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Abstract. – OBJECTIVE: Animal studies and 
clinical trials demonstrated the effectiveness 
of a combination of transplanted bone marrow 
stromal cells (BMSC) and electroacupuncture 
(EA) treatment in improving neurological defi-
cits. However, the ability of the BMSC-EA treat-
ment to enhance brain repair processes or the 
neuronal plasticity of BMSC in ischemic stroke 
model is unclear. The purpose of this study 
was to investigate the neuroprotective effects 
and neuronal plasticity of BMSC transplantation 
combined with EA in ischemic stroke.

MATERIALS AND METHODS: A male 
Sprague-Dawley (SD) rat middle cerebral ar-
tery occlusion (MCAO) model was used. In-
tracerebral transplantation of BMSC, trans-
fected with lentiviral vectors expressing green 
fluorescent protein (GFP), was performed us-
ing a stereotactic apparatus after modeling. 
MCAO rats were treated with BMSC injection 
alone or in combination with EA. After the 
treatment, proliferation and migration of BMSC 
were observed in different groups by fluores-
cence microscopy. Quantitative real-time PCR 
(qRT-PCR), Western blotting, and immunohisto-
chemistry were performed to examine changes 
in the levels of neuron-specific enolase (NSE) 
and nestin in the injured striatum.

RESULTS: Epifluorescence microscopy re-
vealed that most BMSC in the cerebrum were 
lysed; few transplanted BMSC survived, and 
some living cells migrated to areas around the 
lesion site. NSE was overexpressed in the stri-
atum of MCAO rats, illustrating the neurologi-
cal deficits caused by cerebral ischemia-reperfu-
sion. The combination of BMSC transplantation 
and EA attenuated the expression of NSE, indi-
cating nerve injury repair. Although the qRT-PCR 
results showed that BMSC-EA treatment elevat-
ed nestin RNA expression, less robust respons-
es were observed in other tests. 

CONCLUSIONS: Our results show that the 
combination treatment significantly improved 
restoration of neurological deficits in the ani-
mal stroke model. However, further studies are 
required to see if EA could promote the rapid 
differentiation of BMSC into neural stem cells 
in the short term.

Key Words:
Bone marrow mesenchymal stem cells, Cerebral in-

farction, Stereotaxic transplantation, Electroacupuncture.

Introduction

Ischemic stroke is a cerebrovascular event that 
is caused by blood supply disruption and is asso-
ciated with high morbidity and mortality rates1,2. 
Existing neuroprotective pharmacotherapy often 
fails to prevent the death of neurons in the ische-
mic penumbra or to promote cerebrovascular 
regeneration and neurogenesis after the acute 
phase3, possibly due to the significant damage 
caused by the stroke. 

The use of mesenchymal stem cells (MSC) for 
treating stroke has been extensively studied for 
over two decades. These are pluripotent cells that 
are easily cultured4, able to differentiate into va-
rious cell lineages, including neuron-like cells5,6, 
are suitable for safe autologous stem cell tran-
splantation, and provide support and regeneration 
of damaged tissue7.

Bone marrow stromal cells (BMSC) are multi-
potent MSC that can be safely harvested, induced 
to differentiate into neurons and endothelial cells 
and used to reconstitute various damaged tissues 
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and enhance endogenous neurogenesis, synaptoge-
nesis, and angiogenesis in ischemic brain tissue8. 
BMSC express a broad range of growth factors 
that promote maintenance and repair of penumbra, 
decrease the infarction size, and improve functio-
nal deficits associated with stroke9. However, many 
issues remain to be resolved, such as extending 
BMSC survival time, promoting neuroblast mi-
gration, and promoting the specific differentiation 
of BMSC into neuronal cells but not into fat, bone, 
or cartilage cells10. To date, several compounds 
have shown11,12 a synergistic effect in combined 
treatment with MSCs in various models of stroke. 
The enhancement of BMSC therapy by other tre-
atments not only provides a cumulative effect of 
dual therapy but also can more effectively target 
specific organs and diseases13. 

