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Abstract. – OBJECTIVE: Evidence suggest-
ed that deficiency of autophagy is involved in 
the pathogenesis of diabetic nephropathy (DN). 
However, some recent studies have also shown 
that autophagy is activated in renal cells under 
diabetic conditions. In this review, we discuss 
whether autophagy is inactivated in renal cells 
in DN as well as the therapeutic potential of au-
tophagy for treating DN, in order to aid future in-
vestigation in this field.

MATERIALS AND METHODS: Relevant informa-
tion, original research articles and reviews, were 
gathered primarily through a search in PubMed and 
Cochrane database. The activity and role of auto-
phagy, as well as the relevant signaling pathways, 
were analyzed in different intrinsic renal cells, in-
cluding podocyte, renal tubular epithelial cell, glo-
merular mesangial and endothelial cells.

RESULTS: The upstream of autophagic path-
way, but not whole pathway, was predominate-
ly studied in these intrinsic renal cells, such as 
the induction of autophagy, an amount of auto-
phagic vacuoles and so on. In most cases, au-
tophagic inactivation occurred, which is an im-
portant mechanism underlying DN progression. 
Targeting the autophagic pathway to activate au-
tophagy activity might have renoprotective ef-
fect. However, autophagic activation was also 
found in a few studies, in which there was a de-
bate on the role of activated autophagy: mount-
ing an adaptive response or leading to auto-
phagic apoptosis. 

CONCLUSIONS: The downstream of auto-
phagic pathway, including the degradation of 
autophagic vacuoles, and lysosomal function, 
should be well studied to clarify the activity and 
role of autophagy in the progression of DN. Au-
tophagy activation is likely a potential therapy 
for combatting DN. Diabetic nephropathy (DN) 
is a key chronic complication of diabetes melli-
tus and is the main cause of death and disability 

in diabetic patients. Multiple therapeutic meth-
ods have failed to fully prevent the progression 
of DN. With the increasing prevalence of diabe-
tes, the demand for a new therapeutic target to 
prevent DN has become increasingly urgent. Au-
tophagy is a catabolic process that degrades 
damaged proteins and organelles and recycles 
macromolecules, thereby playing a critical role 
in the maintenance of cellular homeostasis. Au-
tophagy has become a hot topic in the field of 
kidney disease and research as, until recently, 
the evidence suggested that deficiency of au-
tophagy is involved in the pathogenesis of DN 
and that targeting the autophagic pathway to ac-
tivate autophagy activity may have a renoprotec-
tive effect. Indeed, the majority of studies show 
that autophagic activity is suppressed under di-
abetic conditions. However, some recent stud-
ies have also shown that autophagy is activated 
in renal cells under diabetic conditions.

In this review, we discuss whether autopha-
gy is inactivated in renal cells in DN as well as 
the therapeutic potential of autophagy for treat-
ing DN, in order to aid future investigation in 
this field.
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Introduction

With the increasing incidence of diabetes mellitus 
(DM), the prevalence of diabetic nephropathy (DN) 
continues to rise worldwide. DN is a serious compli-
cation of DM and is a leading cause of endstage re-
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nal disease (ESRD) on a global level1. The number of 
diabetes worldwide is up to 347 million2, and about 
25% to 40% of diabetics will develop diabetic ne-
phropathy (DN)3. Current therapies for DN include 
controlling blood pressure and blood glucose levels 
as well as inhibiting the renin angiotensin system 
(RAS) in order to reduce or abrogate proteinuria4-6. 
While these strategies have some effect with regard 
to managing DN, results are far from satisfactory 
and many patients experience a progressive decline 
in kidney function leading to ESRD. Thus, the iden-
tification of new and effective therapeutic targets is a 
top priority for the prevention and control of ESRD. 
Recent studies have focused on autophagy as it plays 
a role in the stress-responsive machinery, the distur-
bance of which is involved in the pathogenesis of 
age- and diabetes-related diseases7,8. Autophagy is 
involved in catabolic processes and plays a key role 
in the degradation of damaged intracellular proteins 
and organelles in order to maintain intracellular 
homeostasis and cell integrity9 in both normal and 
diseased states; including immunity, inflammation, 
adaptation to stress10, development and aging, met-
abolic and neurodegenerative disorders11, and can-
cer12-14. Increasing evidence implies that autophagy 
activity is altered in certain organs under conditions 
of obesity15-18 and the functional role of autophagy in 
the kidney has gradually begun to be identified. It 
has been reported that autophagy may play a reno-
protective role in various animal models, including 
those used to study aging and acute kidney inju-
ry19-23. In recent years, autophagy has become a hot 
topic in the field of kidney disease, suggesting that 
it is likely to be a key target for the prevention and 
treatment of DN, although the activity of autophagy 
in the renal cells and changes in the autophagy-ly-
sosomal system during DN is still under debate. 
Therefore, in this review we discuss the relationship 
between autophagy activity and DN.

