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Abstract. – Healthcare-associated infec-
tions are a serious threat in terms of morbidi-
ty and mortality for all patients receiving health-
care. The problem is aggravated by the increas-
ingly widespread phenomenon of antibiotic re-
sistance, with some microorganisms now resis-
tant to all or almost all the currently available 
antibiotics. Nanomaterials are compounds used 
by many different industrial fields and they are 
currently studied for their intrinsic antimicrobial 
properties. To date, many researchers have con-
sidered using many different nanoparticles and 
nanomaterials to produce surfaces and medi-
cal devices with intrinsic antimicrobial features. 
Many compounds have shown very interesting 
and effective antimicrobial capacities and could 
be used, in the future, to manufacture new hos-
pital surfaces and medical devices. However, 
many studies have to be carried out to evaluate 
the effective potential use of these compounds. 
The aim of this paper is to review the main liter-
ature regarding this topic, focusing on the main 
types of nanoparticles and nanomaterials stud-
ied for this purpose.
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Introduction

Healthcare-associated infections (HAIs) are 
currently one of the most demanding challenges 
of public health worldwide. It is estimated that 
in Europe, 6.5% of patients admitted to an acute 
care hospital develop an HAI1. In addition, there 
is a growing concern in the scientific community 
regarding the increasingly widespread and consi-
stent phenomenon of antibiotic resistance. Various 
microorganisms are able to develop resistance 

towards antibiotics with different mechanisms 
of action (inhibition of cell wall synthesis, DNA 
replication and protein synthesis)2. Indeed, mi-
croorganisms have gradually developed various 
resistance mechanisms against almost all of the 
available antibiotics3. Specifically, we refer to the 
so-called ‘ESCAPE’ microorganisms - a term 
introduced by the Centers for Disease Control 
and Prevention (CDC) - which are Enterococ-
cus faecium, Staphylococcus aureus, Clostridium 
difficile, Acinetobacter baumannii, Pseudomo-
nas aeruginosa and Enterobacteriaceae4,5. These 
multidrug-resistant (MDR) or, in some cases, 
pan-resistant pathogens are the world’s leading 
cause of HAIs6-9. These bacteria are widely spre-
ad in hospital environments and surfaces on 
which they are able to survive for a long period 
of time and, therefore, cross-contaminate medical 
devices, with a high risk of passing to patients10-12. 

Bacterial resistance mechanisms can be clas-
sified as naturally intrinsic (the microorganism is 
naturally resistant, for example, due to the lack of 
pharmacological target), induced (i.e., resistance 
genes are expressed after exposure to the drug) 
or acquired (via horizontal gene transfer or muta-
tions)3. There are four main types of mechanisms 
involved in antibiotic resistance. The first is based 
on a decrease in intracellular drug accumulation 
and can occur 1) through reduced membrane 
permeability or 2) through active extrusion of the 
drug via efflux pumps. The second mechanism 
is enzymatic inactivation or modification of the 
drug chemical structure. The third mechanism 
is modification of the pharmaceutical target. Fi-
nally, there is the alteration of some metabolic 
pathways13-15. The CDC reported16 that in 2019 in 
the USA, 2.8 million people were infected with an-
tibiotic-resistant bacteria or fungi, and more than 
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35,000 people died as a result. Therefore, the scien-
tific community has directed an immense amount 
of effort to study different materials with antimi-
crobial properties. In this view, nanotechnologies 
and the synthesis of various nanosized molecules 
potentially applicable as antimicrobial agents ha-
ve received great attention17. Nanoparticles (NPs) 
could be used as a coating for hospital surfaces 
and for manufacturing medical devices as well as 
a mean to deliver molecules with antimicrobial 
activity, to produce a synergistic effect18. 

Nanoparticles and Nanomaterials

NPs are defined by the International Organiza-
tion for Standardization (ISO)19 as nano-objects 
that are entirely nano-sized. NPs can be of dif-
ferent shapes (spherical, cylindrical and conical), 
dimensions (as long as they remain between 1 
and 100 nm in diameter) and can be composed 
of one or more layers20. On the other hand, na-
nomaterials refer to materials in which at least 
one of their dimensions is less than 100 nm21. As 
shown in Figure 1, Joudeh and Linke19 classified 
nanomaterials based on how many dimensions 
are on nanoscale:

- zero dimensional nanomaterials, in which all three 
dimensions are nanoscale (fullerenes and quantum dots);

- one-dimensional nanomaterials, in which one di-
mension is greater than 100 nm (nanotubes, nanofibers);

- two-dimensional nanomaterials, in which two 
dimensions are greater than 100 nm (nanosheets, 
nanofilms, and nanolayers); 

- three-dimensional nanomaterials, in which all 
three dimensions are greater than 100 nm due to 
secondary cluster of NPs (loose powders, NP di-
spersions, arrays of nanowires and nanotubes, etc.). 

Synthesis of Nanoparticles

NPs have been studied for a long time to find 
correlations between their features (size, shape, 
height, surface and improved permeability) and 
antimicrobial properties in order to optimize their 
synthesis for use in the biomedical field. Multiple 
techniques have been used to fabricate NPs and 
nanomaterials; they are categorized into a bot-
tom-up or top-down method20. The bottom-up 
method, also called the constructive method, 
starts from the atom up to the synthesis of NPs 
[the sol-gel process, spinning, chemical vapor de-
position (CVD) and biosynthesis]. The top-down 

or destructive method is based on reducing a 
bulk material to NPs through mechanical milling, 
nanolithography, laser ablation, sputtering and 
thermal decomposition. Green synthesis of me-
tal-based nanomaterials has also been discussed 
in recent years22. This approach uses bioactive 
agents such as plant materials, microorganisms 
and various organic waste as a starting point. All 
of this is done to significantly reduce the risk of 
environmental pollution.

Mechanisms of Toxicity

To be considered an excellent antimicrobial 
agent, NPs must have the ability to bind to mi-
croorganisms and slow or inhibit their growth. 
This binding occurs via a strongly positive zeta 
potential that promotes the interaction of NPs 
with cell membranes. This interaction can lead to 
the rupture of the cell membrane and a reduction 
in their vitality or to a greater penetration of the 
NPs inside the bacterial cell17. Obviously, the 
antibacterial action of NPs is also influenced by 
their nature, their size, form and charge23,24. In 
any case, several models have been proposed to 
explain the antibacterial action of these NPs.