Electroacupuncture (EA), a combination of 
acupuncture and electrical stimulation, is widely 
accepted in clinical practice as a supplementary 
therapy for ischemic stroke14. Studies15-18 show 
that EA is able to lower the toxicity of excitatory 
amino acids15, promote the synthesis and release 
of brain-derived neurotrophic factor and nerve 
growth factor16, increase the number of endoge-
nous mesenchymal stem cell17, and promote the 
survival and differentiation of BMSC in injured 
spinal cord animal model18. However, whether 
EA can improve the efficacy of BMSC treatment 
in stroke model remains to be determined.

Several biological markers are commonly used 
to assess neuronal damage and regeneration. 
Neuron-specific enolase (NSE) is a glycolytic 
enzyme and a highly specific marker for neurons 
and peripheral neuroendocrine cells19. NSE is 
currently considered a reliable indicator of the ex-
tent of neuronal damage20-22. Serum NSE levels of 
stroke patients are significantly higher than that 
of healthy individuals23-25. These levels correlate 
with neurobehavioral outcome and the volume of 
infarction20,26. In animal experiments, cerebral 
and circulatory NSE levels increased following 
focal ischemia27, and hypothermia followed by 
rapid rewarming at the ischemic stroke site in 
rats enhanced the neuronal loss and elevated 
plasma levels of NSE28. NSE concentrations in 
rat cerebrospinal fluid were verified as a quan-
titative marker of neuronal damage29. NSE level 
also decreased in the peripheral blood of the di-
sease model upon pretreatment with (S)-3,5-dihy-
droxyphenylglycine or nicardipine administra-
tion30,31. Nestin is a protein marker of multipotent 
neural stem cells (NSC)32,33, that together with 
other structural proteins, participates in cellular 

remodeling. During embryogenesis, most ne-
stin-positive cells in early development stages are 
stem/progenitor populations engaged in active 
proliferation34. However, in adult tissues, nestin 
is primarily restricted to regions of regeneration. 
Numerous in vivo and in vitro studies now rely 
on nestin expression to track the proliferation, 
migration, and differentiation of MSC35,36.

The aim of this study was to determine whether 
EA combined with BMSC transplantation could 
be a viable therapeutic approach to stimulate 
brain plasticity and functional recovery.

Materials and Methods

Animals
Seventy-two healthy, male, specific patho-

gen-free Sprague-Dawley (SD) rats (age, 8-10 we-
eks; weight, 240-260 g) were provided by the 
Changsha Tianqin Experimental Animal Center 
[certificate of conformity: SCXK (Xiang) 2014-
0011]. All the experiments were performed in ac-
cordance with the Guidelines for Animal Research 
of Hainan Medical University. Relevant protocols 
were submitted to the Hainan Medical College 
Ethics Committee (No. HYLL-2022-134, Date: 
2022-03-24). The experiments were conducted 
between June 2016 and January 2018 at the Hainan 
Medical University Animal Laboratory Center.

Middle Cerebral Artery Occlusion 
Animal Model

Male SD rats were anesthetized by intraperito-
neal administration of 10% Pentobarbital sodium 
(0.3 ml/100 g, Merck, Darmstadt, Germany; cata-
log number: 57330). The transient middle cerebral 
artery occlusion (MCAO) model was induced by 
intraluminal vascular occlusion in the right mid-
dle cerebral artery. The method used to induce 
ischemia was modified from that of Li et al37. Neu-
rological deficits were assessed using a modified 
neurological function score (NSS)38. At 24 hours 
after reperfusion, neurological deficit scores of 
6-12 points were assigned, and MCAO rats were 
randomly divided into a model group, EA group, 
BMSC group, and EA+BMSC group (n=12/group). 
The control groups were a sham operation group, 
and a healthy control group (n=12/group).

