
Abstract. – OBJECTIVE: Quercetin, a plant
flavonoid with potent antioxidant action, has
been shown to be ameliorative against different
types of liver insults, including D-Galac-
tosamine/Lipopolysaccharide (D-GalN/LPS). The
notion that its cytoprotective effects are SIRT1
mediated is still controversial. In this work, we
examined whether the synthetic allosteric SIRT1
activator, SRT1720, may similarly attenuate D-
GalN/LPS-induced hepatotoxicity. 

MATERIALS AND METHODS: Male Wistar rats
were randomly assigned into 6 groups: (1) Con-
trol, (2) Quercetin, (3) SRT1720, (4) D-GalN/LPS,
(5) Quercetin + D-GalN/LPS and (6) SRT1720 + D-
GalN/LPS. After twenty-four hours, the effects of
these treatments were evaluated by biochemical
studies, real-time PCR and Western blot. 

RESULTS: D-GalN/LPS treatment downregulat-
ed SIRT1 expression and markedly increased the
aminotransferase, bilirubin and conjugated diene
levels. Conversely, quercetin and SRT1720 pre-
treatments upregulated SIRT1 expression and de-
creased the levels of the aforementioned mark-
ers. Quercetin had more profound effect on SIRT1
expression than SRT1720. Moreover, quercetin
was more efficacious than SRT1720 in combat-
ting the cytotoxic effects of D-GalN/LPS, as evi-
denced by lower markers of liver injury. 

CONCLUSIONS: These results strongly sug-
gest the involvement of SIRT1 in the cytoprotec-
tive effects of quercetin and SRT1720 against D-
GalN/LPS-induced hepatotoxicity.
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Introduction

Flavonoids are a class of polyphenolic plant
compounds widely present in the human diet.
Quercetin, the major representative flavanoid, is
abundant in vegetables, fruits, red wine, green
tea, spices and herbs. Quercetin has long been
known to possess antioxidant properties. For in-
stance, the ancient custom of preserving lard by
mixing it with onion may be based on the pre-
vention of lipid oxidation and rancidity by
quercetin1. Furthermore, there are numerous epi-
demiologic studies showing an inverse relation-
ship between chronic consumption of quercetin
and oxidative-stress related diseases such as
coronary heart diseases2, cerebrovascular acci-
dents3, gastric cancer4 and non-alcoholic fatty
liver disease5.

Acute liver failure (ALF) is a critical disease
with numerous causes and unacceptably high
mortality rates6. Despite great advances in mod-
ern medicine, conventional drugs used in treat-
ment of liver disorders are often inadequate,
hence the need for alternative drugs7. Polyphe-
nols such as resveratrol8, quercetin9, curcumin10

and silymarin11, also found in traditional healing
herbs such as Lagerstroemia speciosa12 and
Prosthechea michuacana13, are the most promis-
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PCR primer set was purchased from Biomol
(Hamburg, Germany) and SIRT1 RT-PCR
primer set was from Qiagen (Hilden, Germany).

Animals
Male Wistar rats, 250-400 g body weight,

were purchased from Velaz-Lysolaje, Czech Re-
public. They were given standard granulated diet
and water ad libitum. They were maintained un-
der standard conditions (12-hour light-dark cy-
cle, 22 ± 2°C temperature, 50 ± 10% relative hu-
midity) and received care in accordance with the
ethical guidelines of the First Faculty of Medi-
cine, Charles University in Prague.

Experimental Design
The animals were adapted for seven days before

being randomly assigned into six groups and ad-
ministered the following drugs intraperitoneally:

• Group 1-500 µl/kg of DMSO and 1000 µl/kg of
physiologic solution;

• Group 2-50 mg/kg of quercetin dissolved in
DMSO;

• Group 3-5 mg/kg of SRT1720 dissolved in
DMSO;

• Group 4-400 mg/kg of D-GalN and 10 µg/kg of
LPS dissolved in physiologic solution;

• Group 5-50 mg/kg of quercetin dissolved in
DMSO followed by 400 mg/kg of D-GalN and
10 µg/kg of LPS dissolved in physiologic so-
lution one hour later;

• Group 6-5 mg/kg of SRT1720 dissolved in
DMSO followed by 400 mg/kg of D-GalN and
10 µg/kg of LPS dissolved in physiologic so-
lution one hour later.

