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Abstract. – The growing incidence of can-
cers is pushing oncologists to find out new 
explanations other than the somatic mutation 
theory, based on the accumulation of DNA 
mutations. In particular, the embryo-fetal ex-
posure to an increasing number of environ-
mental factors during gestation might repre-
sent a trigger able to influence the suscepti-
bility of the newborn to develop cancer later 
in life. This idea agrees with the fetal program-
ming theory, also known as the Barker hypoth-
esis. Here the role of insulin-like growth fac-
tors, thymosin beta-4, and epigenome are dis-
cussed as mediators of cancer in prenatal hu-
man development. The role of epigenetic fac-
tors that during gestation increase the predis-
position to develop cancer and the similarities 
in the gene expression (like MMP9, OPN, TP53 
and CDKN2A) between embryonic develop-
ment and cancer are key factors. Likewise, ma-
ternal obesity might be able to re-program em-

bryo-fetal development with long-term chang-
es, including an increased risk to develop neu-
roblastoma and acute leukemia. Birth weight 
alone and birth weight corrected for gestation-
al age are proposed as important variables ca-
pable of predicting the vulnerability to devel-
op cancers. According to the findings here re-
ported, we hypothesize that cancer prevention 
should start during gestation by improving 
the quality of maternal diet. In conclusion, the 
Barker hypothesis should be applied to can-
cer as well. Therefore, the identification of the 
epigenetic factors of cancer appears manda-
tory, so that the cancer prevention might start 
in the womb before birth.
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The role of fetal programming in human 
carcinogenesis – May the Barker hypothesis 
explain interindividual variability in susceptibility 
to cancer insurgence and progression?
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Introduction

The growing incidence of cancers across all age 
categories around the world, particularly in We-
stern countries, is pushing oncologists and resear-
chers on their origin1. The dominant pathogenetic 
model of carcinogenesis, known as the somatic 
mutation theory (SMT), based on the accumu-
lation of DNA mutations, does not fully explain 
the increase in cancer incidence in children and 
young adults2. More recent hypotheses suggest 
that the embryo-fetal exposure to an increasing 
number of environmental triggers (first hit) might 
act as a disease primer, making newborns more 
susceptible to subsequent environmental exposu-
res later in life (second hit). This eventually trig-
gers the carcinogenic pathways3.

Lifestyle-related factors, environmental agents, 
obesity, accumulation of many new carcinogenic 
factors in the environment, and food contamina-
tion by additives have been indicated as possible 
causes for explaining the increasing incidence 
of cancer4. Thus, the fetus is highly vulnerable 
to multiple exogenous factors. Fetal exposure to 
carcinogenic environmental agents during the in-
trauterine life, a critical time window for deve-
lopment, might cause significant architectural and 
cellular changes in organs and tissues that persist 
later in life5,6. According to the Barker hypothe-
sis, also known as the fetal programming theory, 
the exposure to multiple environmental factors in 
utero can have profound impact later in life, de-
termining the predisposition, or alternatively the 
resistance, to multiple diseases7-9. 

The Role of Insulin-Like Growth Factors 
(IGFs)

Recent published studies, evidenced a possi-
ble role for fetal programming in determining 
the risk of the development of some cancers in 
childhood, including acute lymphoblastic leu-
kemia10. In that study, the linkage between the 
changes in fetal growth and the susceptibility 
to develop some cancers later in life has been 
identified in the biological mechanisms invol-
ving the Insulin-like growth factors (IGFs). The 
IGF system has been considered at the crossro-
ad between fetal development and cancer, being 
implicated both in the development during the 
intrauterine life as well as in the insurgence of 
some specific cancers, including colon, breast, 
prostate and lung cancer11. This could be explai-
ned with the role of IGF that is a natural growth 
hormone and plays crucial role in normal growth 

and development. It is widely demonstrated that 
IGFs are essential for growth and survival, sup-
pressing apoptosis and promoting cell cycle pro-
gression, angiogenesis, and metastatic activities 
in various cancers. New research lines are consi-
dering IGF targeted therapies for cancer. Strong 
preclinical evidence and ongoing clinical trials 
have resulted in the approval of several new 
agents for cancer treatment12.