Mechanical Membrane Damage
Membrane damage or rupture is a non-specific 

mode of action. The existence of this effect has 
been suggested by studies25 in which bacterial 
cells, following treatment with NPs, showed ab-
normal membrane permeability, leading to death. 
Gram-negative bacteria are more sensitive to this 
action due to their thinner membrane (3-4 nm) 
compared with gram-positive bacteria, which ha-
ve a thick layer of peptidoglycan and thus a much 
thicker membrane (30 nm)26.

Release of Harmful Ions
Several NPs can release ions that can in-

terfere with the functionality of bacterial 
proteins. For example, silver nanoparticles 
(AgNPs) release Ag ions that inhibit respira-
tory enzymes and DNA replication and com-
promise membrane permeability27,28.

Reactive Oxygen Species Generation
When NPs come into contact with the micro-

bial cell membrane, they can also trigger a series 
of oxidative processes that will lead to the pro-
duction of reactive oxygen species (ROS). These 
compounds can damage cell constituents, alter 
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membrane integrity and permeability, generate 
protein radicals29, promote lipid peroxidation30 
and DNA strand breaks and modify nucleic 
acids31. In addition, gene expression can be mo-
dulated via activation of redox-sensitive tran-
scription factors32, and inflammation can occur 
through signal transduction33.

Alteration of Protein Expression
NPs directly affect and create various alte-

rations in bacterial metabolism. Indeed, resear-
chers34,35 have shown, through proteomics, that 
some NPs, such as magnesium oxide nanopar-
ticles (MgONPs) or copper oxide nanoparticles 
(CuONPs), can alter the expression of specific 
proteins, which results in a reduction in cellular 
metabolic activity. Other species such as tita-
nium dioxide nanoparticles (TiO2NPs) affect the 
synthesis of adhesion proteins, which are requi-
red for biofilm formation36.

Classification of Nanoparticles

NPs are classified according to their constituen-
ts into three categories: inorganic, carbon-based 
and organic20. The different types of NPs stu-
died for their antimicrobial activities are sum-
marized in Table I.

Inorganic Nanoparticles 
Inorganic NPs include metal, ceramic and se-

miconductor NPs. Metallic NPs are made entirely 
of metal precursors and are typically classified as 
metal-based or metal oxide-based.

Metal-Based Nanoparticles
Metal-based NPs are composed of metals and 

synthesized with both destructive and constructi-
ve methods. Metal-based NPs can be synthesized 
from almost any metal37, but copper (Cu), gold 
(Au), iron (Fe) and Ag are most often used. These 
nanoparticles have different properties (size, sha-
pe, color, structure, density, ratio between surface 
area and volume, surface charges, and reactivity).

Gold nanoparticles
Gold nanoparticles (AuNPs) have a diameter 

between 1 and 100 nm. If these particles are di-
spersed in an aqueous matrix, it is called colloi-
dal gold. These NPs have aroused great interest 
because of their low toxicity. Moreover, they are 
easily manufactured and have a highly specific 
target38. AuNPs have shown39,40 great versatility: 
they have potential use in different settings such 
as water hygiene management and can present 
anti-HIV activity when functionalized. They are 
often used for their antibacterial properties, de-
spite having weak antimicrobial efficacy against 

Figure 1. Classification of nanomaterials based on how many dimensions are on nanoscale.
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both gram-negative and gram-positive bacteria 
compared with other metal-based NPs. However, 
they are considered an excellent candidate for 
antibiotic complement. The antimicrobial effect 
is greater if AuNPs are functionalized due to 
their ability to behave like darts, generating holes 
in the bacterial cell wall and membrane. Such 
damage to the cell wall kills the microorganism 
due to the loss of cell content41. Furthermore, 
some studies42 have shown the ability of AuNPs 
to bind bacterial DNA, preventing its unwinding. 
This leads to transcription and therefore protein 
synthesis blockade. These antimicrobial effects 
have also been shown25 against MDR pathogens. 
In MDR gram-negative bacteria, AuNPs cause 
a loss of the membrane potential by decreasing 
adenosine triphosphate (ATP) through ATPase 
inhibition and by preventing ribosomal binding 
to transfer RNA (tRNA).

We are currently moving towards green syn-
thesis of AuNPs, through the use of plants, fungi, 
bacteria and viruses as a source for reducing 
and stabilizing agents necessary for synthesis43. 
Green AuNP synthesis is also preferred because 
the NPs obtained by this method show higher an-
tibacterial activity compared with those produced 
by chemical synthesis methods44. For example, 
Nayem et al43 used Amorphophallus paeoniifolius 
tuber extract as a bio-reducing agent thanks to 
the presence of alkaloids, steroids, carbohydrates 
and proteins. Indeed, these compounds allow 
the reduction of metal ions and colloidal stabi-
lisation45,46. MubarakAli et al47 biosynthesized 
AuNPs starting from plant extracts of Mentha 
piperita leaves, with strong bactericidal activity 
against Escherichia coli and S. aureus. Vijayan et 
al48 used extracts of Indigofera tinctoria, and the 
NPs they synthesized exhibited strong antimicro-
bial activity against S. aureus, Bacillus pumilis, 
E. coli, Pseudomonas spp., Aspergillus niger 
and Aspergillus fumigatus. AuNPs can also be 
biosynthesized from Abelmoschus esculentus49. 
Sathiyaraj et al38 demonstrated how it is possible 
to synthesize AuNPs using Panchgavya, a com-
bination of five products of bovine origin: urine, 
dung, milk, curd and ghee (which are rich in be-
neficial microorganisms, carbohydrates, proteins, 
lipids, micronutrients and antioxidants). The 
bacterial activity of these NPs was high against 
gram-negative bacteria (E. coli and Klebsiella 
pneumoniae) and moderate against gram-positive 
bacteria (Bacillus subtilis). This further confirms 
the possibility of using biological methods to syn-
thesize NPs with antibacterial activity.

