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Imaging of the muscle and bone
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Abstract. - Studies have begun to show that
muscles and bones play a role in the regula-
tion of biological functions through a combina-
tion of biomechanical and biochemical signals.
In vivo and ex vivo imaging techniques are cru-
cial in the understanding of the morphology and
architecture of muscle and bone for further un-
derstanding of musculoskeletal physiology and
pathophysiology. This systematic review of the
literature summarizes current knowledge and
outlines new insights into the functions of mus-
cle and bone elucidated by imaging techniques,
with a focus on the recent advances in the mus-
culoskeletal system enabled by novel technolo-
gies, such as CLARITY, Fast Free-of-Acrylamide
Clearing Tissue (FACT), computed tomography
(CT), and positron emission tomography (PET).
This may serve as guidance for the development
of new strategies to prevent and diagnose mo-
tor or metabolism disorders related to the mal-
function of muscle and bone.

Key Words:
Imaging, Muscle, Bone, Biomechanics, Basic re-
search.

Introduction

The impairment of muscle and bone function
can be caused by a wide array of pathologies.
These malfunctions can lead to extreme fatigue,
pain, and issues with mobility, greatly impairing
the quality of life'?. Imaging is an essential part
of the diagnosis and management of the majori-

ty of muscle and bone-related diseases; however,
it remains to be determined which is the optimal
imaging method for this application*>.

Traditionally, muscles and bones were
thought of as just biomechanical organs for the
purpose of movement®s. However, as the scien-
tific field has advanced, so has the understanding
that muscle and bone are also endocrine organs
with the ability to regulate biological functions
within their microenvironment’. Furthermore,
muscle-bone interactions are much more diverse
and complex than originally thought, transmit-
ting not only biomechanical signals but bio-
chemical signals as well'*'2.

The recent advances in the understanding of
the complex biology of the musculoskeletal sys-
tem have paved the way for improved ex-vivo and
in-vivo imaging. The Fast Free-of-Acrylamide
Clearing Tissue (FACT)*" and CLARITY"
techniques in ex-vivo imaging have recently been
developed to elucidate three-dimensional skeletal
muscle imaging, portraying a more comprehen-
sive map of cellular interactions between neigh-
boring and distant cells within skeletal muscle.
Advancement of in-vivo imaging approaches,
ranging from dynamic ultrasound imaging (US)
to positron emission tomography (PET) have
brought up novel possibilities of non-invasive
anatomical and physiologic imaging for various
clinical applications.

In this review, we summarize a range of
ex-vivo and in-vivo imaging approaches related
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to muscle and bone with an emphasis on recent
progress made with new technologies, including
three-dimensional imaging, US, magnetic res-
onance imaging (MRI), computed tomography
(CT), and PET. It is our hope that structural imag-
ing of muscles and bones may give novel insights
into the diagnosis, treatment, and prevention of
musculoskeletal diseases.

Methods

A systemic review and analysis of muscle
and bone imaging studies published between
January 1, 1950 and August 1, 2018 was per-
formed using PubMed, Google Scholar, Web of
Science, and Geen Medical database, following
systematic review and meta-analysis guide-
lines'®. The search terms used were bone, skel-
eton, orthopedics, osseous, osteology, muscle,
muscular, skeletal muscle, imaging, two-di-
mensional imaging, three-dimensional imag-
ing, CLARITY, FACT, US, MRI, CT, and PET.
All studies, with no language restrictions and
no species limitations, were included. Basic
science and clinical ex-vivo and in-vivo studies
ranging from randomized trials to retrospec-
tive studies were included (Tables I and II).
Review, systematic review, meta-analyses, and
unpublished doctoral theses were excluded. In-
vestigators independently searched through the
studies, if the eligibility of an article was incon-
sistent among two investigators, it was resolved
by discussion and consensus.

Ex Vivo Imaging of the Muscle
and Bone

Two-dimensional imaging

Two-dimensional imaging is the most common
classical approach for studying the morphology
of muscle'™'® and bone'** by taking thin sections
of tissue and applying conventional staining ap-
proaches (Figure 1A), immunohistochemistry?',
immunofluorescence??, electron microscopy?,
and in situ hybridization?*. Studies applying these
imaging methods have revealed the basic frame-
work of muscle and bone with unbiased stereolog-
ical and robust statistical methods.