After 24 hours, the animals were euthanized
by exsanguination and the blood samples were
collected into heparinized tubes. The livers were
excised and preserved in liquid nitrogen for RT-
PCR and Western blot studies. 

The above doses were selected based on our
previous studies with quercetin14 as well as stud-
ies of others dealing with SRT172025. As a novel
agent, pilot study was done with SRT1720 to as-
sess the safety of the drug from 0.1-10 mg/kg
and we found 5 mg/kg to be the safest effective
dose.

Biochemical Investigations
Alanine aminotransferase (ALT), aspartate

aminotransferase (AST) and total bilirubin plas-
ma levels were detected using commercial assay

ing in treatment of liver diseases, necessitating
further studies to characterize their cytoprotec-
tive mechanisms. In 2013, we found that the liv-
er-protective effects of quercetin against D-
GalN/LPS-induced hepatotoxicity were due, at
least in part, to induction of HO-114. Most recent-
ly, we demonstrated that the antihepatotoxic ef-
fects of resveratrol are SIRT1-dependent15. Fur-
thermore, there is mounting evidence of SIRT1
involvement in the pleotropic multisystem ef-
fects of polyphenols16,17,18. 

SIRT1 serves as a transcriptional effector by
controlling the acetyalation states of histones. It
regulates transcriptional and related factors
such as p53, NF-κB and FoxOs that control au-
tophagy, inflammatory response and stress re-
sistance19,20. All these attractive features have
validated a prompt search of SIRT1 nutraceuti-
cal or pharmaceutical activators. Relationship
between aforementioned health benefits of
polyphenols and SIRT1 is still controversial.
Whether polyphenols directly activate SIRT121,
indirectly activate SIRT1 through AMPK22 or
act independent of SIRT123 is still elusive. Nov-
el potent activators of SIRT1 such as SRT1720,
SRT1460 and SRT2183 have recently been de-
veloped to shed more light on the therapeutic
potential of SIRT1 stimulation24.

The present report is designed to investigate
whether quercetin, a natural polyphenol, and
SRT1720, an established synthetic allosteric
SIRT1 activator, may have any modulating ef-
fects against D-GalN/LPS-induced hepatotoxi-
city at biochemical and molecular biological
levels.

Materials and Methods

Chemicals
Lipopolysaccharide from Escherichia coli K-

235 (LPS), D-galactosamine hydrochloride (D-
GalN), Quercetin (2-(3,4-dihydroxyphenyl)-
3,5,7-trihydroxy-4H-1-benzopyran-4-one with
HPLC purity of > 95%), anti-mouse IgG (whole
molecule)-Peroxidase antibody and mouse mon-
oclonal anti-B-Actin antibody were purchased
from Sigma-Aldrich (Prague, Czech Republic).
SRT1720 was purchased from Selleckchem (Mu-
nich, Germany). SirT1 (1F3) mouse mAb anti-
body was from Cell Signaling Technology (Dan-
vers, MA, USA). Power SYBR Green PCR Mas-
ter Mix was purchased from Thermo Fisher Sci-
entific (Prague, Czech Republic). ACTB RT-
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kits according to the manufacturer’s instructions
(Analyticon, Lichtenfels, Germany). Peroxida-
tion of membrane lipids was assessed by forma-
tion of conjugated dienes as previously described
by Farghali et al8.