Iron nanoparticles
When functionalized, iron nanoparticles 

(FeNPs) show antimicrobial properties. In fact, 
they are generally inert in their native form, 
while modifications of their surfaces, as well as 
their oxidation, give them both non-stick and 
antibacterial properties3. Beyth et al50 observed 
that FeNPs inhibited bacterial biofilms formed 
by gram-negative and gram-positive bacterial 
isolates. Chemically synthesized FeNPs are ge-
nerally biologically compatible and, according to 
Aparicio-Caamaño et al51, their conjugation with 
an antibiotic drug (e.g., erythromycin) enhances 
the antibacterial effect against Streptococcus 
pneumoniae. Similarly, conjugation of FeNPs 
with tobramycin and alginate enhances the an-
tibacterial effect against P. aeruginosa. These 
conjugations also inhibit the formation of bio-
films and, therefore, are proposed as a low-cost 
alternative to any antibacterial coatings52. In 
recent years, there have been published papers 
in which the authors discuss green synthesis of 
these NPs. For example, Batool et al53 showed 
how it is possible to synthesize FeNPs using 
Phoenix dactylifera extract as a reducing agent 
and iron sulphate heptahydrate as a substrate. 
These NPs showed maximum antimicrobial 
activity on E. coli and K. pneumoniae. 

Silver nanoparticles
Historically, Ag has been used as an antimi-

crobial agent alone or in combination. This metal 
is present, in combination with other substances, 
in creams and dressings for the treatment of 
burns and ulcers, in food packaging and it is used 
in various industries54-56. AgNPs range in size 
from 1 to 100 nm and show strong antibacterial 
properties against gram-negative and gram-po-
sitive bacteria, including MDR strains, and a 
higher surface-to-volume ratio than Ag in its 
bulk form57. AgNPs have shown58 antimicrobial 
activity against a variety of MDR pathogenic 
microorganisms. These AgNPs can be used to 
manufacture surgical instruments, catheters and 
drugs59,60. The potential of AgNPs as antimicro-
bial agents is linked to their various mechanisms 
of action. Indeed, they act by damaging various 
vital bacterial structures; hence, they have the 
ability to kill various types of bacteria61. The 
mechanism by which they exert toxicity is not 
entirely clear. What is certain is the release of 
Ag ions that, upon entering the cell, lead to the 
production of ROS and highly reactive nitrogen 
radicals (RNS), which oxidize cell structures, 
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biomolecules, and the enzymes of the respiratory 
chain (with a consequent decrease in the level of 

ATP), with DNA denaturation, lipid peroxidation 
and finally cell death62. Furthermore, Ag ions can 

Table I. Classification of NPs with antimicrobial activities.

Types of NPs	 Size and shape	 Main target	 Mechanism of action

Inorganic NPs			 
Metal-based NPs			
Gold (Au) NPs	 21 nm; hexagonal	 MRSA, E. coli, Pseudomonas spp.,	 Making holes in the cell wall.
		  K. pneumoniae, Bacillus subtilis 	 Inhibition of the transcription
		  Aspergillus niger, Aspergillus fumigatus	 process due to the bind to the DNA.
Iron (Fe) NPs	 10-20 nm; spherical	 S. aureus, S. epidermidis, E. coli	 ROS production and oxidative stress.
Silver (Ag) NPs	 5-50 nm; spherical	 P. aeruginosa, V. cholerae, K. pneumoniae,	 Separation of the cytoplasmic
		  S. aureus, E. faecium, S. epidermidis	 membrane from the cell wall,
			   plasmolysis, inhibition of the DNA 
			   replication and respiratory chain.
Metal oxide-based NPs			 
Copper oxide 	 12 nm; spherical	 B. subtilis, S. aureus, E. coli	 Reduction of the cell wall.
(CuO) 			   Alteration of biochemical processes.
Titanium oxide 	 17 nm; hollow	 E. coli, S. aureus, several fungi	 ROS production and DNA damage.
(TiO2)  	 nanospheres	
Iron oxide (Fe2O3) 	 10-20 nm; spherical	 S. aureus, S. epidermidis, E. coli	 ROS production and oxidative stress.
Zinc oxide (ZnO)	 28 nm; wurtzite shape	 E. coli, Listeria monocytogenes,	 ROS production with cellular
 	  	 Salmonella, S. aureus	 damage for oxidative stress.
Magnesium oxide 	27 nm; spherical	 S. aureus, E. coli, Bacillus megaterium,	 ROS production with lipid 
(MgO) NPs		  Bacillus subtilis	 peroxidation, alkalizing effect.
Cerium oxide 	 Spherical-shaped,	 E. coli, S. aureus, K. pneumoniae	 Altered functionality of plasmatic 
(CeO)  	 nanocubs, nanosheets		  membrane, ROS production, 
			   alteration of the electronic flow and
			   of the transport of nutrients
Other NPs			 
Yttrium floride 	 Needle-like (length 	 E. coli, S. aureus	 Binding and inhibition of enzymes 
(YF)	 of 342 ± 51 nm and a 		  containing metal functional groups
	 width of 52 ± 12 nm)	
NO-releasing silica	Spherical-shaped, 	 P. aeruginosa, E. coli, S. aureus, 	 ROS production
	 136 ± 15 nm	 S. epidermidis
Ceramic NPs	 Amorphous, porous, 	 P. aeruginosa, E. coli, E. faecalis,  	 Release of Sm3+ ions that can cause
	 or polycrystalline	 S. aureus	 damage to bacterial wall and DNA; 
			   ROS production with cellular damage 
			   for oxidative stress
Semiconductor 	 CdS and ZnS: spherical  	 Streptococcus spp., Staphylococcus spp.,  	 Discharge of ions, which react with the
NPs	 shape and variable size    	Lactobacillus spp., K. pneumoniae  	 thiol groups of the proteins present on
	 (10-65 nm)	  	 the bacterial cell membrane
Carbon-based NPs		
Graphene	 Honeycomb lattice	 E. coli, S. aureus, S. mutans	 Alteration of membrane integrity 
	  	  	 and inducing of oxidative stress
	  	  	 by electron transfer
Fullerenes	 Hollow, spherical	 E. coli, S. aureus, P. aeruginosa 	 Inhibition of energy metabolism
	 molecules; single-layer 	  	 following their internalization
	 (diameters up to 8.2 nm) 		  and-induction of cell membrane rupture
	 or multilayer (diameters 
	 from 4 to 36 nm)		   
Carbon-nanotubes	 Hollow cylinder; 	 E. coli, B. subtilis  	 Interaction with the bacterial surface;
	 SWCNTs (diameter 		  ROS production and oxidation of
	 of 1 to 7 nm), and 		  membrane components
	 MWCNTs (diameter 
	 ranging from 10 to 20 nm)	
Organic NPs			 
Chitosan	 Linear polycationic	 E. coli, K. pneumoniae, P. aeruginosa,	 Alteration of transmembrane transport
	 heteropolysaccharide	 S. aureus	 and membrane permeability. 
			   Inhibition of DNA replication.
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bind various biomolecules and membranes, alte-
ring the integrity of the latter63. 