Recovery and Passage of BMSC and Green 
Fluorescent Protein (GFP)-Labeled BMSC

BMSC (catalog number: RASMX-01001) and 
GFP-labeled BMSC (catalog number: RASMX-01101) 
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were purchased from Cyagen Biosciences Inc. 
(Guangzhou, China). BMSC and GFP-labeled 
BMSC were obtained from the bone marrow of 
SD rats. After adherent culture, GFP-labeled BM-
SCs were transduced by lentivirus with GFP gene 
to make the cells stably express GFP. BMSC 
and GFP-labeled BMSC were identified by flow 
cytometry. The results showed that the bone mar-
row stromal marker CD90 and CD44 (>70%) and 
CD34, CD11b and CD45 (<5%) was qualified. The 
cells were then resuspended in fresh OriCell TM 
MSC growth medium (Cyagen Biosciences Inc, 
Santa Clara, CA, USA, RASMX-90011) and see-
ded into T25 flasks. Cells were incubated at 37°C in 
a 5% CO2 humidified incubator. The next day, the 
medium was replaced with fresh growth medium 
(pre-warmed to 37°C). Thereafter, the growth me-
dium was changed every three days. When the 
cells were approximately 80-90% confluent, they 
were dissociated with 0.25% trypsin/0.04% EDTA 
(TEDTA-10001) and passaged at a 1:2 dilution. 
After 2 passages, the cell suspension concentration 
was adjusted to 5×107 mL-1 BMSC/GFP-labeled 
BMSC and the MCAO rats were injected intracra-
nially with BMSC/GFP-labeled BMSC at the con-
centration of 5×105/10 µl. GFP labeled BMSC was 
used to observe cell differentiation and migration 
in the brain under fluorescence microscope.

Transplantation of BMSCs into MCAO Rats
After one week, BMSC were injected in-

tracerebrally into the striatum of the infar-
cted hemisphere of the animal model using a 
ZH-Lanxin C/S stereotactic apparatus (Anhui 
Zhenghua Teaching Experimental Instrument 
Factory, Anhui, China) at the following coor-
dinates: 0.3 mm posterior to the bregma, 3.00 
mm laterally, and 4.0 mm in depth (referring 
to Paxinos and Watson’s rat brain atlas39). To 
avoid affecting the follow-up EA treatment, an 
incision was made in the cranial midline lateral 
3-mm, and the skull was drilled with a dental 
drill. The BMSC group and EA+BMSC group 
were injected with 5×105 BMSC suspended in 
10 µl phosphate buffered saline (PBS) in the 
right striatum using a micro-pump (Shanghai 
GAOGE Industry and Trade Co., Ltd., Shan-
ghai, China) over a period of 10 min (5×105/10 
µl BMSCs). After the injection, the needles 
were kept in place for 5 min and then slowly 
removed. The wound was sealed by bone wax 
and closed using a medical suture. The rats 
were not given immunosuppressive drugs or 
antibiotics postoperatively.

EA Treatment
The BMSC group was observed without inter-

vention. The EA group and EA+BMSC groups 
were treated by EA for one week after BMSC 
implantation. The treatment was initiated at 8:00 
each day. The rats were treated at the Baihui (GV 
20) (parietal bone) and Dazhui (DU14) acupun-
cture points (between the seventh cervical verte-
bra and the first thoracic vertebra, in the middle 
of the back). The Baihui point was punctured 
using a 0.5-inch needle, from the front of the head 
midline to the back with a horizontal displace-
ment of 5 mm. Stabbing obliquely at a 45° angle 
in the back into the Dazhui (DU14). After the ne-
edle insertion, continuous-wave (frequency, 3 Hz; 
intensity, 1 V) EA stimulation was sustained for 
15 min40. The treatments were administered for 
one week. After one week, rats were euthanized 
by cervical dislocation, and the brains were fixed 
for further testing.

Fluorescence of GFP-Labeled BMSC
Rats were anesthetized with 10% Pentobar-

bital sodium and then thoracotomized. The 
rats were perfused with 4°C saline (150 mL) 
rapidly until the liver and lungs became whi-
te and then transfused with cold 4% parafor-
maldehyde. The brains were quickly removed 
and fixed with cold 4% paraformaldehyde. 
Brain tissue was dehydrated by sucrose solu-
tion gradient, embedded with optimal cutting 
temperature (OCT), frozen in liquid nitrogen, 
and stored at -80°C. Frozen sections were 
prepared (coronal section thickness, 8 µm), 
and the tissue was dehydrated, fixed, and 
directly observed and photographed under 
the Olympus IX51 Inverted Epi-Fluorescence 
Research Microscope.