Immunoblotting
Pulverized liver samples were homogenized

and lysed in NP40 lysis buffer supplemented
with protease and phosphatase inhibitors. Sam-
ples were then centrifuged (12,000 rpm, 15 min-
utes, 4 degrees Celsius) and the supernatant was
collected for further analysis. Protein concentra-
tion of each sample was determined using BIO-
RAD DC protein assay kit (BIO-RAD, Hercules,
CA, USA). 20 µg of proteins was fractionated on
a 10% SDS-PAGE gel and transferred to a nitro-
cellulose membrane. The membranes were
blocked by incubation in Tris-buffered saline
containing 5% non-fat milk (for 1 hour at room
temperature) and incubated with primary anti-
bodies overnight at 4°C: SIRT1 (1:1000) and Be-
ta actin (1:5000). The following day, the mem-
branes were washed in TBST and incubated with
anti-mouse IgG (whole molecule)-Peroxidase an-
tibody (1:80000) at room temperature for 1 hour.
Bands were detected by enhanced chemilumines-
cence using Super Signal West Pico Chemilumi-
nescent Substrate (GeneTiCAs.r.o. Prague,
Czech Republic) and the protein density was
measured using the Quantity One software (Bio-
Rad, Prague, Czech Republic).

Real-Time PCR
Total RNA was isolated from the tissue sam-

ples using Qiagen RNeasy plus kit (Bio-Consult
Laboratories, Prague, Czech Republic). Com-
plementary DNA was synthesized from the total
RNA using GeneAmp RNA PCR kit (Applied
Biosystems, Prague, Czech Republic). Reverse
transcription included the following phases: 10
min at 25°C for reverse transcriptase enzyme
activation, 30 min at 48 °C for PCR amplifica-
tion and 5 min at 95 °C for denaturation. The
expressions of target mRNAs were detected by
quantitative RT-PCR (ABI PRISM 7000) with
SYBR Green as detection dye. Relative expres-
sion of SIRT1 mRNA was calculated using
∆∆Ct method with ACBT mRNA as an internal
control26. 

Statistical Analysis
Data are expressed as mean ± SEM (standard

error of mean). Statistical evaluation of the data

was performed using one-way ANOVA followed
by Tukey-Kramer comparison test. p < 0.05 was
considered to have statistical significance.

Results

Cytotoxic Effects of D-GalN/LPS
in the Liver

We first sought to confirm the cytotoxic ef-
fects of D-GalN/LPS in the liver. The results
show that rats treated with D-GalN/LPS devel-
oped acute hepatotoxicity within 24 hours of the
insult as confirmed by a significant and dramatic
increase in plasma aminotransferase levels (Fig-
ure 1). 56.2-fold increase in ALT and 3.9-fold in-
crease in AST levels were observed, compared to
the control group. Conjugated dienes in ho-
mogenate were also significantly enhanced, sug-
gesting lipid peroxidation (Figure 2B). Further-
more, 12.6-fold increase in bilirubin, an endoge-
nous antioxidant, suggests severe oxidative stress
(Figure 2A).

Ameliorative Effects of Quercetin 
and Srt1720 on D-Galn/Lps-Induced 
Hepatotoxicity

The second objective was to find out if
quercetin treatment and its synthetic counterpart,
SRT1720, may have any ameliorative effects on
D-GalN/LPS-induced hepatotoxicity. Alone,
quercetin and SRT1720 treatments did not have
any significant effects on the levels of the afore-
mentioned markers. Pretreatment of D-
GalN/LPS rats with quercetin consistently atten-
uated the cytotoxic effects of D-GalN/LPS.
Quercetin pretreatment significantly decreased
the levels of ALT (4.6 fold), AST (1.8 fold), con-
jugated dienes (2.7-fold) and bilirubin (4.6-fold)
compared to the D-GalN/LPS group. All these
data strongly suggest that the antioxidant effects
of quercetin play a key role in combatting D-
GalN/LPS-induced hepatotoxicity. Likewise,
SRT1720 pretreatment minimized the cytotoxic
effects of D-GalN/LPS. However, it was less ef-
fective than quercetin in lowering ALT (2.6-
fold), AST (1.5-fold), conjugated dienes (2.3-
fold) and bilirubin (2.5-fold) compared to the D-
GalN/LPS group. Collectively, these results sug-
gest that, under the present experimental condi-
tions, quercetin was more efficacious than
SRT1720 in attenuating D-GalN/LPS-induced
hepatotoxicity at the given dosage schedule.
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Relationship Between Sirt1 Expression,
D-Galn/Lps-Induced Hepatotoxicty 
and the Ameliorative Effects of
Quercetin and Srt1720