AgNPs, along with other nanomaterials, have 
been studied64 in the post-antibiotic era to iden-
tify new agents that could help the fight against 
pathogenic microorganisms without favoring 
the emergence of new resistance. In this case, 
AgNPs are an excellent alternative as they have 
proven efficacy in both the decontamination of 
medical supplies and in the treatment of ongoing 
infections65. They can also be conjugated to anti-
biotics, often showing a synergistic effect57. In the 
last 15 years, more than 500 tons of AgNPs have 
been produced each year66. Alongside the classi-
cal chemical synthesis of AgNPs, there has been 
recent attention regarding synthesizing AgNPs 
through biological approaches such as green syn-
thesis or photosynthesis67. In this method, Ag 
ions are converted into AgNPs using secondary 
metabolites from vegetables in a single-stage 
reaction; no surfactants or other stabilizing com-
pounds are used68. For example, Foroohimanjili et 
al69 showed how it is possible to photosynthesise 
AgNPs by using Mespilus germanica extract. 
The AgNPs show an antimicrobial, anti-biofilm 
and anti-quorum-sensing effects on clinical MDR 
K. pneumoniae strains. Several plant extracts ha-
ve been reported70,71 for the synthesis of AgNPs. 
Kumar et al70 synthesized spherical AgNPs using 
an aqueous mixture of Alternanthera dentate 
extract, which showed potential antimicrobial 
activity against E. coli, Enterococcus faecalis, P. 
aeruginosa and K. pneumoniae. Another study71 

highlighted how it is possible to biosynthesize 
AgNPs with antibacterial activity using an ex-
tract of Lycopersicon esculentum. These AgNPs 
have a bacteriostatic effect against E. coli at the 
lowest concentrations but are bactericidal at the 
highest concentration. 

Metal Oxide-Based Nanoparticles
The oxidation of the metals usually used for NP 

synthesis modifies their properties, making them 
more reactive72. CuO, TiO2, iron oxide (Fe2O3), 
zinc oxide (ZnO) and MgO are commonly used 
to produce metal oxide-based NPs.

Copper oxide nanoparticles
CuO has shown excellent antibacterial activity 

against Gram-positive and Gram-negative bacte-
ria73. For this reason, it is used as an antibacterial 
coating on various substrates, especially medical 
equipment. Considering that CuSO4 and Cu(OH)2, 
aqueous solutions of Cu, complex copper species 

or copper-containing polymers act as antibacterial 
compounds74. The U.S. Environmental Protection 
Agency (EPA) has registered75,76 Cu as the only 
metal with strong antimicrobial properties, as it 
inhibits the growth of 99.9% of pathogens within 
2 hours.. Non-oxidised NPs already show high 
antibacterial efficacy thanks to the interaction 
between the bacterial cell membrane and CuNPs, 
which results in lipid peroxidation, oxidation and 
denaturation of proteins, and interaction with 
phosphorus and sulphur and with the compounds 
that contain them, leadings to DNA degradation 
and eventual death77. A synergistic effect between 
CuNPs and antibiotics, such as erythromycin, 
azithromycin and norfloxacin, has also been 
documented78. CuONPs have proved17 to have 
excellent anti-biofilm activity and are capable of 
blocking ATP synthesis and can rapidly lead to 
the death of bacterial cells. Nithiyavathi et al73 
demonstrated that CuONPs can be synthesized 
using almond gum as a reducing agent; the resul-
ting NPs exhibit excellent antibacterial activity 
against gram-positive and gram-negative bacte-
ria. Other studies79,80 have been conducted on the 
biosynthesis of CuNPs. For example, it has been 
possible to synthesize stable CuNPs (variable size 
of 40-100 nm) using Magnolia virginiana leaf ex-
tract treated with water CuSO4·5H2O solution as 
a reducing agent, and these showed79 excellent an-
tibacterial potential. Citrus medica Linn extract 
has also been used80 to biosynthesize CuNPs (size 
10-60 nm), and these were then tested on some 
bacterial strains, showing antibacterial activity 
against K. pneumoniae, E. coli, S. aureus, Pro-
teus vulgaris, Salmonella typhi, Shigella flexneri, 
Propionibacterium acnes, P. aeruginosa and E. 
faecalis. Ren et al81 reported increased sensitivity 
of E. coli and E. faecalis to CuONPs.

Titanium dioxide nanoparticles
Titanium (Ti) and its alloys are widely used in 

orthopedics and dentistry for their unique mecha-
nical properties, namely 1) resistance to corrosion 
in biological media, 2) biocompatibility and 3) 
capacity of bone integration. The only drawback 
of Ti itself is that it is highly susceptible to mi-
crobial colonisation82. However, TiO2NPs exhibit 
anti-biofilm and antimicrobial properties due to 
their size and stability. These properties are linked 
to their ability to cross the bacterial cell wall and 
to interact with the cell membrane. Khashan et al83 
showed an inhibitory effect in P. aeruginosa, A. 
baumannii, K. pneumoniae, E. coli and S. typhi. 
Numerous studies84 have also showed the ability 



Antibacterial activity of nanoparticles and nanomaterials

3651

of TiO2NPs, prepared by the sol-gel method, to 
act against MDR strains of P. aeruginosa isolated 
from clinical specimens, as well as to interfere wi-
th the important bacterial communication mecha-
nism, namely quorum sensing (essential for bio-
film production), and with a resistance mechanism, 
such as efflux pumps. TiO2NPs are also capable of 
potentiating the effect of antibiotics. Ahmed et al85 
reported a reduction in antimicrobial resistance 
in MDR strains when treated with TiO2NPs and 
antibiotics. This is probably due to a synergistic 
effect. For this reason, TiO2NPs are currently 
used in many fields, such as the pharmaceutical 
(as vehicles for drug delivery), food and cosmetics 
industries. Moreover, these NPs are often used to 
purify environmental matrices (air and water) or as 
coatings of biomedical devices17.

