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Abstract. – Type 2 diabetes mellitus (T2DM) 
is a huge challenge for global public health sys-
tems. Currently, healthcare policies advocate 
the prevention of the onset and progression of 
T2DM by improving individual lifestyles. The in-
creasing benefits of intermittent fasting (IF) as a 
dietary intervention have been elucidated. How-
ever, the beneficial effects of IF in T2DM re-
main inconclusive. We demonstrated the phys-
iological mechanisms underlying the positive 
effects of IF in T2DM. IF could trigger metabol-
ic transformation to improve systemic metabo-
lism and induce tissue-specific metabolic adap-
tations through alterations in the gut microbio-
ta, adipose tissue remodeling, correction of cir-
cadian rhythm disturbances, and increased au-
tophagy in peripheral tissues. The efficacy and 
safety of IF regimens in clinical applications car-
ry a risk of hypoglycemia and require monitoring 
of blood glucose and timely adjustment of med-
ications. However, there is limited evidence of a 
positive effect of IF in weight loss and improve-
ment of glycemic variables. Overall, IF serves 
as a promising therapeutic target for T2DM and 
needs to be established by a large randomized 
controlled trial.
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Introduction

The incidence and prevalence of type 2 diabe-
tes mellitus (T2DM) continue to rise globally1. 
T2DM is characterized by hyperglycemia due 
to insulin resistance (IR) or insufficient insu-
lin secretion2. International Diabetes Federation 
(IDF) estimates that the global prevalence of 

diabetes in people aged 20-79 years is estimated 
at 10.5% (536.6 million) in 2021, rising to 12.2% 
(783.2 million) by 20453. However, current T2DM 
medications without lifestyle interventions lack 
comprehensiveness in glycemic control4. In light 
of the limitations of available antidiabetic agents, 
alternative treatments are highly recommended. 
In recent years, the dietary intervention has be-
come a hot topic of research.

Intermittent fasting (IF) is a dietary pattern 
involving energy restriction and time-restricted 
fasting5. Alternative invention of energy intake 
offers better compliance than continuous energy 
restriction (CER)6. Studies5,7,8 in animals and hu-
mans have shown that IF has a modulating func-
tion in a variety of chronic diseases, including 
obesity, diabetes, cardiovascular disease, multiple 
sclerosis, neurodegenerative diseases of the brain, 
and cancer.

In addition to a simple calorie restriction (CR), 
IF has unique and specific properties, which 
could trigger systemic metabolic improvements 
through metabolic transformation and induce 
tissue-specific metabolic adaptations including 
changes in the gut microbiome, adipose tissue 
remodeling, correction of circadian rhythm dis-
turbances, and increased autophagy in peripheral 
tissues. This review briefly elucidates the posi-
tive effects of IF on T2DM in these five aspects. 
Furthermore, IF may encourage weight reduction 
to avoid different diabetes risk factors, including 
lower fasting glucose and fasting insulin and 
improved insulin sensitivity9. Here, we summa-
rized the benefits of IF regimens and explored the 
efficacy and side effects of IF in prediabetes and 
T2DM. We intended to provide several sugges-
tions for future research and clinical applications 
of IF.
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Types of Intermittent Fasting

There are various models of intermittent fast-
ing and three of them have been widely used 
in clinical practice: alternate daytime fasting 
(ADF), IF 5:2 (two days of fasting per week), and 
time-restricted eating (TRE)10. 

ADF consists of a feeding day and a fasting 
day11. Individuals can consume food and beverag-
es without restriction during feeding days and no 
caloric intake during fasting days. Modified ADF 
involves individuals consuming typically 20-
25% (500-800 kcal) of their energy requirement 
during fasting days12. The IF 5:2 comprises two 
stages embodying two fasting days (500-1,000 
kcal per day) and five other days of free feeding13. 
The two restriction days can be consecutive or 
nonconsecutive. TRE has a time requirement for 
the diet, i.e., limiting eating to a specific number 
of hours per day (usually 4 to 8 hours) and ab-
staining from water or zero-calorie beverages for 
the rest of the day14.

Other forms of fasting are less common, such 
as B2 and 4:3 IF. In the B2 program, the regime 
consists of two meals per day, with breakfast 
from 6 am to 10 am and lunch from 12 pm to 
4 pm15. 4:3 IF is similar to IF 5:2, except for an 
extra day of fasting per week16.

Physiological Mechanisms Associated 
with Intermittent Fasting

The potential mechanisms for improving 
T2DM through IF are complex and can be broad-
ly summarized as follows: metabolic transforma-
tion, alterations in the gut microbiota, adipose 
tissue remodeling, improved circadian rhythms, 
and increased autophagy. These alterations can 
induce tissue-specific metabolic adaptations that 
allow for remission or even cure of T2DM. We 
summarize the limited evidence and describe 
these alterations in detail from animal experi-
ments as well as molecular mechanisms.