Quantitative Reverse Transcription-
Polymerase Chain Reaction (qRT-PCR)

Expression levels of NSE and nestin were me-
asured by SYBR-Green real-time qRT-PCR in all 
the groups. NSE, Nestin, and GAPDH (internal 
reference) primers were purchased from Shan-
ghai Biological Engineering Co., Ltd (Shanghai, 
China). The SYBR-Green fluorescence quantita-
tive PCR kit was provided by Tiangen Biochemi-
cal Technology Co., Ltd (Beijing, China). Total 
RNA was extracted using the RNAprep Pure 
Tissue Kit (Tiangen Biochemical Technology Co. 
Ltd, Beijing, China) according to the manufactu-
rer’s instructions. The purity and concentration of 
extracted total RNA were determined at 260 and 
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280 nm using an ultraviolet spectrophotometer. 
The integrity of the total RNA was determined 
by agarose gel electrophoresis, and the RNA 
was then transcribed into cDNA. The volume of 
the PCR reaction was 20 μl (10 μl SYBR-Gre-
en master mix, 0.6 μl each of the forward and 
reverse primers, 1 μl of cDNA, 0.4 µl of 50 × 
ROX Reference Dye, 7.4 μl of ddH2O). The fol-
lowing parameters were used for the qRT-PCR 
reaction: 15 min of pre-denaturation (95°C) and 
40 cycles of 95°C for 10 s and 62°C for 30 s using 
a Light Cycler 480 (Roche Automatic launch 
by machine Mx3005P, Basel, ‎ Switzerland‎ ). At 
least three independent PCR reactions we-
re performed for each sample [f luorescence 
quantitative PCR was performed using the 
Mx3005P system (Stratagene, La Jolla, CA, 
US)]. Relative target gene expression was cal-
culated using the comparative 2-ΔΔCt method, 
and SYBR-Green qRT-PCR was performed. 
The forward and reverse primers were as fol-
lows: NSE FWD: GGAGTTGGATGGGACT-
GAGA, REV: TGAGCAATGTGGCGATAGAG; 
Nestin FWD: AGATCGCTCAGATCCTGGAA, 
REV: AGGTGTCTGCAACCGAGAGT; GAPDH 
FWD: GACATGCCGCCTGGAGAAAC, REV: 
AGCCCAGGATGCCCTTTAGT.

Western Blotting for NSE and Nestin 
Protein Expression in the Striatum

The specimens from the striatum were added 
to 400 μl of lysis buffer containing phenylmethyl-
sulfonyl fluoride (PMSF). Tissue homogenate 
was then incubated at 4°C for 30 min, followed by 
10,000 g centrifugation for 5 min at 4°C to extract 
the sample protein. Sample protein concentration 
was determined by the bicinchoninic acid (BCA) 
method using fetal bovine serum albumin (BSA) 
as a standard. The samples were stored at -20°C. 
Then, 30 µg of protein was subjected to sodium 
dodecyl sulfate polyacrylamide gel electropho-
resis (SDS-PAGE), followed by wet transfer to 
polyvinylidene fluoride (PVDF) membrane (Sig-
ma-Aldrich Shanghai Trading Co. Ltd, Shanghai, 
China) and blocked using 3% BSA. The membra-
nes were incubated with the following primary 
antibodies: NSE mouse monoclonal antibody 
(1:1,000; Proteintech; catalog number: 66150-1-
Ig), nestin mouse monoclonal antibody (1:1,000; 
Proteintech; catalog number: 66259-1-Ig), and 
anti-GAPDH mouse monoclonal antibody (inter-
nal standard; 1:5,000; Abbkine; catalog number: 
A01020). The primary antibodies were detected 
using horseradish peroxidase-conjugated goat 

anti-mouse IgG (1:1,000 dilution; servicebio; ca-
talog number: GB23301) and a DAB reaction we-
re used to visualize the protein bands (ZLI-9017, 
Zhongshan Golden Bridge, Beijing, China). Gray 
values on the immunoblot were analyzed using 
Quantity One 1-D Analysis Software version 4.4 
(Bio-Rad Laboratories, Inc., Hercules, CA, USA).