Finally, we investigated if D-GalN/LPS,
Quercetin and SRT1720 treatments may influ-

ence SIRT1 expression. For this, we did Western
blot (Figure 3) and RT-PCR (Figure 4) analyses.
We found that SIRT1 was ubiquitous, even ex-
pressed by animals treated with the vehicle only
(control). Alone, quercetin and SRT1720 treat-
ments significantly increased SIRT1 protein and
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Figure 1. Effects of quercetin and SRT1720 pretreatments in lipopolysaccharide-induced hepatitis in D-galactosamine sensi-
tized (D-GalN/LPS) rats on plasma levels of (A) alanine aminotransferase, ALT and (B) aspartate aminotransferase, AST.
Control: vehicle only; Q: quercetin 50 mg/kg; SRT1720: SRT1720 5 mg/kg; D-GalN/LPS: D-galactosamine 400 mg/kg +
Lipopolysaccharide 10 μg/kg; Q + D-GalN/LPS: Combination of Q and D-GalN/LPS; SRT1720 + D-GalN/LPS: Combination
of SRT1720 and D-GalN/LPS. *Indicates significant values (p ≤ 0.05) compared to the control group (vehicle only); # Indi-
cates significant values (p ≤ 0.05) compared to the D-GalN/LPS group. The results are expressed as means ± SEM, n = 6.

A B

Figure 2. Effects of quercetin and SRT1720 pretreatments in lipopolysaccharide-induced hepatitis in D-galactosamine sensi-
tized (D-GalN/LPS) rats on the levels of (A) total bilirubin in plasma and (B) conjugated dienes in liver homogenate. Control:
vehicle only; Q: quercetin 50 mg/kg; SRT1720: SRT1720 5 mg/kg; D-GalN/LPS: D-galactosamine 400 mg/kg + Lipopolysac-
charide 10 µg/kg; Q + D-GalN/LPS: Combination of Q and D-GalN/LPS; SRT1720 + D-GalN/LPS: Combination of SRT1720
and D-GalN/LPS. *Indicates significant values (p ≤ 0.05) compared to the control group (vehicle only); #Indicates significant
values (p ≤ 0.05) compared to the D-GalN/LPS group. The results are expressed as means ± SEM, n = 6.

A B



gene expression. In either case, the upregulation
was more pronounced with Quercetin (1.5-fold
protein expression, 4.9-fold mRNA expression)
than SRT1720 (1.2-fold protein expression, 2.6-
fold mRNA expression). Treatment of animals
with D-GalN/LPS markedly decreased SIRT1
expression levels. Pretreatment of D-GalN/LPS
rats with quercetin or SRT1720 raised SIRT1 ex-
pression towards normal. Compared to the D-
GalN/LPS group, quercetin pretreatment in-
creased SIRT1 protein level by 1.8-fold and
SRT1720 by 1.6-fold. Similar findings were ob-
tained with RT-PCR. Pretreatment of D-
GalN/LPS rats with quercetin increased SIRT1
gene expression by 4.6-fold and SRT1720 by
2.7-fold. These findings clearly show that, under
the set experimental conditions, quercetin had
more profound effect on SIRT1 expression than
SRT1720. Higher SIRT1 levels correlated to
minimal liver damage.