Metabolic Transformation

In the fasting state, triglycerides (TG) are 
converted to fatty acids and glycerol through 
lipodieresis. The liver then converts fatty acids 
to ketone bodies, which provide energy to tis-
sues in various parts of the body17. Animals and 
humans using fasting or IF protocols had sig-

nificantly higher blood ketone levels, especially 
β-hydroxybutyric acid18. Elevated β-hydroxybu-
tyrate further raises increased autophagy and 
reduces oxidative stress (Figure 1)19. On the oth-
er hand, IF-induced metabolic transformation 
also mediates significant alterations in several 
metabolic pathways. These include a decrease 
in rapamycin (mTOR) activity and stimula-
tion of AMP-activated protein kinase (AMPK) 
(Figure 1)20. Reduced glucose and amino acid 
levels during fasting lead to reduced mTOR 
pathway activity, and inhibition of mTOR ac-
tivity decreases protein synthesis and stimu-
lates increased autophagy and mitochondrial 
synthesis21. Fasting affects bioenergetic sensors, 
especially AMPK, which is activated to pro-
mote increased autophagy, thereby eliminating 
damaged proteins and organelles from the body 
and improving mitochondrial function20. These 
changes can promote metabolic homeostasis and 
play a role in maintaining glucose homeostasis 
and improving insulin sensitivity19.

Gut Microbiota

The composition of the gut microbiota is re-
modeled in response to changes in individual 
dietary habits and nutritional status22. IF leads 
to altered cellular responses, shifting cells from 
glucose-dependent to using ketone body carbon 
(KBC), thereby suppressing inflammation and 
altering the gut microbiota23,24. Gut microbiota 
dominates host health and the pathogenesis of 
metabolic diseases such as obesity and diabe-
tes25-30. The mechanism regulates systemic me-
tabolism by improving inflammation and reduc-
ing intestinal permeability31. 

The earliest epidemiology of obesity and 
T2DM-related inflammation dates back to the 
1960s32,33. Many studies34,35 on T2DM and obe-
sity have demonstrated a rise in circulating in-
flammatory markers. Low-grade inflammation 
is a vital determinant of obesity and diabetes36. 
Inflammatory mediators such as tumor necrosis 
factor-alpha (TNF-α) and interleukin-1β (IL-1β) 
undermine insulin sensitivity and poor glucose 
tolerance and mediate IR37-40. Related studies41 
have shown that obesity and diabetes share an 
important common feature, namely, an increased 
proportion of the thick-walled phylum/mycobac-
terial phylum. A high-fat diet (HFD) can induce 
changes in the gut microbiota by promoting the 
development of Gram-negative bacteria, which 
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leads to lipopolysaccharide (LPS) production to 
trigger systemic inflammation42. Furthermore, 
changes in the gut microbiota brought on by IF 
may lessen T2DM’s inflammatory symptoms43-45. 
For example, interleukin-10 (IL-10) induced by 
Roseburia guts, Bacteroides fragilis, Akkerman-
sia muciniphila, Lactobacillus Plantarum, and 
Lactobacillus casei improves glucose metabolism 
and prevents aging-related IR (Figure 1)46-48. En-
terobacteriaceae can restore insulin sensitivity 
and induce transforming growth factor-β (TGF-β) 
to suppress intestinal inflammation by increasing 
interleukin-22 (IL-22) production (Figure 1)49-

51. The anti-inflammatory molecules produced 

by Lactobacillus paracasei and Faecalibacterium 
prausnitzii can inhibit the activity of nuclear fac-
tor-κB (NF-κB)52,53.

On the other hand, IF treatment significantly 
increased the levels of the thick-walled phylum 
while reducing most other phyla and elevating 
short-chain fatty acids (SCFAs) production, com-
pared to ad libitum-fed control animals54. SCFAs 
are the product of gut microbiota fermentation 
of indigestible foods55. The key factor in mu-
cin production (increased mucin expression) and 
tight junction integrity preservation, SCFAs are 
crucial for limiting increasing intestinal permea-
bility (Figure 1). A distinctive feature of T2DM is 

Figure 1. Physiological mechanisms associated with intermittent fasting. Brown to the beige coloration of AT adipose tissue 
due to elevated acetate and lactate and VEGF cycling. Beige adiposity increases the expression of UCP1, which leads to 
improved metabolism by promoting the oxidative metabolism of glucose and fat coupled to ATP synthesis. At the same time, a 
decrease in TNF-α promoted an increase in IRS-1 and GLUT4 and the polarization of macrophage M2. These changes improve 
insulin resistance and AT inflammation, resulting in improved metabolism. On the other hand, TG increases due to IF, and TG 
is broken down into ketone bodies in the liver. Ketone bodies increase autophagy in the organism through a decrease in mTOR 
activity and activation of AMPK. Elevated HMGB and Sirt-1 similarly increase autophagy. Increased autophagy further 
improves metabolism. IF alters the composition of the gut microbiota, thereby increasing the levels of IL-10, IL-11 and SCFA. 
IL-10 and IL-22 balance the body’s metabolism by improving IR and inflammation, respectively. SCFA, on the other hand, 
improves body metabolism by reducing appetite and intestinal permeability. Finally, AT, gut microbiota and liver influence 
the local peripheral clock and regulate the circadian system together with the central clock, thus reducing IR and correcting 
metabolic disturbances. IF: intermittent fasting; HMGB: high mobility group box 1; Sirt-1: sirtuin-1; TNF-α: tumor necrosis 
factor-alpha; IRS-1: insulin receptor substrate 1; GLUT4: glucose transporter protein type 4; VEGF: vascular endothelial 
growth factor; TG: triglycerides; ATP: adenosine triphosphate; mTOR: rapamycin; AMPK: AMP-activated protein kinase; IR: 
insulin resistance; SCFA: short-chain fatty acid; UCP1: uncoupling protein 1; IL: interleukin.
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the increase in intestinal permeability that leads 
to the transfer of LPS and microbial metabolites 
into the bloodstream, which in turn causes IR 
and metabolic endotoxemia56,57. Entering circu-
lating LPS interacts with LPS-binding proteins 
and membrane-bound cluster of differentiation 14 
(CD14) receptors. Their complexes interact with 
toll-like receptor 4 (TLR4) to influence inflam-
matory signals and insulin signaling pathways58. 
Meanwhile, SCFAs can control energy intake 
through the gut-brain axis59. The gut-derived sa-
tiety hormones glucagon-like peptide-1 (GLP-1) 
and peptide YY (PYY) are mainly secreted by 
enteroendocrine L cells, with the highest density 
in the ileal and colonic epithelium60-63. SCFAs are 
a major stimulator of GLP-1 production by endo-
crine L cells64. GLP-1 regulates appetite through 
its effects on opioid melanocortinogen (POMC) 
and neuropeptide Y (NPY) neurons in the arcuate 
nucleus of satiety (ARC) and is known to inhibit 
gastric emptying and gastric acid secretion (Fig-
ure 1)65-67. Thus, there is also a link between GLP-
1 and reduced hunger during IF68.

