for force-dependent accumulation, and 
zyxin recruitment requires all three LIM motifs. 
To date, this finding has been acknowledged by 
most researchers in the field17,29,70,71.

Internally Generated Force: Zyxin Flows 
Away from FAs to Actin SFs

Forces applied to cell-ECM adhesions are 
transmitted across the transmembrane integ-
rin receptors to the cytoskeleton via molecular 
linkages with the FAs30,72. Within the FAs an-
choring complex, integrin physically associates 
with multiple adaptor proteins involved in sig-
nal transduction, such as focal adhesion kinase 
(FAK), vinculin, talin, p130Cas, and paxillin73-76. 
Moreover, the internal movement of actin fila-
ments can also be sensed by FAs through a slip-
page-clutch mechanism inside cells77. By means 
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of conformational changes, some molecules of 
these complexes, such as talin and paxillin, 
can ‘‘perceive’’ mechanical stimuli and trans-
duce them into electrical or biochemical signals, 
subsequently triggering downstream signaling 
pathways to modulate cellular physiologic ac-
tivities78-81. Thus, we can conclude that not only 
external forces transmitted across ECM adhe-
sions focus on these FAs sites as already shown, 
but also internal forces generated within the actin 
cytoskeleton. To give an example, the recruitment 
of zyxin at force-bearing sites relies on myosin II 
and Rho-kinase activation, suggesting that zyxin 
not only responds to the externally applied force 
according to previous data, but also responds 
to the internally generated actin-myosin force12. 
Although this viewpoint has been accepted by 
some researchers70, it still needs further research 
to explain how zyxin plays its role in sensing in-
ternally generated force.

Zyxin Mediates SFs Repair
Cells will recognize and respond to changes 

in cytoskeletal integrity to maintain mechanical 
homeostasis64. Actin stress fibers come through 
bounded, intense, force-mediated elongation and 
decreasing events that settle their function of 
stress transmission, followed by SFs repair that 
revives this capability64. SF strain sites recruit at 
least four different proteins found at FAs: zyxin, 
paxillin, α-actinin and VASP19,71. Paxillin, a 68 
kDa FAs protein, has been confirmed the recruit-
ment to SF strain sites, so does the zyxin19,82. 
Zyxin swiftly accumulates at the damage sites 
of strain-induced SFs, and paxillin recruitment 
even precedes zyxin recruitment. The recruit-
ment and repair process of paxillin is parallel 
to, but independent of, the zyxin repair system19. 
The repair functions of zyxin are executed by the 
actin crosslinker α-actinin and the actin regulator 
VASP, which are recruited to SF strain sites in a 
zyxin dependent manner. Zyxin is recruited first 
dependently, in synchrony with VASP, and then 
recruits α-actinin bind the N-terminal region of 
zyxin36. Zyxin binding to VASP is required for 
VASP recruitment to either cyclically stretched 
SFs or to SF strains sites. Mutation of the pro-
line-rich ActA repeats in the N-terminal region 
of zyxin eliminates VASP binding to zyxin, 
which may indicate the binding region on zyxin36. 
The mechanism of strain recognition and repair 
demonstrates the cellular machinery for quick 
modification of cytoskeletal tension respond to 
changes in cell contractility or external forces.

Force/Stretch Induced Nuclear 
Translocation and Changes of Zyxin 
Nuclear Activities

FAs proteins combine the actin filaments with 
integrins and regulate transmembrane mechan-
ical force transmission. Zyxin, which acts as 
the mechanotransducer, is partly mediated by 
cytoskeletal tension83,84. Part of this response is 
mediated by regulating the physical strength of 
the FAs that resists cell traction forces to sustain 
cytoskeletal prestress85. These FAs proteins could 
facilitate to transfer mechanical to chemical sig-
nals by the Rho pathway, which induces myosin 
II phosphorylation by feedback and produces 
cytoskeletal forces86,87. Zyxin, known as FAs pro-
tein, alter its binding kinetics in a force-depen-
dent manner which enables it to shuttle between 
the cytoplasm and nucleus, and in this manner, 
zyxin can serve as a transcription factor to reg-
ulate gene expression9,88. Three lines of evidence 
have demonstrated that zyxin shuttles between 
nuclear compartments and cytoplasm. First, in 
cells that are treated with leptomycin B, an inhib-
itor of Crm1-dependent nuclear export, zyxin ac-
cumulates in the nucleus85. Second, a leucine-rich 
nuclear export signal (NES) has been well-char-
acterized within the central region of most zyxin 
proteins, and deletion or mutation of this NES 
also results in nuclear accumulation of zyxin89. 
Third, nuclear accumulation of endogenous zyx-
in is also observed after infection of cells with a 
vaccinia virus90. 