Fluorescent Immunohistochemistry to 
Detect NSE and Nestin Expression

Frozen brain sections were fixed in cold (4°C) 
acetone for 15 min, rinsed with PBS/0.3% Tri-
tonX-100, and incubated for 10 min in normal 
goat serum to block nonspecific antigen binding. 
The membranes were incubated with the primary 
antibody (1:50 NSE mouse monoclonal antibo-
dy or 1:100 nestin mouse monoclonal antibody) 
overnight at 4°C, followed by incubation in 1:100 
Cy3- or FITC-conjugated goat anti-mouse IgG 
secondary antibody (Boster, Wuhan, China) at 
37°C for 30 min. The sections were placed on a 
slide and observed under a fluorescence micro-
scope. As a control, PBS was used instead of the 
primary antibody, and nonspecific staining was 
determined following the addition of the conju-
gated secondary antibody alone.

Statistical Analysis
SPSS 17.0 software (SPSS Inc., Chicago, IL, 

USA) was used for the statistical analysis. Me-
asurement data were expressed as the means ± 
standard deviation (x±s), and the results were 
analyzed using one-way analysis of variance fol-
lowed by the LSD-t post hoc test for multiple 
comparisons of each treatment group. Statistical 
significance was defined as a p-value <0.05.

Results 

Epifluorescence microscopy revealed that so-
me BMSC survived intracranially, and some li-
ving cells migrated to areas around the lesion site. 
However, most BMSC in the cranium were lysed 
within a week after transplantation and were 
absorbed by the surrounding tissues. There were 
neuronal precursor cells in the BMSC group, and 
some BMSC were transformed into chondrocytes 
and adipocytes (Figure 1).

The mRNA levels of NSE were increased 
in the model groups compared to that of the 
healthy control group, and the difference 
between the MCAO group and control group 
was statistically significant (p=0.004, <0.05). 
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NSE expression in the BMSC group was su-
stained at a similar elevated level compared 
to MCAO group (p>0.05). However, NSE 
expression in the EA group (p=0.012, <0.05) 
or the EA+BMSC group (p=0.001, <0.05) was 
significantly lower than that in MCAO group. 
No significant difference in nestin expression 

was observed among the normal control, 
sham operation, model, EA and BMSCs 
groups ( p>0.05). Levels of nestin expression 
were significantly different in the EA+BM-
SC group compared to the model (p=0.000, 
<0.05) and the BMSC group (p=0.000, <0.05) 
(Table I and Figure 2).

Figure 1. Survival, migration, and differentiation of BMSC one week after the implantation. A, Implanted GFP-labeled 
BMSC in the striatum; (B) Migration of BMSC to the adjacent cortex; (C) BMSC transformed into different types of cells; (D) 
BMSC transformed into neuronal precursor cells; (E) Fluorescence after partial cell lysis; (F) Stem cells differentiated into 
chondrocytes or adipocytes. A-C, 50 µm; (D-F) 10 µm.
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NSE protein expression in the MCAO group 
was significantly increased compared to that 
in the healthy control group (p=0.000, <0.05). 
In the BMSC group, NSE levels were not si-
gnificantly different from that of the MCAO 
group (p>0.05). The expression of NSE in 
the EA group was lower than that in MCAO 
group (p=0.001, <0.05). The expression of 
NSE in the EA+BMSC group was lower than 
that in MCAO group (p=0.000, <0.05), and 
in BMSC group (p=0.000, <0.05). Nestin 
expression did not differ among the heal-
thy control, model, BMSCs, and EA+BMSCs 
groups (p>0.05) (Figure 3). 