Overall, IF-mediated changes in gut microbio-
ta alleviate inflammation and maintain intestinal 
permeability in T2DM. To improve the efficacy 
of IF in T2DM, further robust preclinical and 
clinical studies are needed to standardize the op-
timal regimen for IF.

Adipose Tissue

IF can positively affect T2DM by remodeling 
adipose tissue (AT), mainly by the browning of 
white adipose tissue (WAT), increasing thermo-
genesis of brown adipose tissue, and reducing in-
flammation (Figure 1)69-71. We briefly describe the 
improvement of AT browning and inflammation.

It was found that IF-induced WAT browning 
and beiging increased adipogenic thermogenesis 
and improved HFD-induced obesity and meta-
bolic dysfunction72-75. AT browning and beiging 
increase the expression of uncoupling protein 1 
(UCP1), which improves insulin sensitivity by 
promoting the oxidative metabolism of glucose 
and fat by uncoupling with adenosine triphos-
phate (ATP) synthesis, resulting in heat produc-
tion and energy expenditure (Figure 1)76,77. IF-in-
duced browning appears to be largely unrelated 
to the classical differentiation stimuli β-adrener-
gic receptor (β-AR) and fibroblast growth factor 
21 (FGF21)78. Kim et al72 found IF mice promote 
selective activation of adipose macrophages via 

the adipose vascular endothelial growth factor 
(VEGF) cycle and thus increased WAT browning 
(Figure 1). Li et al73 demonstrated that IF induces 
inguinal WAT by altering the abundance of intes-
tinal microbiota and promoting the production of 
acetate and lactate. The specific mechanism by 
which IF induces adipose browning needs to be 
further investigated.

IF ameliorates inflammation in adipose tissue, 
and some studies79 have shown that IF reduces 
pro-inflammatory markers (e.g., macrophages, 
IL-1, IL-6, TNF-α, etc.) in subcutaneous white 
adipose tissue (sWAT) of diet-induced obese 
(DOI) mice. AT inflammation mediated by ad-
ipose macrophages and their secreted TNF-α 
is shown in Figure 180,81. There is evidence that 
TNF-α can inhibit the activity of peroxisome 
proliferator-activated receptor-γ (PPARγ) through 
multiple pathways82. The classical pathway blocks 
the binding of PPARγ to its downstream response 
elements by activating the NF-κB pathway83. 
HFD-fed mice treated with PPARγ agonists dis-
play higher insulin sensitivity and an increase in 
the anti-inflammatory phenotype of M2 macro-
phages84. In addition, circulating free fatty acid 
(FFA) levels were increased due to the inhibition 
of PPARγ downstream signaling85. And FFA can 
promote the polarization of pro-inflammatory 
phenotype M1 macrophages86. TNF-α knockout 
mice avert HFD-induced IR and show lower FFA 
levels87. In addition, TNF-α significantly down-
regulates insulin receptor substrate 1 (IRS-1) 
and glucose transporter protein type 4 (GLUT4) 
expression and inhibits AMPK activity (Figure 
1)88,89. Activated AMPK induces polarization of 
M2 macrophages and inhibits IR (Figure 1)86,88,90. 

Moreover, IF improves insulin sensitivity by 
decreasing inflammatory collagen IV expression 
in visceral white adipose tissue (vWAT)91. Thus, 
to further elucidate the specific mechanisms of IF 
and adipose tissue remodeling numerous preclini-
cal and clinical studies are needed.

Circadian Biology

TRE can increase insulin sensitivity and pos-
itively affect systemic metabolic disorders by 
altering the frequency of eating, correcting cir-
cadian rhythm disturbances, and altering the ex-
pression of biological clock genes. The circadian 
biological system consists of a central brain clock 
in the supraoptic nucleus of the hypothalamus 
and various peripheral tissue clocks (e.g., similar 
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clock oscillators found in peripheral tissues such 
as the liver)92. The circadian system plays an im-
portant role in metabolic and energetic physiolog-
ical changes through behavioral interventions93,94. 
Light information and feeding time (Zeitgebers) 
are the main temporal cues92. According to the 
circadian rhythm disruption hypothesis, synchro-
nization of feeding with the endogenous clock 
can promote the homeostasis of the clock sys-
tem95. Conversely, it can lead to misalignment 
of temporal species rhythms, causing circadian 
rhythm disruption and promoting IR and T2DM 
development96.