The Role of Thymosin Beta-4 in Both 
Development and Cancer

A similar role, at the crossroad between fetal 
development and cancer, has been suggested for 
thymosin beta-4 (TB-4), a small peptide highly 
expressed during the intrauterine life13. TB-4 is 
down-regulated in the postnatal life, as demon-
strated by the lower levels of this peptide in the sa-
liva of adult subjects compared to the high levels 
in the saliva of pre-term newborns14. This pepti-
de is also highly expressed in colorectal cancer, 
particularly in tumor cells at the invasion front 
of the tumor15. The association between the role 
of TB-4 in physiology and in cancer was under-
lined by the process of epithelial-mesenchymal 
transition (EMT), a fundamental mechanism du-
ring embryogenesis and development16 as well as 
in invasion and cancer metastasis17. The involve-
ment of IGF and TB-4 both in fetal growth and in 
cancer development reinforces the hypothesis that 
some molecular programs, utilized in physiologi-
cal conditions during fetal development, might be 
silenced in the postnatal life, and re-utilized by 
cancer stem cells during carcinogenesis18.  

Fetal Growth and Childhood Cancer: the 
Nordic Population Study 	

According to the Barker hypothesis on the re-
lationship between derangement during the fetal 
growth and susceptibility to develop multiple 
diseases later in life19, a case control study20 was 
carried out in 17,698 Denmark, Norway, Finland 
and Sweden children born from 1967 to 2010. In 
this study, the risk of acute myeloid leukemia was 
increased in children born small for gestational 
age. In contrast, the risk for Wilms tumor was 
higher in children with a birth weight >4,000 g. 
Moreover, newborns large for gestational age had 
a higher risk for developing soft tissue tumors in 
childhood. Eventually, the authors concluded that 
changes in fetal growth are associated with seve-
ral childhood tumors, supporting the hypothesis 
that carcinogenesis might start in utero even for 
tumors clinically presenting later in life.  For the 
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analysis of potential association in subsequent age 
class, results will be released in the future with 
the subsequent rounds of follow-up. 

The Epigenome in Prenatal Development 
as a Mediator of Cancer 

Further data on the possible fetal origin of ne-
oplasms presenting in childhood and adulthood 
were reported in a study on the epigenetic events 
that establish gene expression signature during 
development21. According to this study, envi-
ronmental factors, acting on fetal tissues during 
gestation might disrupt the epigenetic programs, 
dysregulate the fetal epigenome potentially im-
pacting the susceptibility of the newborn to di-
seases, including cancer later in life. Among the 
multiple epigenetic factors that play a major role 
on the fetal epigenome, maternal diet during ge-
station and during breast feeding was identified 
as the most important potential mediator of epi-
genetic changes regarding the predisposition to 
develop cancer in childhood and adulthood21,22. 
On this basis, the authors suggested that cancer 
prevention should start during gestation with an 
optimal modulation of prenatal development. 
According to Kaur et al21, efforts should be en-
couraged to identify maternal dietary interven-
tions during gestation and lactation that can be 
beneficial in preventing cancer development la-
ter in life.

Fetal Epigenome and Cancer: 
Experimental Evidence 

An important contribution to the identification 
of the epigenetic factors acting during gestation 
that might increase the susceptibility to carcino-
genesis later in life comes from studies carried 
out in experimental animals23. Maternal alcohol 
assumption during gestation, resulting in fetal al-
cohol exposure during gestation, and during the 
perinatal period has been shown to increase the 
vulnerability of the offspring to insurgence and 
progression of cancer. The linkage between ma-
ternal alcohol assumption and the increased su-
sceptibility to cancer insurgence might be repre-
sented by the ability of alcohol to interfere with 
the development of the immune system, leading 
to immune incompetence of the offspring and a 
decrease of tumor surveillance. Moreover, exces-
sive maternal estrogen assumption during gesta-
tion, resulting in estrogenization during prostate 
development, was demonstrated to promote tumor 
progression in the prostate gland, ending with the 
insurgence of prostate adenocarcinoma24.