Zinc oxide nanoparticles
ZnO is a semiconductor metal oxide that has 

aroused great interest in the scientific community 
due to its low-cost production, ease of preparation 
and safety86. From there, it was a short step to the 
synthesis of zinc oxide nanoparticles (ZnONPs). 
They have a great antimicrobial capacity, which 
depends on their size, shape and eventual functio-
nalization. Xie et al87 demonstrated that smaller 
ZnONPs have greater bactericidal power due 
to a first interaction between the NPs and the 
bacterial membrane. This interaction increases 
membrane permeability, with the consequent en-
try of ZnONPs into the intracytoplasmic environ-
ment. This phenomenon increases ROS levels and 
oxidative stress, which first inhibit the growth 
of microorganisms and, if prolonged, lead to 
their death. Zn ions are also important in the 
antibacterial action: once released, they diminish 
mitochondrial activity and, therefore, promote 
cell death17. Their antibacterial efficacy has been 
studied88 and highlighted in several pathogenic 
bacterial species, such as S. aureus, E. coli and 
methicillin-resistant S. aureus (MRSA). To date, 
ZnO coatings are used for their undisputed anti-
bacterial efficacy for food packaging, as in this 
context it is essential to maintain food safety and 
to extend the shelf-life of the product89. 

Magnesium oxide nanoparticles
MgONPs are more attractive for human ad-

ministration than other NPs because they can 
be metabolized within the body, resulting in 
the release of hydroxide and Mg ions, which are 
easily eliminated. These NPs exert antibacte-
rial activity against E. coli, P. aeruginosa, K. 

pneumoniae, Staphylococcus epidermidis and S. 
aureus17,90. Nguyen et al91 showed that MgONPs 
with a diameter of 20 nm had a bactericidal effect 
against gram-negative strains and bacteriostatic 
effect against gram-positive strains, and morta-
lity was not influenced by alkalizing effect. The 
antibacterial effect could result from 1) ROS 
production (not balanced by the action of cellular 
antioxidant systems), 2) release of calcium ions in 
the cell broth (related to the increase in Mg ions 
in the medium) and 3) the ability of these NPs to 
destroy the bacterial wall and subsequently to un-
dermine the integrity of the plasma membrane91. 
Hayat et al90 confirmed the third hypothesis. They 
demonstrated how spherical MgONPs, with a dia-
meter of 50-70 nm, caused the rupture of bacterial 
membrane. In addition, they highlighted an anti-a-
dhesive capacity with an anti-biofilm effect.

Cerium oxide nanoparticles
Cerium (Ce) is one of the most abundant 

lanthanides in Earth’s crust and can be found 
in two different oxidation states: Ce3+ and Ce4+ 
(more stable). This makes it possible to form two 
different oxides, namely cerium dioxide (CeO2) 
and cerium sesquioxide (Ce2O3). Cerium oxide 
nanoparticles (CeONPs) are produced with the 
sol-gel method, which uses cerium (III) nitrate 
hexahydrate and ammonium hydroxide as precur-
sors, with the use of different solvents92, but it can 
also happen with other methods. Dhall and Self93 

listed other synthesis methods such as solution 
precipitation, hydrothermal, solvo-thermal, ball 
milling, thermal decomposition, spray pyroly-
sis and thermal hydrolysis. In the same study93, 
the authors discussed possible synthesis media-
ted by green plants, fungi and some nutrients. 
Kannan and Sundrarajan94 provided an example 
of phytosynthesis. They showed that Acalypha 
indica leaf extract is used to give rise to lar-
ge relative CeONPs, which are currently not 
appropriate for biomedical application. Munu-
samy et al95 used mycosynthesis with Curvula-
ria lunata to make smaller CeONPs. Kargar et 
al96 reported about nutrient-mediated synthesis 
in which they used egg white as a substrate to 
synthesize small CeONPs.

CeONPs are a promising tool for tissue regene-
ration and healing of soft tissues, thanks to their 
antioxidant, anti-inflammatory, antiapoptotic, an-
tibacterial and angiogenic properties97. For these 
reasons, they are also considered inorganic an-
tioxidants with catalytic activity similar to that of 
superoxide dismutase (SOD) and catalase98, due 
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to the self-regeneration of their surface based on 
redox cycling between Ce3+ and Ce4+, in response 
to their surrounding environment93. According to 
Qi et al97, CeONPs are effective against gram-po-
sitive and gram-negative bacteria. There are three 
mechanisms: 1) direct contact between CeONPs 
and bacterial membranes, whose functionality 
is altered; 2) triggering ROS production, which 
causes damage to various biological macromo-
lecules (nucleic acids, proteins, polysaccharides 
and lipids); and 3) link to the external membrane 
that modify the electronic flow and, therefore, 
the transport of nutrients. Kalaycıoğlu et al99 

confirmed the antibacterial activity of CeONPs. 
Composite films of chitosan and cellulose acetate 
containing CeONPs showed antibacterial activity 
against E. coli and S. aureus. The antibacterial 
activity was directly proportional to the quantity 
of CeONPs present in the films. In addition to 
this activity, CeONPs also exhibit synergistic 
activity in combination with β-lactam antibiotics 
against MDR K. pneumoniae100.

Other Inorganic Nanoparticles

Yttrium fluoride nanoparticles
Yttrium fluoride-based (HF) NPs have been 

produced due to the well-known antibacterial 
activity of fluorides. In fact, F-/HF can bind 
to enzymes containing metal functional groups 
(Al and Be), such as the haem group101,102. Fur-
thermore, fluorine is an important inhibitor of 
glycolysis102. Lellouche et al103 synthesized YF3 
needle-like NPs using sono-chemical irradiation 
and starting from an aqueous solution of yttrium 
acetate tetrahydrate and HF. These NPs exhibi-
ted both antibacterial and anti-biofilm activity 
against E. coli and S. aureus.