The immunofluorescence results showed that 
NSE was strongly expressed in the striatum in 
the cerebral infarction rat model group. NSE-po-
sitive neurons exhibited red fluorescence in 
the cerebral infarction rat model. Cellular NSE 
expression was lower in EA and EA+BMSC 
groups. NSE protein expression in the MCAO 

and EA + BMSC groups was consistent with the 
gene expression analyses (Figure 4). Nestin was 
not expressed in any of the groups.

Discussion

BMSC transplantation is regarded as a po-
tential strategy for ischemic stroke treatment 
due to the capability of BMSC to provide 
neuroprotection and cell replacement in dama-
ged tissue41. Therefore, the acclimatization and 
survival of BMSC in the brain are paramount 
since clinical efficacy can only be achieved by 
viable cells, unlike cells in vitro that grow and 
proliferate for long periods of time42. BMSC 
survival following transplantation has been re-
ported43,44 to range from several days to almost 
one year. Our results indicate that some grafted 
BMSCs survived after one week. While lysed 
cell were assimilated by the surrounding tissue, 

Table I. NSE and nestin mRNA expression in cerebral infarction rats.

Group	 Health control	 Sham operation	 MACO	 EA group	 BMSC	 EA + BMSC	 F	 p
	 group	 group	 group		  group	 group

NSE	 1.089±0.581	 1.371±0.514b	 2.378±0.888a	 1.190±0.731b	 1.838±0.424 	 0.622±0.186b	 4.247	 0.01
Nestin	 1.110±0.636c	 1.117±0.186c	 1.311±1.575c	 1.575±0.206c	 1.142±0.526c	 3.802±1.273	 10.74	 0.000

a: compared with the health control group, b: compared with MACO, c: compared with EA+BMSC. Statistical analysis by one-
way ANOVA, pairwise comparisons using LSD-t test, p<0.05.

Figure 2. Comparison of the mRNA expressions of NSE (A) and nestin (B) in each group. Statistical analysis by one-way 
ANOVA, pairwise comparisons using an LSD-t test. * p<0.05.
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active cell proliferation could not be observed 
in this study due to the cell lysis.

Scholars45 show that transplantation technique 
can influence the survival and homing of the 
grafted stem cells, transplantation of the stem cells 
can be done intravenously46, intra-arterially47, in-
traventricularly48 and intracerebrally49. Cumulative 
evidence has suggested that cells implanted via 
veins exhibit lower survival than those implanted 
stereotactically. Vaquero et al50 showed that direct 
cell transplantation results in markedly increased 
cell migration and functional recovery compared 
to systemic administration. In the present study, 
intracerebral transplantation was used to promote 
the survival and homing capacity of BMSC in the 

ischemic cortex, even though this technique may 
carry an increased risk of needlestick injury. We 
found that in infarct rat model some BMSC migra-
ted from the injection site in the striatum toward 
the cortex on the side of the lesion48,51.

Previous studies52-56 show that BMSC exert 
their neuroprotective function52 through oxi-
dative stress reduction, and anti-inf lammatory 
and antiapoptotic activity53, and impact angio-
genesis by the paracrine secretion of cytoki-
nes or growth factors. Soluble neuroprotective 
factors, including anti-inf lammatory cytoki-
nes (IL-10, IL-6)54, neurotrophins/growth fac-
tors (GDNF, NT-3, NGF, and BDNF)55,56, and 
vascular endothelial growth factor (VEGF)46, 

Figure 3. Comparison of NSE and nestin protein expression among the control, MCAO, EA, BMSC, and EA+BMSC groups. 
A, Band analysis of NSE protein expression among the control, MCAO, EA, BMSC, and EA+BMSC groups, as detected by 
Western blotting. B, Band analysis of nestin protein expression among the control, MCAO, BMSC, and EA+BMSC groups, 
as detected by Western blotting. C, Expression levels of NSE and nestin protein of different groups were compared. * p<0.05.
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which are released by BMSC or other paren-
chymal cells such as astrocytes stimulated 
by BMSC, can mediate neuroprotective ef-
fects in acute cerebral infarction. Our data 
showed that BMSC can down-regulate the 
expression of NSE. 