Similarities in Gene Expression Between 
Embryogenesis and Cancer 

Interesting data on the similarities in multiple 
gene expression patterns, between embryogene-
sis and cancer, have been published in a study25 
carried out on fetal liver and primary and me-
tastatic liver tumors. In this study, the expres-
sion of fourteen candidate genes was analyzed 
by real-time quantitative reverse transcription 
PCR. Four genes, Matrix metalloproteinase 9 
(MMP9), Osteopontin (OPN), Tumor protein 53 
(TP53) and Cyclin-dependent kinase inhibitor 
2A (CDKN2A) were found to be expressed in a 
similar pattern during early embryonic develop-
ment, in primary liver tumors and in metastases. 
These findings clearly indicate that these four 
genes are activated during fetal development 
and that they are re-expressed in primary liver 
tumors and in cancer metastasis. These simi-
larities at gene expression level between fetal 
and cancer cells reinforce the hypothesis that 
changes in fetal development, due to impaired 
fetal growth, might predispose the neonate to a 
re-expression of these “fetal” genes and related 
molecular pathways in childhood or in adultho-
od. That predisposes the newborn with intra-ute-
rine growth restriction (IUGR) to the insurgence 
of cancer later in life.

Fetal Reprogramming Due to 
Maternal Obesity

Intriguing data on fetal programming of adult 
diseases have been reported in a study on the 
effects of maternal obesity on long-term outco-
mes for the offspring26. During obese pregnan-
cy, fetuses should re-program organs and tissues 
development, due to the altered metabolic land-
scape, leading to log-term changes in structure 
and function27. Fetal re-programming related to 
maternal obesity has been defined as the deve-
lopmental over-nutrition hypothesis28. Maternal 
obesity during gestation has been associated 
with an increased birth weight and with an in-
creased risk, for the newborn, to develop neu-
roblastoma29 and acute leukemia30. Moreover, a 
high birth weight represents a risk factor for the 
development of prostate cancer31,32 and testicular 
cancer33,34 later in life. The association of mater-
nal early-pregnancy dietary glycemic index with 
childhood general, visceral, and abdominal fat 
accumulation has been confirmed in a recent 
cohort study35 among 2,488 Dutch pregnant wo-
men and their children.
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Birth Weight and Susceptibility to 
Develop Cancer Later in Life

From a practical point of view, in clinical 
practice, the knowledge of the birth weight cor-
rected for gestational age and of the birth wei-
ght alone might be utilized as a risk factor for 
development of leukemia and central nervous 
system tumors in childhood36-39. Fetal macro-
somia should be considered a risk factor for the 
insurgence of multiple diseases, including can-
cer, in childhood as well as in adulthood40. At 
experimental level, feeding pregnant rats with 
a high-fat diet supplemented with ethinyl-oe-
stradiol increased significantly mammary can-
cer risk in daughters, granddaughters, and gre-
at-granddaughters41. In this study, the effects of 
maternal high fat and oestrogen exposure during 
gestation on offspring’s breast cancer incidence 
were associated with changes in DNA methyla-
tion in the mammary glands of all three gene-
rations. These findings may suggest that dietary 
and oestrogenic exposure during gestation may 
increase mammary cancer risk for multiple ge-
nerations, through epigenetic mechanisms. 

Maternal Polyinsaturated Fatty Diet as 
a Fetal Programming Factor

In a recent study42, transgenerational increase 
in breast cancer risk has been observed in pre-
gnant mice following intake of high n-6 polyun-
saturated fatty acid diet during gestation. In this 
study, 1,587 and 4,423 differentially expressed 
genes between control offspring and offspring 
from dams on high fat diet were identified in F1 
and F3 generations, respectively. Moreover, the 
Notch signaling pathway was found to be upre-
gulated in high fat offspring. Finally, ten node ge-
nes in high fat diet offspring were connected to 
genes linked to increased cancer risk, increased 
resistance to chemotherapy and poor prognosis. 
In female neonates, multiple intrauterine events 
have been associated with an increased risk for 
developing breast cancer in adulthood43-45. 

Should Cancer Prevention Start in 
the Womb?