Nitric Oxide-Releasing Silica Nanoparticles
The idea of synthesizing nitric oxide (NO)-re-

leasing silica NPs arises from the awareness of 
the antimicrobial properties of NO104 produced 
by immune cells during inflammatory processes 
and acting as a reactive free radical. Raulli et 
al105 demonstrated the efficacy of these NPs on 
both gram-positive and gram-negative bacteria, 
while Ghaffari et al106 showed the same effect 
on MRSA. Hetrich et al107 reported that NO-re-
leasing silica NPs showed a bactericidal effect 
on P. aeruginosa. In addition to the bactericidal 
effect, other studies108 have shown that these NPs 
possess an anti-biofilm effect on P. aeruginosa, 
E. coli, S. aureus and S. epidermidis.

Ceramic nanoparticles
Ceramic NPs comprise carbonates, phospha-

tes and oxides of metals and metalloids, such as 
silica, aluminium, Ti and calcium109,110. They are 
synthesized through heat and subsequent coo-
ling. Their structure can be amorphous, porous 
or polycrystalline111. They are mainly used in the 
biomedical field thanks to their high stability and 
load capacity112. In fact, these particles can be 
used to trap proteins, enzymes and drugs inside 
them, which will thus be conveyed and protected 
by the denaturing effects of pH and temperatu-
re113. Ciobanu et al114 synthesized and characte-
rized samarium NPs doped with hydroxyapatite. 
The authors started from the premise that hy-
droxyapatite is a biocompatible, bioactive and 
osteoconductive material and that samarium ions 
(Sm3+) possess antibacterial activity. They tested 
these NPs against P. aeruginosa, E. coli, E. fa-
ecalis and S. aureus. They had an antibacterial 
effect against both gram-positive and gram-ne-
gative bacteria, although it was dependent on the 
samarium concentration. Furthermore, the NPs 
are biocompatible and therefore excellent for ap-
plication in the biomedical field. Iconaru et al115 

hypothesized three different mechanisms under-
lying the antibacterial effect of samarium NPs: 1) 
interactions between ions and the bacterial wall 
(with consequent damage of cellular integrity); 2) 
ROS generation; and 3) release of Sm3+ ions that 
can cause damage to bacterial DNA. 

Semiconductor nanoparticles
Semiconductor NPs are made with materials 

that have properties halfway between metals and 
nonmetals, and their properties change signifi-
cantly when the band gap is optimized compared 
with bulk semiconductor materials111. For example, 
Malarkodi et al116 synthesized cadmium sulphide 
(CdS) and zinc sulphide (ZnS) NPs of spherical 
shape and variable size (10-65 nm) with green 
methods. They tested the antibacterial effect of 
different concentrations against K. pneumoniae 
and oral pathogens (Streptococcus spp., Staphylo-
coccus spp. and Lactobacillus spp.). Both CdS 
and ZnS NPs showed antimicrobial activity on the 
tested strains. For this reason, these NPs could be 
used to prevent the growth of oral pathogens.

Carbon-Based Nanoparticles

Carbon-based NPs are completely made of 
carbon20. In addition to causing mechanical da-
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mage, carbon nanostructures appear to be able 
to promote strong ROS generation117. The col-
lective damage is presumably the cause of the 
antibacterial effect exhibited by carbon-based 
NPs118. Carbon-based NPs can be classified into 
fullerenes, graphene, carbon nanotubes (CNTs), 
carbon nanofibers and carbon black20.

Fullerenes
Fullerenes are hollow, closed (spherical) mo-

lecules, characterized by a symmetrical clo-
sed-cage structure made up of carbon atoms 
held together by sp2 hybridization. These carbon 
atoms arrange themselves into hexagonal and 
pentagonal rings, forming single-layer (diame-
ters up to 8.2 nm) or multilayer structures (dia-
meters from 4 to 36 nm). Fullerene C60 is the 
most famous and best known of all fullerenes 
in which the carbon atoms are arranged to form 
a soccer ball-like structure119. Fullerenes exert 
antimicrobial activity via two modalities: inhi-
bition of energy metabolism following their in-
ternalisation120 and induction of cell membrane 
rupture121. This antimicrobial activity is effecti-
ve against E. coli, S. aureus, and P. aerugino-
sa122. Moreover, this activity is more pronounced 
against gram-positive bacteria owing to their 
higher membrane permeation123.

Some studies124 have shown how it is possible 
to combine the activity of fullerenes with that of 
some nanocompounds. For example, Alekseeva 
et al125 found that fullerene-filled polystyrene 
films had antibacterial activities against S. au-
reus and E. coli. The antimicrobial activity was 
not present in the plastic polymer alone, so the 
authors hypothesized that the reason for the mi-
crobial inactivation is the interaction of fullerenes 
with the protein amino acids in bacteria, causing 
damage to the cell membrane.

Graphene
Graphene is an allotrope of carbon, made up of 

carbon atoms arranged on a flat two-dimensional 
surface, forming a honeycomb lattice. Generally, 
the thickness of the graphene sheet is equivalent 
to the size of a single atom. The antimicrobial 
activity of graphene-containing nanomaterials 
is derived from their ability to alter membra-
ne integrity and to induce oxidative stress by 
electron transfer126. The bacteriostatic activity of 
graphene, whether oxidized or not, has been de-
monstrated127 against E. coli, and this is probably 
due to the direct contact between this material 
and the plasma membrane128. The same effects 

have also been observed in various forms of 
graphene NPs. However, there are limitations in 
the use of graphene - for example, its tendency to 
agglomerate due to its poor dispersion in water129. 
Therefore, to improve its properties, it is often 
oxidized, obtaining graphene oxide (GO). From 
GO, it is possible to obtain reduced graphene 
oxide (rGO) by chemical or thermal reduction. 
Bacali et al130, highlighted how the polymethyl-
methacrylate matrix, widely used in dentistry, 
filled with 1% and 2% by weight of Ag and GO 
NPs showed strong antimicrobial action against 
S. aureus, E. coli and Streptococcus mutans.