Studies57-62 show that EA may alleviate neu-
rological dysfunction by suppressing neuronal 
apoptosis57 and accelerating angiogenesis58 in 
the rat stroke model. EA has been shown to 
exert neuroprotective effects by inhibiting in-
flammatory cytokines (caspase-359 and c-Fos60), 
reducing glutamate release61 and increasing 
dopamine secretion62. In the EA+BMSC treat-
ment group, rats with ischemic stroke showed 
a significant decrease in the expression of NSE 
in the stratum, compared to the MCAO group 
or BMSC treatment-alone group. These results 
may reflect the severity of ischemic stress and 
provide evidence that EA combined with BMSC 
is more effective in relieving neuronal damage 
and improving the release of cytokines in the 
cerebral infarction region. 

In addition to their neuroprotective effects, 
BMSC can be induced to differentiate into 
functional neurons belonging to MSC-derived 
neuronal cell types that contribute to the re-
cruitment and replacement of damaged neural 
tissue63-65. However, BMSC are multipotential 
cells that differentiate into neural progenitor 
cells, chondrocytes, or adipocytes in the host 
brain66,67. Therefore, stimulating specific BMSC 
differentiation into neural and astroglial linea-
ges but not chondrocytes or adipocytes may be 
challenging in the clinical setting. Several pro-
tocols have used growth factors68, neurotrophic 
factor69 and lentivirus-mediated transfection70 
to induce stem cells into becoming neuronal 
cells. Continuous EA has been proposed71 to 
promote endogenous MSC mobilization into 
the peripheral blood. Previous reports72  also 
showed that MSC transplantation combined wi-
th EA treatment increased MSC differentiation 
into neuronal cells and promoted remyelination. 
However, in our study, while the expression of 
nestin mRNA was significantly increased in 

Figure 4. Immunostaining to detect NSE protein expression in the striatum. A, Expression of NSE-positive cells in the 
striatum of the MCAO model group; (B) Expression of NSE-positive cells in the striatum of the EA; (C) NSE-positive cells in 
the striatum of the EA+BMSC group; (D) NSE-negative control group. A-D, 20 µm.
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the EA+BMSC group, we did not detect nestin 
protein expression in the cells, indicating that 
both BMSC alone and BMSC combined with 
EA did not induce the differentiation of BMSC 
into neurons one week after the transplantation. 
We may speculate, that the substantial neuron 
regeneration requires longer period of highly ef-
ficient and specific therapeutic environment that 
can only be achieved in in vitro cell cultures.

Limitations
While this study objectively assessed the de-

gree of neuronal damage, as indicated by the 
intracranial NSE expression, and found that 
acupuncture combined with BMSC could effecti-
vely repair neuron injury, it still has several limi-
tations. Our results showed that EA and BMSC 
were ineffective alone. We may speculate that 
a synergistic effect can be achieved by combi-
ning EA and BMSC therapy with neuroprotective 
agents. Further studies to test this hypothesis are 
needed. There was only a slight repair effect in 
the BMSCs group. It is necessary to take into ac-
count and evaluate the potential damage that may 
be associated with the procedure of the intracere-
bral BMSC injection. The efficiency of combined 
EA+BMSC treatment in long-term neuronal re-
modeling needs to be further confirmed.

Conclusions

In summary, transplantation of BMSCs combi-
ned with EA treatment is more conducive to treat 
damage to local neurons in ischemic foci. Impro-
vement in the ischemic microenvironment surroun-
ding MSCs affects the seeding, expansion, survival, 
renewal, growth, and differentiation of BMSCs in 
the lesion area. However, further longitudinal stu-
dies are needed to determine the efficacy of EA in 
promoting BMSCs differentiation, and whether the 
proliferation and differentiation of BMSCs into neu-
rons is augmented by EA in the long term.
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