Growing studies9,91,92 have reported the role 
of zyxin in transcriptional responses. Zyxin is 
transported into the nucleus respond to applied 
forces and antisense oligonucleotides against 
zyxin altered stretch-induced changes in gene 
expression in smooth muscle cells93. However, 
less is known about the underlying mechanism. 
Apart from the proline-rich region, LIM domains 
of zyxin may also contribute to the process of 
nuclear import94. However, neither is basic. Ac-
cumulation within nuclei is likely to occur via a 
particular mechanism87. There are some hypoth-
eses so far. The hydrodynamic characteristics 
of chicken zyxin inform that zyxin performs as 
an elongate monomer of 69 kDa, which is too 
large to diffuse passively through the nuclear 
pore complex87. Furthermore, zyxin has no tra-
ditional (primary) nuclear localization sequence 
(NLS). Thus, it is possible that zyxin enters the 
nucleus in association with other NLS-containing 
proteins or alternative mechanisms9. Zyxin may 
use a unique nuclear import mechanism similar 
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to that described for the cell adhesion and cell 
signaling protein β-catenin that interacts direct-
ly with the nuclear pore complex87. The zyxin 
proteins can enter the nucleus by reinforced-as-
sociation with a mutant form of cell adhesion 
kinase β/proline-rich tyrosine kinase 2 (CAKβ/
PYK2), which abnormally localizes to the nucle-
us95. Suresh Babu et al96 exhibit a multiple-stage 
signaling pathway through the stretch-induced 
release of endothelial vasoconstrictor peptide en-
dothelin-1 (ET-1), mediated by the transient re-
ceptor potential channel. Protein kinase G would 
mediate the phosphorylation of zyxin at serine 
142, sequentially triggering the translocation of 
zyxin to the nucleus. Furthermore, zyxin acts 
as a transducer of transducing the mechanical 
signal into the nucleus in endothelial cells, where 
it orchestrates the expression of a prominent 
subset of stretch-sensitive genes through a nov-
el DNA-response element97. In vascular smooth 
muscle cells (VSMCs), within minutes, zyxin 
translocates from FAs to the nucleus of VSMCs 
when exposes to a cyclic strain, and changes the 
expression of the mechanical-sensitive gene98. 
ChIP assays revealed that zyxin actually inter-
acts with the promoter region of zyxin-dependent 
genes, such as interleukin-8, VCAM-1, HMNC1, 
Hey-1, HMGCR, and ICAM-193. 

As mentioned above, zyxin not only contrib-
utes to organizing the actin cytoskeleton but also 
to the changes in the gene expression occurring 
as an adaptive response to enduring mechan-
ical strain. The LIM-domains and the similar 
LIM-domain present in the zyxin homolog, li-
poma-preferred protein, can directly induce gene 
expression in an artificial assay system. The 
phenomenon suggests that zyxin may act as 
a transcription factor87. Otherwise, zyxin may 
affect the gene expression exclusively through 
protein-protein interactions, as described for re-
lated zinc finger proteins like the GATA family 
of transcription87. 

Here is another supporting proof: long-drawn 
exposure to enhanced stretch, such as hyper-
tension, can trigger endothelial dysfunction, a 
hallmark of pathological vascular remodeling 
processes93. DNA microarray pathway analyses 
of stretch-induced changes in endothelial cell 
gene expression revealed that zyxin mainly reg-
ulates proinflammatory pathways, suggesting a 
role for zyxin in vascular remodeling processes. 
Testing results of three stretch-sensitive genes 
revealed that zyxin controls the interleukin-8 and 
CXCL1 instead of the B-type endothelin receptor 

(ETB-R). In practice, zyxin interacts with the 
promoter region of these genes93. Furthermore, 
in human cultured endothelial cells that exposed 
to cyclic stretch, a nuclear protein-DNA com-
plex forms that, according to supershift analysis, 
contains zyxin, indicating the significant role of 
zyxin in stretch-induced endothelial gene expres-
sion93.

LIM domains have structures related to cer-
tain zinc fingers, which are known to mediate 
DNA binding in several transcription factors. 
Zyxin interacts with a variety of nuclear proteins 
including transcription factors or induces regula-
tion of cytoplasmic proteins in the nucleus88,99,100. 
Zyxin acts as coactivators of transcription to reg-
ulate gene expression85. Proteins regulated by the 
stretch-induced accumulation of zyxin in nuclei 
are as followed:

1.	6E6: A yeast two-hybrid library screening 
determines that zyxin acts as a protein partner 
for E6, from Human Papillomavirus (HPV) 
Type 6 and results in E6’s nuclear transloca-
tion. Cotransfection of E6 from HPV (6E6) 
and zyxin leads to the aggregation of zyxin in 
the nucleus, where it can work as an activating 
transcription factor. 6E6 can also mobilize 
endogenous zyxin to the nucleus. Moreover, 
when zyxin binds to Gal4-BD for exogenously 
expressing, the results show that it has inscrip-
tional activation potential and this activity is 
synergistically enhanced by 6E6 only when the 
interacting C-terminal LIM domain is present 
in the zyxin construct101.