Carbon Nanotubes
Carbon Nanotubes (CNTs) are synthesized 

from a graphene nanosheet that is wrapped 
around hollow cylinders. Based on the number 
of rolled sheets, we refer to single-walled carbon 
nanotubes (SWCNTs), with a diameter of 1-7 nm, 
and multi-walled carbon nanotubes (MWCNTs), 
with diameters ranging from 10 to 20 nm. The 
carbon atoms that make up the walls of the CN-
Ts possess sp2 hybridization, which generates a 
cloud of delocalized electrons along the wall131. 
The ends of these nanotubes may or may not be 
closed by a half molecule of fullerene. Currently, 
CNTs are widely used in many industrial fields 
(engineering, informatics, aerospace, etc.) and, 
for this reason, their potential toxicity to humans 
and the environment has been studied132-137.. CN-
Ts seem to have even greater antimicrobial acti-
vity than fullerenes, deriving from their ability 
to interact with the bacterial surface and to cause 
damage and oxidation of membrane components, 
as well as to induce massive ROS production 
in bacteria. This antibacterial activity is depen-
dent on the diameter, length, surface chemistry, 
electronic structure, residual catalyst and surface 
functional groups138. Demonstrating the impor-
tance of CNT size, Kang et al139 studied the an-
tibacterial effects of SWCNTs and MWCNTs on 
E. coli, showing that SWCNTs were much more 
toxic than MWCNTs, as they were more able to 
interact and penetrate the cell wall. Therefore, in 
general, shorter nanotubes with a smaller diame-
ter have a greater antibacterial effect140. However, 
the situation changes when considering liquid 
solutions. In this case, larger CNTs have a greater 
antibacterial effect, probably due to their lower 
tendency to aggregate and, therefore, their greater 
bio-efficacy141. Furthermore, due to their nature, 
they seem to have greater efficacy on spheri-
cal-shaped bacteria compared with rod-shaped 
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bacteria138. In addition, functionalized SWCNTs 
with -OH, -COOH and other surface groups 
exhibit better antimicrobial activity against both 
gram-positive and gram-negative bacteria142, in-
ducing wall damage and releasing the DNA con-
tent. In a previous study143, the authors showed 
that the antibacterial activity of MWCNTs seems 
to be linked with the antibiotic-resistance of 
bacterial strains. CNTs can also be conjugated 
with Ag, ZnO and CuO NPs. Conjugation results 
in a great synergistic effect144-146. SWCNTs also 
show138 anti-biofilm activity, acting with a bacte-
ricidal effect on sessile forms of E. coli and B. 
subtilis147, especially when exposure occurs du-
ring the early stages of biofilm formation. This 
phenomenon can be explained because SWCNTs 
act as anti-adhesives thanks to their mobility, 
creating an unstable substrate. This effect is gre-
ater for larger SWCNTs.

Organic Nanoparticles

Organic NPs consist of proteins, carbohy-
drates, lipids and polymers148. Some examples 
are dendrimers, protein complexes (ferritin), 
micelles and liposomes. These NPs are biode-
gradable, non-toxic and sensitive to heat and 
electromagnetic radiation19. These characteri-
stics have led to extensive investigation of the-
se NPs for drug delivery, especially for cancer 
therapies19,149. A particular use of these particles 
is in vaccinology as carriers and/or adjuvants 
of antigens (nanovaccinology)150.

Chitosan Nanoparticles
Chitosan is a linear polycationic heteropoly-

saccharide compound of N-acetyl D-glucosami-
ne and D-glucosamine units obtained by partial 
alkaline N-deacetylation of chitin151 which occurs 
naturally in the shells of crustaceans, such as 
crabs, shrimps and lobsters152. Recently, some 
studies153 have indicated the possibility of produ-
cing chitosan from mushrooms. The main cha-
racteristics of chitosan are its biocompatibility, 
biodegradability and the total absence of toxicity. 
Nevertheless, it still shows antimicrobial effects, 
and this made it an ideal candidate for human use. 
The antimicrobial effects of chitosan are attribu-
ted to its positive surface charges, which allow 
it to interact with the negatively charged bacte-
rial wall. This interaction alters transmembrane 
transport and membrane permeability - and thus 
alters homeostasis in bacterial cells. Furthermo-

re, binding to bacterial DNA is possible, causing 
inhibition of DNA replication and, subsequently, 
cell death154. Chitosan can also exert antibacterial 
activity via its ability to act as a chelating agent. 
For example, binding to trace metal elements can 
lead to the production of toxins that inhibit micro-
bial growth155. As previously stated, chitosan has 
a wide range of applications. In the medical field, 
it is integrated into bandages to promote both the 
wound healing process through the stimulation 
of fibroblasts, and for its antibacterial properties; 
it is also used in orthopedic tissue engineering156. 
Much research154 has focused on the development 
of chitosan-based systems for antimicrobial effi-
cacy and also for food packaging. Chitosan NPs 
have been widely used to improve the internaliza-
tion of antibiotics157. In some cases, these chitosan 
NPs also enhance the action of the antibiotic itself. 
Jamil et al158 tested chitosan NPs loaded with cefa-
zolin against E. coli, K. pneumoniae and P. aeru-
ginosa and showed greater bacterial activity than 
that of the antibiotic alone. The same results were 
also obtained for vancomycin against drug-resi-
stant S. aureus154. However, there are contradic-
tory results from some studies carried out on the 
efficacy of chitosan NPs alone as antimicrobial 
agents. According to Sadeghi et al159, the effects of 
chitosan NPs on S. aureus, compared with the free 
soluble polymer, were minor. On the other hand, 
Kong et al160 found that chitosan NPs had greater 
antibacterial activity than chitosan.

Possible Practical Biomedical 
Applications of Nanoparticles in 

Reducing the Occurrence of 
Healthcare-Associated Infections

Personal Protective Equipment Coated 
with Nanoparticles

Considering the anti-microbial potential of NPs, 
it has been possible to develop nanomaterials to 
prevent bacterial adhesion and biofilm formation on 
medical devices. Medical devices with added NPs 
are inexpensive, biocompatible, and potentially able 
to reduce the onset of HAIs. One of the most impor-
tant steps to reduce HAIs is to counteract cross-con-
tamination of the hospital environment with pa-
thogens; this is possible through the use of ad hoc 
personal protective equipment (PPE). For example, 
Bhattacharjee et al161 highlighted the antimicrobial 
efficacy of cotton/silk tissues containing rGO and 
Ag/CuNP fibres: incorporation of both produced 
a synergistic effect. In fact, rGO NP complexes, 
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incorporated into cotton or silk, reduced E. coli 
and P. aeruginosa viability by about 99% and S. 
aureus viability by 78-99%. Furthermore, it is im-
portant to underline that there was not a substantial 
decrease in viability (> 30%) in mammalian cells 
(HEK-293), highlighting the good biocompatibility 
of these materials. For these reasons, incorporating 
NPs into cotton or silk can be an excellent method 
to produce protective clothing such as gowns for 
healthcare personnel. Antibacterial NPs can also 
be added to face masks, which are also crucial 
PPE. Hiragond et al162 showed that face masks 
coated with colloidal AgNPs exerted antimicrobial 
activity against S. aureus and E. coli. In this way, 
it has been shown how this type of masks can be 
useful in health settings.