Several clinical trials97-99 have confirmed that 
human glucose tolerance is higher in the morning 
than in the evening. Dysregulation of circadian 
rhythms leads to a reduction in glucose tolerance 
in humans100. Shift workers have an increased risk 
of developing type 2 diabetes mellitus (T2DM) 
compared to people with normal sleep schedules101. 
The circadian rhythm of glucose tolerance in hu-
mans is mediated primarily through the circadian 
rhythm of systemic insulin sensitivity. The cen-
tral clock plays a major role in systemic insulin 
sensitivity through the hypothalamic connection 
between sleep/wake and food intake102. The local 
peripheral clock further finetunes systemic insulin 
sensitivity via the gut clock103, muscle clock104, 
adipose tissue clock105, liver clock106, and pancre-
atic clock (Figure 1)107. Among these, appropriate 
management of eating behavior, a crucial compo-
nent of rhythmic behavior, might enhance IR to 
some amount (Figure1)108. Significant changes in 
peripheral clock gene expression levels in skeletal 
muscle and subcutaneous adipose tissue (SAT) are 
observed in obese women12. A 5-week randomized 
crossover-controlled trial109 of 12 patients with 
prediabetes found that TRE (6-h feeding period) 
improved insulin sensitivity and β-cell respon-
siveness compared to 12-h feeding. Consistent 
with this finding, after four days of TRE (6-h 
TRE from 8 am to 2 pm) in 11 obese patients, it 
was reported110 that TRE lowered fasting glucose 
and insulin, reduced 24-hour glucose fluctuations, 
altered biological clock gene expression, and may 
also increase autophagy and have anti-aging ef-
fects in humans. Notably, however, Lundell et 
al111 reported that TRE improved lipid and amino 
acid rhythmicity but did not interfere with the 
expression of the core clock. It is undeniable that 
time-restricted fasting has a positive impact on hu-
man metabolism, which requires further research 
in more clinical applications. However, the precise 
mechanism by which IF improves metabolic disor-

ders by regulating circadian rhythms needs to be 
demonstrated by additional studies.

Improved Autophagy

Autophagy, a process of self-degradation and 
cleanup by organisms, has been demonstrated to 
play a critical role in T2DM112,113. The recovery 
function of autophagy may be severely compro-
mised in mice on an HFD by IR and T2DM114,115. 
IF has been proven to restore autophagy, attenuate 
the effects of metabolic diseases such as T2DM on 
autophagy, and maintain cellular rejuvenation116. 
Similarly, autophagy suppression reduces the in-
terventional impact of IF117. In a recent study118, 
the light chain 3 (LC3)-II/LC3-1 ratio was higher 
in mice that followed a 4-month fasting inter-
vention, suggesting enhanced autophagy. On the 
other hand, IF stimulates sirtuin-1 (Sirt-1) activity 
and enhances autophagy and serum high mobil-
ity group box 1 (HMGB1) levels119. The role of 
HMGB1 and Sirt-1 in the regulation of autopha-
gy has been demonstrated120 in animals and cell 
lines (Figure 1). Autophagy is essential for normal 
β-cell function and survival, and regulation of au-
tophagy, rather than excessive autophagy, may be 
a possible mechanism to explain the beneficial ef-
fects of IF on β-cell function. However, the under-
lying molecular mechanisms remain unclear121-123. 
IF can result in the remission of β-cell function 
in T2DM124 and might improve metabolism by 
increasing autophagy in humans (Figure 1)125,126.

Human Intervention Studies

IF is a planned dietary intervention with inten-
tionally prolonged fasting. The focus of research 
on IF is weight loss. We briefly review some 
trials conducted in recent years in obese patients 
(without prediabetes and T2DM) using the three 
main IF regimens (ADF, IF 5:2 and TRE) (Table 
I). In addition, we summarize the results of stud-
ies with different IF regimens in patients with 
abnormal glucose metabolism conditions (i.e., 
prediabetes and T2DM) (Table II).

Results of Studies Using the IF Protocols 
in Obese Patients (Without Prediabetes 
and T2DM)

The vast majority of IF outcomes reported 
in randomized trials of obese patients are pri-
marily weight loss and improved body composi-
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Participants Trial 
weeks

Intervention 
groups

Body 
weight

Energy 
intake

Fat 
mass

Blood 
pressure

LDL HDL TG Fasting 
glucose

Fasting 
insulin

HOME-
IR

HbA1c Inflammation Ref.

N = 31, men and 
women, with 
overweight and 
without T1DM 
or T2DM.

8 ADF (500-kcal fast 
day)

↓b ↓ 25% ↓b NT ∅ ∅ ∅ ∅ ∅ ∅ NT ∅ CRP 127

Exercise (endurance) ∅ ∅ ↓b NT ∅ ∅ ∅ ↓b ∅ ∅ NT ∅ CRP

ADF with exercise ↓b ↓ 20% ↓b NT ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ CRP
Control (ad libitum 
intake, no exercise)

∅ ∅ ∅ NT ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ CRP

N = 31, men and 
women, with 
overweight and 
without T1DM 
or T2DM.