2.	Akt: Kato et al102 found that atrial natriuretic 
peptide (ANP) promotes cardiomyocyte sur-
vival by cGMP-dependent nuclear accumula-
tion of zyxin and Akt. Nuclear translocation 
of zyxin also induces nuclear accumulation of 
activated Akt kinase. Zyxin and activated Akt 
participate in a cGMP-dependent signaling 
cascade leading from ANP receptors to nuclear 
accumulation of both molecules. Collectively, 
nuclear accumulation of zyxin and activated 
Akt may represent a fundamental mechanism 
that facilitates nuclear-signal transduction and 
potentiates cell survival33. Additionally, anoth-
er research shows that zyxin binds to acinus-S, 
a nuclear speckle protein inducing apoptot-
ic, chromatin condensation after cleavage by 
caspases, and restraints its apoptotic action, 
which is regulated by Akt103. 

3.	HNF-1β: Hepatocyte nuclear factor-1β (HNF-
1β), an epithelial tissue-specific transcription 
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factor, could regulate the gene expression in 
the kidney, liver, intestine, and other organs104. 
The LIM-domain protein zyxin is identified 
as a new binding partner of HNF-1β in renal 
epithelial cells. Zyxin shuttles to the nucle-
us with the co-localization of HNF-1β91. The 
interaction of the two proteins requires the 
participation of the second LIM domain of 
zyxin and the two particular domains of HNF-
1β. The overexpression of zyxin motivates the 
transcriptional activity of HNF-1β, while small 
interfering RNA silencing of zyxin inhibits 
HNF-1β-dependent transcription101. 

4.	CBP: Retinoids including all-trans retinoic ac-
id (RA) have been widely used for cancer ther-
apy. However, the acquired resistance remains 
the main obstacle to RA treatment. Former 
studies informed that zyxin mediates retinoic 
acid receptors (RARs) repression by forming 
a ternary complex with PTOV1 and the RAR 
coactivator CBP through translocating to the 
nucleus in response to RA. Accordingly, it 
promotes the dissociation of CBP from RAR 
at the RA-responsive promoter. Consistently, 
RA-induced cancer cell cytotoxicity is signifi-
cantly impaired by Zyxin or PTOV1105.

5.	CARP-1: Zyxin contributes to UV-induced 
apoptosis. Cell cycle and apoptosis regulator 
protein-1 (CARP-1), a 130-kDa nuclear protein 
which is co-isolated with zyxin, are identified 
by microsequencer analysis. Zyxin connects 
with CARP-1 through its LIM region. Zyxin 
lacking the CARP-1 binding region presents 
lessened proapoptotic activity in response to 
UV-C irradiation106. 

6.	SIRT1: After treatment with leptomycin B, 
zyxin accumulates in the nucleus co-localized 
with SIRT1 in COS-7 cells. Moreover, the 
SIRT1 deacetylates zyxin suggests that SIRT1 
could interact with nuclear-accumulated zyxin 
and regulate its function through deacetyla-
tion. These consequences raise the possibility 
that SIRT1 regulates signal transmission from 
ECM to the nucleus by modulating the func-
tions of zyxin via deacetylation107. 

7.	Xanf1: By using a yeast two-hybrid system, 
experiments are designed to seek candidature 
partner protein of the homeodomain transcrip-
tion repressor Xanf1, a crucial transcriptional 
regulator of the early stage of the forebrain 
growth. The LIM domain protein zyxin is 
identified from the African clawed frog Xen-
opuslaevis primarily. In the lysate of X. laevis 
embryos, the interaction of zyxin with Xanf1 

is confirmed by the immunoprecipitation of 
an endogenous-zyxin-complex with the hybrid 
myc-Xanf1 protein. By using a set of deletion 
mutants of both proteins, it has been demon-
strated that the combination of the LIM2 do-
main of zyxin and the Engrailed Homology 1 
repressor domain of Xanf1 contributes to the 
interaction of these proteins108. 

8.	ZNF384: Zyxin interacts in vitro with ZNF384 
(zinc finger protein 384, also called the Cas in-
teracting Zn-finger protein, CIZ, and NMP4), 
a transcription factor which shuttles between 
the nucleus and adhesion sites and is involved 
in osteoblast differentiation. Zyxin interacts 
directly with p130Cas and is postulated to 
link p130Cas to ZNF384. It is intriguing that 
zyxin or its binding partners have been impli-
cated in the control of the gene expression in 
two tissues, bone, and smooth muscle, both of 
which are exquisitely responsive to mechanical 
stress109.