Discussion

More than half of the portal blood comes di-
rectly from the gastrointestinal tract, making
the liver the most susceptible organ in the hu-
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Figure 3. Effects of quercetin and SRT1720 pretreatments on SIRT1 protein expression in lipopolysaccharide-induced he-
patitis in D-galactosamine sensitized (D-GalN/LPS) rats. A, Quantification of SIRT1 protein expression levels by densitome-
try. Bands were detected using VersaDoc™ MP 5000 System and analyzed by Quantity One 1-D Analysis Software. In each
panel, the intensity of a given SIRT1 band was normalized to the intensity of the corresponding β-actin band. Control: vehicle
only; Q: quercetin 50 mg/kg; SRT1720: SRT1720 5 mg/kg; D-GalN/LPS: D-galactosamine 400 mg/kg + Lipopolysaccharide
10 μg/kg; Q + D-GalN/LPS: Combination of Q and D-GalN/LPS; SRT1720 + D-GalN/LPS: Combination of SRT1720 and D-
GalN/LPS. *Indicates significant values (p ≤ 0.05) compared to the control group (vehicle only); # Indicates significant values
(p ≤ 0.05) compared to the D-GalN/LPS group. The results are expressed as means ± SEM, n = 4. B, Representative Western
blot image is shown below.

A B

Figure 4. Effects of quercetin and SRT1720 pretreatments on
SIRT1 gene expression in lipopolysaccharide-induced hepati-
tis in D-galactosamine sensitized (D-GalN/LPS) rats. Q:
quercetin 50 mg/kg; SRT1720: SRT1720 5 mg/kg; D-
GalN/LPS: D-galactosamine 400 mg/kg + Lipopolysaccharide
10 µg/kg; Q + D-GalN/LPS: Combination of Q and D-
GalN/LPS; SRT1720 + D-GalN/LPS: Combination of
SRT1720 and D-GalN/LPS. *Indicates significant values (p ≤
0.05) compared to the control group (vehicle only); #Indicates
significant values (p ≤ 0.05) compared to the D-GalN/LPS
group. The results are expressed as means ± SEM, n = 6.
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man body to intoxication by xenobiotics. There
are numerous hepatotoxins encountered on a
daily basis, ranging from microbial toxins27 to
common OTC drugs like acetaminophen28. One
of the most feared complication of hepatotoxic-
ity is acute liver failure (ALF), a rapid deterio-
ration in liver function leading to coagulopa-
thy, encephalopathy and multiple organ failure
within days29. ALF is a formidable clinical
problem with very poor prognosis. The current
available medications are of doubtful efficacy
and safety, hence the dire need for alternative
drugs. 

D-GalN/LPS is a reputable model of hepato-
toxicity that closely mimics ALF seen clinical-
ly. In this model, LPS stimulates Kuppfer cells
to release NF-κB30 and a wide variety of proin-
flammatory cytokines31, including TNF-α32.
LPS also increases production of reactive oxy-
gen species (ROS) through NADPH oxidase33.
D-GalN, on the other hand, depletes uridine nu-
cleotide pool in hepatocytes, inhibits RNA and
protein synthesis, leading to dramatic sensitiza-
tion to the cytotoxic effects of LPS in the liv-
er34. Hence, the combined effect of these two
drugs is massive inflammation and apoptosis
that resembles severe clinical hepatitis. In the
current study, the fact the D-GalN/LPS drasti-
cally increased aminotransferase plasma levels,
vividly demonstrate a failing liver. Elevation of
conjugated dienes, a lipid peroxidation marker,
indicate that oxidative stress plays a pathologi-
cal role in D-GalN/LPS-induced hepatotoxici-
ty35. D-GalN/LPS also increased total bilirubin
levels. There are two possible explanations for
this finding. Firstly, it might reflect an adaptive
response to the oxidative challenge. For in-
stance, oxidative stress can induce HO-1, which
can cleave heme into iron, carbon monoxide
and biliverdin, metabolic precursor of biliru-
bin36. All these heme degradation products have
antioxidative, antiinflammatory, and/or anti-
apoptotic actions37. Secondly, bilirubin is cyto-
toxic at high concentrations, as seen in patho-
logical conditions such as cholestasis38. A sig-
nificant number of studies have shown that high
bilirubin levels can increase production of ROS,
disrupt integrity of membranes and trigger
apoptosis of hepatocytes39,40,41. Nonetheless,
bilirubin was much more sensitive to D-
GalN/LPS treatment than AST, hence it is justi-
fiable to use the former, alongside ALT, in clin-
ical screening of liver intoxication. Consistent
with our previous experimental study15, D-