In Vivo Use of Nanoparticles
Kalita et al163 showed that lysozyme coated 

AuNPs in combination with ampicillin had excel-
lent antibacterial power against S. aureus, Aci-
netobacter calcoaceticus, P. aeruginosa, E. coli, 
K. pneumoniae, B. subtilis and Bacillus cereus. 
Furthermore, intraperitoneal and topical admini-
stration of these hybrid NPs eradicated MRSA in-
fection at the lymphatic and local levels in the pre-
sence of a diabetic rat wound. These antibacterial 
effects were accompanied by total biocompatibili-
ty in vivo. For these reasons, these composite NPs 
would seem an excellent adjuvant for the healing 
of diabetic wounds. The same application is also 
possible for insoluble fur keratin-derived powder 
containing silver nanoparticles (FKDP-AgNPs). 
Konop et al164 demonstrated its absolutely bio-
compatibility in vivo and, at the same time, its 
antimicrobial effect in the allogenic full-thickness 
surgical skin wound model in diabetic mice. In 
fact, this nanomaterial did not cause an inhibi-
tion of the growth of fibroblasts or hemolysis and 
had an antibacterial effect against E. coli and S. 
aureus. For these reasons, its application to facili-
tate tissue restoration and the healing of infected 
wounds is desirable. Another idea would be to use 
bacterial cellulose with healing properties, loaded 
with AgNPs by loading them in bacterial cellulo-
se hydrogels with moist healing properties. This 
AgNP hydrogel showed high cytocompatibility 
and antimicrobial activity against S. aureus and P. 
aeruginosa165. Another material useful for healing 
diabetic foot ulcers is Ag-ZnO-loaded carboxy-
methyl cellulose/K-carrageenan/graphene oxide/
konjac glucomannan hydrogel, which showed bro-
ad bactericidal effect against S. aureus and E. co-
li166. Moreover, its good cytocompatibility has also 

been demonstrated through in vitro tests, while 
accelerated re-epithelialization was also found 
through in vivo tests166.

Moreover, to repair infected bone and therefore 
facilitate the formation of a fibro-cartilaginous 
callus and the killing of infecting bacteria, a colla-
gen scaffold encapsulating AgNPs and bone mor-
phogenetic protein 2 (BMP-2) can be used167. This 
material exhibits high osteoconductivity and an 
antibacterial effect against MRSA. Another option 
for promoting removal/preventing infections in the 
orthopedic field is to use particular microspheres, 
called COS-Ag-Alg-HA, containing chitooligosac-
charide (COS) coated with AgNPs, alginate (Alg) 
and hydroxyapatite (HA) as bone graft substitu-
tes. Dalavi et al168 tested cytocompatibility using 
MG-63 cells; the antimicrobial effect exerted by 
this material was directed against S. aureus. To 
combat some implant infections, it could be useful 
to use dextran/CeO2 NPs which have shown169, in 
addition to biocompatibility, an antibacterial effect 
against P. aeruginosa and S. epidermidis.

Medical Devices Coated with Nanoparticles
In cardiology, an additional precaution to pre-

vent bacterial infections of heart valves that could 
lead to endocarditis is the use of pyrolytic carbon 
coated with a film of AgNPs as an artificial heart 
valve. This film showed170 antibacterial activity 
against MRSA, Streptococcus pyogenes, E. coli, 
K. pneumoniae, P. aeruginosa and P. vulgaris. 
Another strategy for preventing nosocomial in-
fections is to coat surfaces, implantable prosthe-
ses, and medical devices with antimicrobial films 
also capable to prevent the formation of micro-
bial biofilm. Self-assembled monolayers (SAMs) 
and multilayer films fall into this category of 
antimicrobial films. The action of these coatin-
gs can be anti-adhesive or anti-biofilm171,172. The 
anti-adhesive films are divided into hydrophi-
lic, super-hydrophilic and slip surfaces according 
to the mechanism of action. Bactericidal films, 
on the other hand, perform their function either 
through the release of toxic ions or through the in-
teraction between antimicrobial agents and bacte-
rial cells173. SAMs are monolayers (1-5 nm) that 
can prevent bacterial adhesion by increasing sur-
face hydration or can prevent biofilm formation 
by disrupting quorum sensing174. SAMs can be 
loaded with a wide range of molecules, including 
NPs. There are many studies175-180 on the grafting 
of NPs on a SAM, especially Ag and copper 
sulphide NPs, that have shown the applicability 
of these films thanks to their antibacterial and 
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anti-biofilm activity against E. coli, Micrococcus 
luteus, S. aureus and S. epidermidis. This finding 
is very important, considering that these bacte-
rial strains are often responsible for infections in 
breast implants181-183, central venous catheters184, 
cochlear implants185, endotracheal tube186,187, fe-
eding tube188, orthopedic implants189,190, stents191 

and urinary catheters192. Multilayers can also be 
loaded with AgNPs. For example, Bao et al173 

synthesized an aPOX-AgNP multilayer film, con-
sisting of a hydrophilic anti-adhesive portion and 
a bactericidal loaded portion loaded with AgNPs. 
This multilayer film could also be applied to coat 
implantable devices thanks to its sensitivity to pH 
in the release of Ag ions.

Conclusions

HAIs are currently one of the main challenges 
of modern public health, especially due to the in-
creasingly widespread phenomenon of antibiotic 
resistance. For this reason, many alternative strate-
gies are under study - and the potential use of NPs 
and nanomaterials with intrinsic antimicrobial 
properties is one of the most studied. Producing 
surfaces and devices capable of counteracting 
and avoiding microbial adhesion and especially 
the proliferation and the biofilm formation could 
represent a cornerstone in this difficult fight. 
Many researchers have highlighted the managea-
bility and the ductility of these materials, used by 
many different industrial fields193. Excellent anti-
microbial properties have been found for different 
NPs. However, further investigation, especially 
of biocompatibility, is necessary to evaluate the 
effective possibility to use these materials.
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