These data taken together induced some au-
thors to suggest the necessity, in the era of obe-
sity pandemic that we are facing in these years, 
to also focus on the maternal womb, and the in-
trauterine life, as the target for starting cancer 
prevention46. Should we consider this the “true” 
primary prevention? The hypothesis that preven-
tion should start in the perinatal period had been 

previously proposed for renal insufficiency pre-
senting in adulthood47,48. A better understanding 
of the effects of maternal obesity for offspring, 
particularly regarding the possible increased risk 
for developing multiple cancers in adulthood, is 
crucial. Prevention of some neoplasms typical of 
the pediatric age, including acute lymphoblastic 
leukemia, might have roots in the prenatal phases. 
Neoplasms should be likely included among the 
human diseases whose incidence is programmed 
before birth49.

Maternal Diet Quality and Fetal 
Programming of Cancer

Maternal diet quality has been demonstrated 
to represent a risk factor for childhood leukemia 
even in the year before pregnancy50,51. In these 
studies, the quality of maternal diet and the ab-
sence of vitamin supplements in the diet before 
pregnancy was associated with a major risk of in-
surgence of acute lymphoblastic leukemia (ALL) 
and acute myeloid leukemia (AML). Taken to-
gether, these findings suggest that many dietary 
components in the maternal diet during gestation 
as well as in the year before pregnancy might in-
fluence childhood leukemia risk. On the contrary, 
high maternal consumption of vegetables and 
fruits has been associated with a reduced risk of 
ALL in childhood52.

DNA Hypermethylation and 
Fetal Programming of Cancer

Famine exposure during gestation has been 
associated with intra-uterine growth restriction 
and with persistent epigenetic changes, including 
DNA hyper-methylation53,54. Moreover, the DNA 
methylation signature related to marked dietary 
deprivation during gestation, have been shown 
to be sex-specific and related to the timing in the 
prenatal period55. 

Discussion

According to the David J Barker’s fetal ori-
gins hypothesis, the nine months of intrauterine 
life represent one of the most critical phases in 
a human being’s life, where future abilities and 
health trajectories are shaped, and susceptibility 
or resistance to multiple diseases is program-
med56. The fetal origins hypothesis combines 
several key ideas57: i) the effects on health of fe-
tal growth persist throughout the entire life; ii) 
the health effects of fetal programming may be 
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latent for many years after birth; iii) fetal pro-
gramming reflects the effects of the environment 
on the fetal epigenome. 

The Barker hypothesis has been applied to 
multiple diseases, including ischemic heart 
injury7,19, impaired glucose tolerance58, insulin 
resistance59, elevated serum cholesterol concen-
trations60, hypertension61, stroke31,62,63, and me-
tabolic disease64. Moreover, fetal programming 
has been implicated in the insurgence of neurop-
sychiatric disorders65-68, and in the susceptibility 
to undergo severe kidney disease and renal failu-
re later in life69,70. In more recent years, the role 
of fetal programming has been analyzed in gene-
tic diseases, including Wilson’s disease71 and in 
the susceptibility to develop severe lung injury 
following COVID-19 infection70. Based on these 
studies, the hypothesis is that regenerative me-
dicine should start in the prenatal period, favo-
ring the exposition of the embryo and the fetus 
to epigenetic factors, including nutrients, indi-
spensable for an optimal fetal development, and 
avoiding all the epigenetic factors able to modi-
fy human development47,48,72-74. In this review, the 
available data supporting the hypothesis that fe-
tal and perinatal programming might shape our 
susceptibility to develop at least some cancers in 
childhood and in adulthood are reported. One of 
the most intriguing findings emerging from this 
study, is the involvement of multiple genes and 
molecular pathways both during the physiologi-
cal fetal development and in cancer insurgence 
and progression. 

Conclusions

Data here reported suggest that cancer cells 
may re-capitulate some molecular programs uti-
lized in the intrauterine life. According to this 
view, we hypothesize that changes in normal de-
velopment due to epigenetic factors acting during 
gestation could permanently change some mole-
cular pathways involved in cell proliferation, le-
ading to susceptibility to develop some cancers 
later in life. The identification of these epigenetic 
factors is mandatory, so that cancer prevention 
might start during gestation, with an optimal mo-
dulation of prenatal development. To this end, ef-
forts should be encouraged to identify maternal 
dietary interventions in the prenatal period that 
can prevent cancer development in children and 
adults. We hope that this new way of thinking 
will allow a science-based view to the next phase 

of our response to cancer as well as that the new 
approach, based on the Barker’s hypothesis, mi-
ght reframe our policy towards cancer prevention 
in the near future.
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