Conclusions

In this review, we discuss the FAs protein 
zyxin, also a member of LIM domain pro-
teins, which shows mechanosensitive features 
that indicate its role as a crucial ingredient of 
the mechanotransducing system. In response to 
mechanical force stimulation, zyxin flows away 
from FAs to actin stress fibers for SFs remold-
ing and repair, enters the nucleus by association 
with other proteins to regulate gene expression. 
Mechanical signals are transduced into the actin 
polymerizing response via zyxin accumulation 
accompanied by Ena/VASP recruitment. More-
over, zyxin is recruited with VASP and α-acti-
nin, which bind the N-terminal region of zyxin, 
to SF strain sites and mediate SFs repair. How-
ever, there are still many unsolved questions. 
Although previous results suggested a model 
where zyxin-VASP complexes occur in complex 
organizations with suppressed actin regulatory 
activity, it remains to be clarified65. Further-
more, apart from zyxin, there are multiple force 
sensitive modules present at the FAs that are ac-
tivated at distinct locations and regulate specific 
aspects of junction dynamics110. A large number 
of studies have been conducted in this aspects, 
but the mechanism they corporate with each 
other in regulating cytoskeletal tension and me-
diating nuclear activities has not been revealed 
thoroughly65,106. 
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It is worth noticing that though zyxin is mech-
anoresponsive and a potential candidate of mech-
anosensor, there is no direct evidence so far that 
zyxin directly receives and senses force in cells111. 
Although localization and phosphorylation of 
zyxin are sharply altered in response to mechani-
cal stimuli to cells10, it is possible that some other 
molecule may sense force and transduce it into a 
signal that modulates zyxin behaviors. Detailed 
data mining and bioinformatic analysis have re-
vealed that FAs are composed of 180 different 
kinds of molecules, connected to each other 
within a network containing at least 742 interac-
tions112. Zyxin’s recruitment to cytoskeletal struc-
tures under tension might be sensed and driven 
by newly revealed conformational changes, actin 
barbed ends, or post-translational modifications 
in actin or zyxin-binding partners36,113.

As mentioned above, accumulating evidence 
suggests that zyxin has nuclear functions that 
affect transcription, in addition to their functions 
at focal adhesion plaques. Zyxin interacts with a 
variety of nuclear proteins, acting as coactivators 
of transcription to regulate gene expression85. 
Zyxin may constitute from FAs to the nucleus 
through some signaling pathways such as the 
Wnt/β-catenin pathway114 and the guanylate ki-
nase CASK115, which have already been clarified 
their role in mechanotransduction116-118. We think 
further studies ought to reveal which pathways 
are involved in this process. Moreover, LIM do-
mains have structures related to certain zinc fin-
gers, which are known to mediate DNA binding 
in several transcription factors. However, zyxin 
is probably not direct transcription factor, as only 
the LIM domains of Hic-5 have been shown to 
have DNA-binding activity, and this has only 
been demonstrated in vitro119. Whether zyxin is 
an actual transcription factor, still needs further 
exploration. 

In certain circumstance, the nuclear misregu-
lation function of zyxin is relevant to pathogenic 
effects and diseases9. Zyxin, via its LIM domain 
region, interacts with the E6 oncoprotein of HPV 
type 6, which is commonly associated with geni-
tal warts. The excessive cyclic stretch of vascular 
smooth muscle cells leads to the shift in their phe-
notype like hypertension. Zyxin modulates the 
mechanotransduction of vascular smooth muscle 
cells by influencing the cytoskeletal structure 
and signaling pathways55,94. Bronchial hyperre-
sponsiveness of airway smooth muscle (ASM) 
is a characteristic feature of asthma120. Zyxin is 
also found to assist the ASM cells to respond to 

stretch caused by deep inspiration in people with 
asthma. Based on its ability to repair SFs frag-
mentation, zyxin maintains the ASM structure, 
promotes the recovery of contractile force and 
finally slows airway dilation121. Moreover, several 
studies have revealed the relevance between zyx-
in and different kinds of cancer. Prostate cancer 
is a malignant tumor which used to appear mostly 
in the male urogenital system122. Zyxin siRNA 
treatment inhibited the migration and invasion of 
DU145 cells. Zyxin expression in tumor tissues 
is higher than in normal tissues, suggesting that 
zyxin may participate in the growth and invasive-
ness process of human prostate cancer123. Lung 
cancer also has high metastatic potential, which 
is the leading cause of the significant mortali-
ty124. Zyxin has been determined as a potential 
early diagnostic marker for non-small-cell lung 
cancer125. Therapies ought to be formulated based 
on the further understanding of the role of zyxin 
aiming at these diseases. Future studies must 
reveal the mechanism of how zyxin serves as a 
mechanotransductor in force sensing and regu-
lation of the gene expression in several diseases, 
and that is meaningful for constituting therapeu-
tic strategies to combat the diseases.
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