Serial sectioning with these two-dimensional
imaging techniques illustrate fine perspectives
of structures within muscle and bone specimens.
However, they do not fully characterize musculo-
skeletal interactions on a system level. Moreover,
immunostaining and in sifu hybridization were
initially developed, and better optimized for soft
tissues, such as the brain, instead of hard tissues,
such as muscle and bone*?°. A major limitation
facing these techniques is the ability to investi-
gate intact muscular and osseous tissue, as well as
their 3D microenvironments.

Three-Dimensional Imaging

Histological analyses at either light or electron
microscopic levels are restricted to two dimen-
sions. With these methods, it is challenging to
reconstruct the exact structures of entire bone or
muscle or investigate relationships among diverse
musculoskeletal structures. With the synchro-

Table I. Ex-vivo muscle and bone imaging methods in basic and clinical studies.

Species Immuno- Immuno- Electron CLARITY In situ
histochemistry fluorescence microscope hybridization
Muscle
Human 472 422 473 _ 474
Mouse 421,75 422 42376 415 477
Rat 478 422 479 _ _
Chicken +80 481 FEY) — g
D 0 g +84 +85 +84 _ _
Sheep 186 _ 487 _ 488
Cattle 484,89 490,91 484,92 _ 493
Bone
Human +94 +9 +9% - +97
1\/1()11,5e +98 +9‘) +100 +31 +‘)8
Rat +101 +102 +103 _ +104
Sheep +105 _ 106 — —

+, it has been applied; -, it has not been applied.
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Table Il. In-vivo muscle and bone imaging methods in basic and clinical studies.

Species us MRI cT ocCT PET

Muscle
Human 4107108 +109 4110 +111 4112-116
Mouse +117 4118 +119 4120 4119
Rat 4121 4122 _ 4123 +124
D()g 4125 +126 4127 _ +128
Sheep +129 +130 4131 4132 _
Plg +129 4133 4134 4135136 437
Cattle 129,138 +139 140,141 4142 _

Bone
Human 4143 +144 145,146 +147 +116
Mouse 4148 +149 450 4151 4152
Rat 4153 4154 4155 +156 4157
DOg 4158 +159 +160 4161 4152
Sheep +]62 _ +l3l +]63 _
Plg +164 4165 4166 +167 4168

+, It has been applied; -, It has not been applied; US, ultrasound; MRI, magnetic resonance imaging; CT, computed tomography;
OCT, optical coherence tomography; PET, positron emission tomography.

tron X-ray microtomography and 3D X-ray mi-
croscopy approach, imaging of musculoskeletal
structures in fixed mouse bone or muscle without
clearing has been done. However, these facilities
are not widely accessible.

Three-dimensional imaging has recently at-
tracted considerable attention due to advantag-
es it can provide with detailed imaging of struc-
tural information of organs??°. The CLARITY
approach, developed by Chung and Deisse-
roth?®, elucidates the 3D cellular connectome
and of intact tissue imaging. Zhang et al® based
on the CLARITY technique has proven this ap-

proach to be successful in the whole muscle
imaging of mice, facilitating connectomics and
structural analyses within muscle vessels and
cells in three-dimensional systems. Around the
same period, Greenbaum et al®' demonstrated
comprehensive visualization of biological pro-
cesses in the entire bone tissues with CLARI-
TY (Figure 1B).