12 ADF (600-kcal fast 
day)

↓a ↓ 35% ↓a ∅ SBP

↓ DBPa

∅ ↓a ∅ ∅ ∅ ∅ ∅ NT 128

N= 37, men and 
women, with 
overweight and 
without T1DM 
or T2DM.

8 ADF (3 nonconsec-
utive days per week 
30% energy require-
ments 100% energy 
intake on feasting 
day)

↓b ↓ 30% ∅ NT NT NT NT ∅ ↓b ↓b NT NT 12

ADF (3 nonconsec-
utive days per week 
30% energy require-
ments 145% energy 
intake on feasting 
day)

∅ ∅ ∅ NT NT NT NT ∅ ∅ ∅ NT NT

N = 112, men 
and women, with 
overweight and 
with MS.

46 5:2: Fast day (500 
kcal)

Feast day (ad libi-
tum)

↓b ↓ 25% ↓b ∅ ∅ ∅ ∅ ∅ ∅ ∅ NT ↓ sCD40Lb

∅ IL-6

∅ TNF-α

13

Control (ad libitum) ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ NT ∅ sCD40Lb

∅ IL-6

∅ TNF-α

Table I. Trials of IF in obese patients.

Continued
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ap < 0.05, significantly different from baseline (within-group effect). bp < 0.05, significantly different from the control or calorie-restricted group (between-group effect). When the control group is 
present, only significant changes versus control are reported. ∅, nonsignificant change; ADF, alternate-day fasting; CRP, C-reactive protein; DBP, diastolic blood pressure; HbA1c, hemoglobin A1c; 
HOMA-IR, homeostatic model assessment of insulin resistance; IL, interleukin; HDL, high-density lipoprotein cholesterol; LDL, low-density lipoprotein cholesterol; MS, metabolic syndrome; 
NT, not tested (parameter not measured); ND, data not disclosed; SBP, systolic blood pressure; sCD40L, soluble CD40 ligand; TG, triglyceride; TNF, tumor necrosis factor; TRE, time-restricted 
eating; T1DM, type 1 diabetes mellitus; T2DM, type 2 diabetes mellitus; ↓, decrease in the indicated parameter; ↑, increase in the indicated parameter. 

Participants Trial 
weeks

Intervention 
groups

Body 
weight

Energy 
intake

Fat 
mass

Blood 
pressure

LDL HDL TG Fasting 
glucose

Fasting 
insulin

HOME-
IR

HbA1c Inflammation Ref.

N = 250, men 
and women, 
overweight and 
without T1DM 
or T2DM.

52 5:2: Fast day (wom-
en 500 kcal, men 
600 kcal)

Feast day (ad libi-
tum)

∅ ↓ 26% ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ CRP 129

Mediterranean ∅ ↓ 20% ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ↓b ∅ CRP

Paleo ∅ ↓ 20% ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ CRP

N = 121, wom-
en only, with 
overweight and 
without T1DM 
or T2DM.

52 5:2: Fast day (500 
kcal)

Feast day (ad libi-
tum)

↓a ↓ 34% ∅ NT NT NT NT ∅ ∅ ∅ ∅ NT 130

Calorie restriction 
(1,500 kcal per day)

↓a ↓ 25% ∅ NT NT NT NT ∅ ∅ ∅ ∅ NT

N = 58, men and 
women, with 
overweight and 
without T1DM 
or T2DM.

8 4-h TRE (3-7 pm) ↓b ↓ 30% ↓b ∅ ∅ ∅ ∅ ∅ ↓b ↓b ∅ ∅ IL-6

∅ TNF-α

131

6-h TRE (1-7 pm) ↓b ↓ 30% ↓b ∅ ∅ ∅ ∅ ∅ ↓b ↓b ∅ ∅ IL-6

∅ TNF-α
Control (no meal 
timing restrictions)

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ IL-6

∅ TNF-α
N = 58, men and 
women, with 
overweight and 
without T1DM 
or T2DM.

12 8-h TRE (12-8 pm) ∅ NT ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ NT 132

Control (no meal 
timing restrictions)

∅ NT ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ NT

N = 19, men and 
women, over-
weight with MS.

12 10-h TRE (self-se-
lect)

↓a ↓ 10% ↓a ↓ SBPa 

↓ DBPa

↓a ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ CRP 133

N = 20, men and 
women, with 
overweight and 
without T1DM 
or T2DM.

12 8-h TRE (self-select) ↓b NT ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ NT 134

Control (no meal 
timing restrictions)

∅ NT ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ NT

Table I (Continued). Trials of IF in obese patients.
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Participants Trial 
weeks

Intervention groups Body 
weight

Energy 
intake

Fat 
mass

Blood 
pressure

LDL HDL TG Fasting 
glucose

Fasting 
insulin

HOME-IR HbA1c Inflammation Ref.

N = 8, men only, 
overweight with 
prediabetes.

5 6-h TRE (8 am-2 pm) ∅ ∅ NT ↓ SBPb

↓ DBPb
∅ ∅ ↑b ∅ ↓b ↓b NT ∅ CRP

∅ IL-6
109

Control (12-h eating 
window)

∅ ∅ NT ∅ ∅ ∅ ∅ ∅ ∅ ∅ NT ∅ CRP
∅ IL-6

N = 26, men 
and women, 
overweight with 
prediabetes.