GalN/LPS downregulated SIRT1 through an un-
known mechanism. There is an accumulating
evidence that oxidative stress may directly or
indirectly control SIRT1 expression. For in-
stance, oxidative stress can induce expression of
microRNAs such as miR-34a, which could bind
to the 3’UTR of SIRT1 mRNA and inhibit
SIRT1 expression42. Moreover, ROS can cova-
lently modify SIRT1 and mark it for proteaso-
mal degradation43. It is therefore logical to spec-
ulate that hepatic SIRT1 downregulation con-
tributes to the cytotoxic effects of D-GalN/LPS
in the liver.

Quercetin pretreatment upregulated SIRT1
and attenuated the cytotoxic effects of D-
GalN/LPS. The relationship between polyphe-
nols and SIRT1 is still open for debate. Initially,
it was generally accepted that polyphenols were
allosteric SIRT1 activators21. However, the legit-
imacy of polyphenols as direct SIRT1 activators
has been questioned44. Recent evidence suggests
that the cytoprotective effects of polyphenols
could be mediated by other mechanisms such as
AMPK activation45, which could occur indepen-
dent of SIRT146. To address this ambiguity, we
treated some of the animals with SRT1720, a
highly potent allosteric SIRT1 activator24. Like-
wise, SRT1720 increased SIRT1 expression and
minimized the liver damaging effects of D-
GalN/LPS. In spite of not ruling out direct
SIRT1 activation in our study, these findings
strongly suggest the involvement of SIRT1 up-
regulation in the cytoprotective effects of both
quercetin and SRT1720. The mechanism by
which STACs upregulate SIRT1 was not docu-
mented in this study. However, there are some
scanty reports available that polyphenols and re-
lated compounds activate FoxO147, which is a
positive SIRT1 transcriptional regulator48. Strik-
ingly, quercetin was more efficacious than
SRT1720 in ameliorating liver intoxication. Re-
gardless of its high potency, in this study,
SRT1720 lagged behind quercetin in all parame-
ters. This may simply be due to higher upregula-
tion of SIRT1 expression with quercetin. SIRT1
is associated with many health benefits. Its anti-
inflammatory effects are ascribed to downregula-
tion of NF-κB49 and associated pro-inflammatory
cytokines such as COX-250 and iNOS51. Further-
more, SIRT1 can induce antioxidant enzymes,
MnSOD52 and catalase53, through deactylation
and activation of FoxO354. Notably, both
quercetin and SRT1720 decreased bilirubin plas-
ma levels, despite of SIRT1 upregulation. The
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most probably explanation for this finding is that
SIRT1 fine-tuned bilirubin levels to optimal an-
tioxidant ranges to negate its cytotoxic effects55.
Bilirubin is only cytoprotective at physiological
ranges, as demonstrated in a number of in vivo
and in vitro studies56,57. 

Conclusions

D-GalN/LPS downregulates SIRT1 and trig-
gers oxidative damage to the liver. Quercetin and
SRT1720 upregulate SIRT1 expression and com-
bat the cytotoxic effects of D-GalN/LPS.
Quercetin induces SIRT1 expression more than
SRT1720 and is more efficacious in attenuating
D-GalN/LPS-induced hepatotoxicity. 
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