Recently, an exciting new wave of improve-
ments emerged with free-of-acrylamide clearing
tissue (FACT)*, which greatly reduces the whole
clearing time. Most notably, the replacement of
acrylamide hydrogel by formaldehyde largely

A) Hematoxylin eosin staining

B) CLARITY

C)FACT

400 ym

Figure 1. Imaging of ex-vivo muscular tissues. A, Hematoxylin and eosin staining of a muscle section of a rat (100X)%. B,
Three-dimensional imaging of mouse muscle cleared with the passive CLARITY protocol. Blood vessels (red) and neurons
(green and yellow) are labeled®. C, Imaging of skeletal muscle in the mouse after clearing by Fast Free-of-Acrylamide Clearing
Tissue (FACT) technique and labeling with Hoechst 33342 (blue), the red and green are control without labeling'?.
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avoids incomplete tissue hydrogel hybridization
and fine cyst structure destruction in this proto-
col. Compared to other protocols, FACT improves
the speed of clearing, preservation of cytoarchi-
tecture, depth of tissue penetration, long-term
storage of fluorescent signal, and the signal to
noise ratio (Figure 1C).

The near-infrared (NIR) approach allows
the visualization of follicle-stimulating hor-
mone (FSH) receptors by conjugating FSH to a
small molecule weight near-infrared fluorophore
(CH1055). The strong near-infrared signals emit-
ted from the fluorophore conjugated to FSH al-
low for the imaging of bones which express the
FSH receptors®. Because the CH1055 fluoro-
phore has minimal cytotoxicity and a short in
vivo half-life**, further improvements of the NIR
approach and design of a portable NIR probe
may potentially allow for live imaging of bone
and muscle in patients as a diagnostic tool.

In Vivo Imaging of the Muscle and Bone

Ultrasonography

US imaging is a powerful empirical method in
human and animal research to identify muscular
and bone disorders. This technique involves send-
ing and receiving a series of sound-wave pulses
into biological tissues and analyzing acoustic and
temporal properties of echoes for reconstructing
structural imaging of tissues. Muscle thickness*>-*
and soft tissue changes adjacent to bone*®, often
reflected by echo intensity can readily be identified
using this method (Figures 2A and 3A). In addi-
tion, US offers the advantage of dynamic imag-
ing, allowing for real-time visualization of muscle
function and underlying pathologies.

Positron Emission Tomography
PET imaging allows for the observation of
metabolic processes of tissues and organs®*.

a) B-mode ultrasound

rosternior

Figure 2. Different techniques for real-time live imaging of the muscle. A, B-mode contrast-enhanced ultrasonography imag-
ing of muscle microvascular blood volume and femoral vessels in a mouse®. B, Positron emission tomography (PET) imaging
of mouse muscular inflammation model. White boxes indicate inflammatory muscles®. C, Micro-computed tomography (CT)
evaluation of the hind limb muscle mass in mice®’. D, Magnetic resonance imaging (MRI) of leg shows changes in dystrophic
muscle. The leg of the left hind limb outlined in white and a magnified version of the leg muscles; anterior muscle groups (A),
medial muscle groups (M), posterior muscle groups (P), and the tibia bone (T)%. E, Intravital microscopic image of an adult
mouse hind limb blood vessels. Femoral artery (A), epigastric artery (B), gracilis artery (C), and the adductor muscle (D)%.
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Dynamic biological processes mapping at high
resolution in freely behaving patients and animals
can be achieved by the detection of radioactivity
emitted after radiotracer injection”. A wide ar-
ray of radiotracers and clinical applications for
PET imaging of the musculoskeletal system are
under investigation, including the localization of
dystonic muscles*” and assessing for bone marrow
lymphoma®* (Figure 2B).

Computed Tomography

Computed tomography (CT) uses comput-
er-processed incorporations of X-ray measure-
ments to produce sectional images of specific
tissues, including internal organs, soft tissue,
muscle (Figure 2C), and bone (Figure 3B)**-*. CT
allows for rapid anatomical imaging, and in some

instances is the preferred imaging modality of the
musculoskeletal system, such as in the imaging of
acute trauma and post-operatively in the presence
of metallic hardware. Additionally, CT-based im-
aging studies have helped extend previous work
based on MRI in imaging muscle and bone mor-
phological measurements*®4’.