12 5:2: Fast day (women 600 
kcal, men 650 kcal)
Feast day (ad libitum)

↓a ↓ 24% ↓a NT ∅ ∅ ∅ ∅ ∅ NT ↓a ∅ TNF-α
∅ IL-6

151

5:2: Fast day (women 600 
kcal, men 650 kcal)
Feast day (ad libitum)
Lacticaseibacillus rham-
nosus probiotic

↓a ↓ 25% ↓a NT ∅ ∅ ∅ ∅ ∅ NT ↓a ∅ TNF-α
∅ IL-6

N = 97, men 
and women, 
with overweight 
and
T2DM.

52 5:2: Fast day (500 kcal)
Feast day (ad libitum)

↓a NT ↓a NT ↓a ↓a ↓a ↓a ↓a NT ↓a NT 152

CR (1,500 kcal/day) ↓a NT ↓a NT ↓a ↓a ↓a ↓a ↓a NT ↓a NT

N = 51, men 
and women, 
with overweight 
and T2DM.

12 5:2: Fast day (400-600 
kcal)
Feast day (ad libitum)

↓a NT ↓a NT NT NT NT NT NT NT ↓a NT 153

CR (1,200-1,500 kcal/
day)

↓a NT ↓a NT NT NT NT NT NT NT ↓a NT

Table II. Trials of IF in prediabetes and T2DM patients.

Continued
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Participants Trial 
weeks

Intervention groups Body 
weight

Energy 
intake

Fat 
mass

Blood 
pressure

LDL HDL TG Fasting 
glucose

Fasting 
insulin

HOME-IR HbA1c Inflammation Ref.

N = 37, men 
and women, 
with T2DM.

12 5:2: Consecutive Fast day 
(500-600 kcal)
 Feast day (ad libitum)

↓a ↓ ND ∅ ∅ ∅ ∅ ∅ ↓a NT NT ↓a NT 154

5:2: Non-consecutive 
Fast day (500-600 kcal)
 Feast day (ad libitum)

↓a ↓ ND ∅ ∅ ↑b ∅ ∅ ↓a NT NT ↓a NT

n = 37, men and 
women, with 
T2DM.

2 4-6-h TRE (8 am-2 pm) ↓a ↓ 18% NT ∅ NT NT NT ND ND ∅ NT ∅ CRP 155

n = 32, men and 
women, with 
MS and T2DM.

1
Anal-
ysis 
after 4 
months

Buchinger (300 kcal/day 
liquid diet)
Followed by advice for 
the Mediterranean diet

↓b NT NT ↓ SBPb

↓ DBPb
∅ ∅ ∅ ∅ ∅ ∅ ∅ NT 156

Control (advice about the 
Mediterranean diet)

∅ NT NT ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ NT

n = 54, men and 
women, with 
overweight and 
T2DM.

12 B2 (500 kcal/day 2 meals 
per day, breakfast and 
lunch only)

↓b NT NT NT ∅ ∅ ∅ ↓b ∅ NT ∅ NT 15

A6 (500 kcal/day 6 meals 
per day)

∅ NT NT NT ∅ ∅ ∅ ∅ ∅ NT ∅ NT

n = 51, men 
only, with 
overweight and 
T2DM.

12 IER (1,400-1,700 kcal/
day)

∅ NT ∅ NT ∅ ∅ ∅ NT NT NT ∅ NT 16

PPM (1,400-1,700 kcal/
day)

∅ NT ∅ NT ∅ ∅ ∅ NT NT NT ∅ NT

ap < 0.05, significantly different from baseline (within-group effect). bp < 0.05, significantly different from the control or calorie-restricted group (between-group effect). When the control group is 
present, only significant changes versus control are reported. ∅, nonsignificant change; ADF, alternate-day fasting; CRP, C-reactive protein; DBP, diastolic blood pressure; HbA1c, hemoglobin A1c; 
HOMA-IR, homeostatic model assessment of insulin resistance; IER, intermittent energy restriction; IL, interleukin; HDL, high-density lipoprotein cholesterol; LDL, low-density lipoprotein choles-
terol; MS, Metabolic Syndrome; NT, not tested (parameter not measured); ND, data not disclosed; PPM, proportioned meals; SBP, systolic blood pressure; SSM, self-selected meals; TG, triglyceride; 
TNF, tumor necrosis factor; TRE, time-restricted eating; T1DM, type 1 diabetes mellitus; T2DM, type 2 diabetes mellitus; ↓, decrease in the indicated parameter; ↑, increase in the indicated parameter. 

Table II (Continued). Trials of IF in prediabetes and T2DM patients.
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tion12,13,127-134. Compared to TRE131-134, ADF12,127,128 
and IF 5:213,129,130 have more clinically significant 
weight loss effects, suggesting that TRE is safe 
and well-tolerated. It is relatively easy to accept 
in elderly or frail patients and there are no weight 
restrictions135. IF failed to help subjects retain a 
leaner mass compared to CER130. However, several 
studies136-138 that combined TRE with resistance 
training found an increase in fat-free mass (FFM), 
an increase in skeletal muscle, and an improvement 
in muscle performance along with weight loss. 
Perhaps this is a direction for future research. The 
main reason for weight loss in the subjects is a 
reduction in energy intake. No retaliatory eating 
was placed while receiving IF therapy, and all IF 
treatments lowered calorie consumption by more 
than 10%13. According to research139, IF 5:2 had a 
high protein, moderate fat, low carbohydrate, and 
low fiber consumption composition in terms of diet 
quality. The quality of the diet was consistent with 
what subjects needed during the weight-loss period. 
Overall, IF is a beneficial way of weight loss.

As part of the IF trials, blood glucose mea-
surements are frequently evaluated. Fasting glu-
cose usually remains constant during ADF, IF 
5:2, and TRE. In normoglycemic subjects, cir-
culating glucose levels are maintained at steady 
levels, and fasting insulin levels are reduced 
from baseline in several trials12,128,130,131,140,141. In 
contrast to those whose baseline insulin lev-
els were within the normal range, this impact 
was seen more often in people with increased 
baseline insulin levels (>13 uIU/ml)131. Elevated 
fasting insulin levels are a diagnostic criterion 
for IR142, suggesting that IF has a better impact 
on reducing fasting insulin in insulin-resistant 
patients, which may be related to the metabolic 
transformation mechanism17. The effect of IF 
on insulin sensitivity varies widely, with some 
studies showing improvement12,130,131,141, but most 
had no effect43,128,132,134,139, 143-145. Some studies 
have reported that prolonged fasting leads to 
impaired insulin response146,147, while others 
have shown that IF140 has a good facilitative 
function on insulin sensitivity148,149. In animal 
studies150, IF has been found to improve islet 
pancreatic β-cell quality by increasing β-cell 
progenitor cell neurogenin 3 (Ngn3) expression 
and promoting β-cell neogenesis. It requires 
more in-depth research in more trials. In those 
without T2DM, the majority of investigations on 
glycosylated hemoglobin (HbA1c) have shown 
no change128,131,132,134. Additionally, IF is advanta-
geous for lowering other metabolic disease risk 

factors, such as lowering blood pressure, con-
trolling blood lipids, decreasing inflammation, 
and reducing oxidative stress13,129,133.

In conclusion, IF protocols have a positive effect 
on obesity. Educational activities and follow-up for 
patients to maintain an IF diet are necessary.

Results of Studies Using the IF Protocols 
in Prediabetes Patients

The use of IF procedures in individuals with 
prediabetes have been positively impacted by re-
cent research. To date, two studies109,151 have evalu-
ated the impact of IF regimens on individuals with 
prediabetes. Sutton et al109 conducted a 5-week 
trial of TFR (6-h TRE from 8 am to 2 pm) in 8 
prediabetic male subjects. The results found that 
the subjects decreased fasting insulin and blood 
pressure, improved insulin sensitivity and β-cell 
responsiveness, and reduced oxidative stress in 
the absence of weight loss, explaining that IF has 
benefits which are independent of weight loss. 
Tay et al151 obtained similar positive results with 
a 12-week dietary intervention of IF 5:2 (fasting 
2 days per week, 600 kcal per day) in 33 subjects 
with obesity and prediabetes. Subjects had reduced 
energy intake, weight loss, less waist circumfer-
ence, and lower HbaA1c. Subjects complied very 
well in both trials. However, there was no signif-
icant decrease in fasting glucose, which may be 
related to the short duration of trials. Additionally, 
these two trials109,151 lack awareness of fluctuations 
without glucose monitoring during IF.

Results of Studies Using the IF Protocols 
in T2DM Patients

Positive outcomes with IF regimens in T2DM 
patients have been documented15,16,152-156. The most 
used IF regime for T2DM is IF 5:2. A 52-week IF 
5:2 trial of 137 patients with both obesity and 
T2DM yielded positive results152. Post-interven-
tion studies153 showed that weight loss reduced 
HbA1c levels and improved fasting glucose and 
lipid levels, which was consistent with the con-
tinuous energy restriction (CER) group. The re-
sults are coherent with the prior trial using IF 
5:2. Both trials152,153, also performed a medication 
effectiveness score (MES), which decreased over 
time indicating that IF would be beneficial for 
T2DM patients in the decrease of the dose of dia-
betes medications. Additionally, subjects showed 
better adherence in the IF group than in the CER 
group152. At the end of the 52-week intervention, 
Carter et al157 conducted a 12-month follow-up 
intervention and found that subjects had a 0.3% 
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increase in HbA1c levels from the preinterven-
tion baseline and a 33% weight recovery from 
pre-intervention baseline, suggesting that sus-
tained intervention and dietary support are need-
ed to maintain positive outcomes. Corley et al154 
conducted a 12-week trial of IF 5:2 (continuous or 
noncontinuous fasting) in 37 patients with T2DM 
and obesity. The results showed a reduction in 
overall energy intake, weight loss, lower levels of 
fasting glucose and HbA1c, and improved quality 
of life in the subjects. Meanwhile, no difference 
in outcomes between continuous or discontinu-
ous fasting is observed. There was a two-fold in-
crease in the risk of hypoglycemic events during 
fasting, but no serious hypoglycemic events oc-
curred. Therefore, IF 5:2 is feasible to comply 
with compliance in patients with T2DM, espe-
cially in patients who are diet-controlled and not 
taking sulfonylureas and insulin.