Magnetic Resonance Imaging

Imaging with MRI applies a powerful magnet-
ic field and radio waves to portray detailed imag-
es of the organs and tissues. Enormous advances
have been made in improving this technique, in-
cluding functional magnetic resonance imaging
(fMRI) and real-time fMRI (rtfMRI). An inves-
tigation based on this approach provides reliable
scan diagnosis in musculoskeletal diseases, such

A) B-mode ultrasound

B)CT

_x

Hand bones

Foot bones

Figure 3. Different techniques for real-time live imaging of the bone. A, B-mode ultrasound imaging showing an intact tibia
specimen (arrow) of chicken with the soft tissue left intact and 3D renditions of the chicken tibia®. B, Micro-computed tomog-
raphy (CT) evaluation of lateral view, left, of a mice skull comparing with simple radiology (RX) and conventional computed
tomography (CT)”. C, Magnetic resonance imaging (MRI) of bone with contrast-enhanced (Gd-DTPA) T1-weighted MRI of
arat. The proximal tibia (T) and whole femur (F)”'. D, Near-infrared (NIR) optical imaging of bones using follicle stimulating

hormone-fluorophore CH1055 (FSH-CH) in adult mice®.
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as muscle and tendon injuries*®, degenerative and
inflammatory arthropathies®, and radiologic oc-
cult fractures® (Figures 2D and 3C).

Optical Coherence Tomography

Optical coherence tomography (OCT) is an in
vivo imaging method based on low-coherence inter-
ferometry, typically employing near-infrared light,
used for the evaluation of bones and muscles®.
OCT is based on low-coherence interferometry, typ-
ically employing near-infrared light. The use of rel-
atively long wavelength light allows it to penetrate
into the scattering medium. This approach provides
cross-sectional views of the subsurface microstruc-
ture of biological tissues. To decrease the effect of
tissue motion (breathing or muscle contraction)
during live imaging with OCT, an OCT system with
higher imaging speed has been recommended™, in-
cluding the Fourier domain mode-locking laser™ or
an OCT A-line rate at the MHz level®. The OCT
approach, however, suffers from the generation and
interference of partially coherent optical fields and
from how such fields propagate in biological tissues.
In addition, there are issues related to the design of
practical scanning and detection systems, which
need to be overcomed before OCT will have practi-
cal clinical applications.

Intravital Multiphoton Microscopy

As an experimental tool, intravital multipho-
ton microscopy allows imaging of living tissue up
to about one millimeter in depth (Figures 2E and
3D). This imaging technique was recently used to
monitor the diameter and blood flow of individual
vessels® and has shown utility for the imaging of
the muscular surface. However, this approach is
restricted by the depth of the observable field and
currently has limited clinical application.

Clinical Applications of Ex-Vivo and
In-vivo Muscle and Bone Imaging

Different muscle and bone types harbor spe-
cialized physiological processes that are critical
for modulating biomechanical and endocrine
functions, such as cell proliferation and growth,
blood vessel recruitment, neuronal signals, and
bone remodeling®-°. There is tremendous prog-
ress in clarifying the function and malfunction
of muscle and bone with the aid of contemporary
ex-vivo and in-vivo imaging techniques. Studies
employing these methods have revealed a large
variety of musculoskeletal diseases, including
muscle atrophy®, fatty infiltration®, muscular fi-
brosis®?, and osteoporosis®.

However, imaging the changes in metabolic
processes of the musculoskeletal system and the
interactions between muscle and bone have so far
revealed little information in both basic and clin-
ical research, although these biological process-
es have been suggested via cell and molecular
biology experiments. The development of tools
to simultaneously map real-time live imaging of
special tissues within the musculoskeletal sys-
tem remains a pressing clinical concern, with the
non-invasive in vivo imaging in diagnosing mus-
culoskeletal pathophysiology holding promise for
future clinical applications.

Conclusions

Both basic and clinical studies have led to an
advanced understanding of the structural and
functional basis of muscle and bone underlying
the development of imaging techniques. Recently,
developed ex-vivo and in-vivo tools further boost-
ed the research on understanding the morphology
of muscle and bone with unprecedented precision.
However, more comprehensive physiological and
pathological imaging of the muscle and bone,
with disease-type and disease-stage specificity
of these organs, are needed. Additionally, inves-
tigating the function of the whole musculoskeletal
system and interaction between muscle and bone,
rather than studying the separated organ mor-
phology, provides a novel interesting frontier that
awaits further exploration.
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