Additionally, the interventions for IF are var-
ied. Subjects with T2DM who fasted 18-20 hours 
per day for 2 weeks of metformin intervention 
experienced weight loss and reduced fasting and 
postprandial glucose levels155. Postprandial glu-
cose variability, a major marker of glycemic 
control, was also reduced158. Fifty-four patients 
with T2DM underwent a 12-week intervention 
comparing A6 (three large and three small meals 
per day) vs. B2 (breakfast and lunch) regimen 
with the same daily energy restriction in both 
groups. Eating only breakfast and lunch favors 
weight loss, liver fat content, fasting glucose, 
C-peptide, glucagon levels, and oral glucose in-
sulin sensitivity (OGIS). These regimens improve 
insulin sensitivity and β-cell function. Mean-
while, the frequency and timing of eating are 
as important as energy restrictions. After four 
months of the Buchinger diet plan intervention 
(300 kcal per day via liquid intake only, followed 
by gradual reintroduction of solid food), subjects 
showed weight loss, lower HbA1c levels, lower 
blood pressure, and improved quality of life156. 
The results of the 12-week 4:3 IF (1,000 kcal per 
day for 4 consecutive days per week, with the 
remaining 3 days eating ad libitum) were similar 
to the above results, reducing triglyceride levels. 
It is worth noting that none of the above dietary 
interventions reported severe adverse effects.

In conclusion, IF, in any form, leads to signifi-
cant weight loss and reduction in the whole body 
and visceral fat15,16,152-156, and both weight and 
visceral fat gain are associated with an increased 
risk of T2DM159. Since IF intervention, patients 
with T2DM have experienced improvements in 

glycemic parameters and partial reductions in 
medication intake. IF could improve patient mo-
tivation and compliance and reduce medication 
side effects. As no severe hypoglycemic events 
and other adverse events have been reported, IF 
can be considered a relatively safe dietary inter-
vention for T2DM patients.

Safety of Intermittent Fasting

The safety of intermittent fasting has been ques-
tioned. Therefore, we tried to find little evidence 
for the adverse effects of IF regimens. Fasting is 
barely elite with any long-term gastrointestinal 
adverse effects such as abdominal pain, diarrhea, 
nausea, vomiting, or halitosis131. A reduction in 
energy intake was observed without binge eating 
and other eating disorder symptoms. Psychological 
disorders such as depressive mood or manic mood 
are not observed yet160,161. Moreover, there is no 
clear evidence11,145 of clinically meaningful effects 
on thyroid hormones or reproductive hormones.

Common adverse effects of IF are gout, muscle 
wasting, and the risk of hypoglycemia. Prolonged 
fasting inhibits uric acid excretion, which leads to 
a rapid increase in serum uric acid162. IF usually 
leads to a decrease in overall energy intake and a 
deficit in overall protein intake, which may lead 
to muscle atrophy163. However, other studies136-138 
have combined exercise with IF and achieved 
successful FFM maintenance. IF can avoid hy-
poglycemic events in normoglycemic subjects, 
with the main risk being in patients with T2DM. 
Despite the reduced dose of diabetes medications, 
fasting increases the incidence of hypoglycemia. 
Therefore, T2DM patients require close physician 
monitoring during intermittent fasting.

In conclusion, IF is a safe dietary intervention 
option and requires robust coordination with the 
clinician. However, the safety of intermittent 
fasting remains inconclusive attributed to the 
lack of large randomized controlled trials to test 
the long-term efficacy and side effects of IF in 
patients with well-defined conditions such as 
metabolic syndrome or mood disorders.

Clinical Implementation 
Considerations for Patients with T2DM

The clinical implementation of IF in patients 
with T2DM requires appropriate medical man-
agement. Regular glucose monitoring in the 
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fasting state, two hours before and after each 
meal and at bedtime on day 7 is recommended. If 
necessary, anti-diabetic medications are reduced 
according to physician recommendations to avoid 
fasting hypoglycemia, such as sulfonamides and 
insulin139,164. The IF intervention should be suspend-
ed immediately when a severe hypoglycemic event 
occurs. Because of the potential for excessive fluid 
intake (e.g., water and tea) on fasting days, diuretics 
and SGLT-2 medications may need to be reduced or 
discontinued to reduce the risk of dehydration and 
hypotension. The specific medication regimen also 
relies on the clinical experience of the endocrinolo-
gist due to the lack of clinical data. Physicians are 
advised to work individually with patients on a one-
to-one basis 24/7 to minimize the risk of hypogly-
cemia. Patients are also advised not to adjust their 
medications privately without physician advice164.

Conclusions

According to a growing amount of research, IF 
provides a wide variety of health advantages. Nu-
merous studies have shown that the benefits of IF on 
glucose homeostasis in T2DM patients and healthy 
individuals should be further investigated. Almost 
all kinds of IF exhibited a weight-reduction impact 
in all population study participants. And in patients 
with dysglycemia and obesity, IF showed the ability 
and potential to lower fasting insulin, HbA1c concen-
trations, and insulin sensitivity index. The specific 
mechanisms are mainly through metabolic trans-
formation to improve systemic metabolism and in-
duce tissue-specific metabolic adaptations, including 
changes in the gut microbiota, remodeling of adipose 
tissue, correction of circadian rhythm disturbances, 
and increased autophagy in peripheral tissues. IF as a 
nutritional modifier has a few adverse effects mainly 
involving the risk of gout, muscle wasting, and hypo-
glycemia. In conclusion, IF might act as a safe dietary 
therapeutic target. However, it remains unclear which 
diets (ADF, IF 5:2, or TRE) are the best regimen. 
Fortunately, the positive findings so far highlight the 
direction of future research.
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