Autophagy
It is well known that cells initiate “self-eating” in 

order to degrade damaged proteins and organelles, 
as well as to recycle intracellular energy resources 
for the maintenance of cellular homeostasis under 
stressful conditions (such as nutrient starvation and 
hypoxia). The most important mechanism in this 
process is autophagy and three major types have 
been identified: macroautophagy, microautophagy, 
and chaperone-mediated autophagy. In this review, 
macroautophagy is referred to as autophagy as it 
occurs widely across the cellular degradation/recy-
cling system. As illustrated by Klionsky et al24, au-
tophagy is a dynamic process with multiple links. 

Autophagy is initiated by the unc-51-like kinase 
(Ulk) 1 complex (the mammalian ortholog of yeast 
Atg1), which comprises the Ulk1 Ser/Thr protein 
kinase, Atg13, and FIP200 (mammalian homolog 
of yeast Atg17). Ulk1-derived phosphorylation of 
Atg13 and FIP200 is essential for triggering autoph-
agy. Phagophore nucleation is dependent on beclin 
1 (Atg6 in yeast), an hVps34 or class III phosphati-
dylinositol 3-kinase complex consisting of hVps34, 
hVps15, beclin 1, and Atg1425-29. The formation of 
the phagophore, also known as the isolation mem-
brane, occurs around cytoplasmic components 
to be sequestered by double-membrane autopha-
gosomes forming at the endoplasmic reticulum 
(ER)-mitochondria contact site in mammalian 
cells30. LC3-II formation is recognized as a marker 
for autophagosomes in both cellular and animal ex-
periments24,31,32. After formation, autophagosomes 
fuse with lysosomes to form autolysosomes. The 
protein p62, also known as sequestosome 1, local-
izes to autophagosomes via LC3 interaction and is 
constantly degraded by the autophagy-lysosome 
system. Indeed, accumulation of p62 is observed in 
autophagy deficient cells33,34. All of these processes 
form an integrated autophagy-lysosome pathway 
and each link may affect autophagy flux and activ-
ity should anything go awry, given the complexity 
of the process (Figure 1). Indeed, complications in 
the execution of this process have been linked to 
numerous pathological conditions, including neu-
rodegeneration, aging, and cancer7,35-37.

Autophagy Activity in Kidney Cells
Given the prevalence of DN, the relationship 

between this condition and autophagy has recei-
ved much attention in recent years. Investigators 
initially conducted preliminary research to study 
changes to the autophagy pathway during DN 
and found that p62/Sequestosome 1 (SQSTM1), a 
substrate of the autophagy-lysosomal degradation 
pathway, was significantly increased in the renal 
tissue of animals with DN38. Furthermore, Atg5, 
Atg8, beclin 1 and LC3 mRNA level were found 
to be dramatically reduced in the renal tissue of 
DN patients in a study with a small sample size39, 
suggesting that autophagy activity declines in cer-
tain renal inherent cells and that DN plays a role 
in inhibiting autophagy induction. However, iden-
tification of the type of cells involved in this de-
cline of autophagy activity remains controversial.

Podocytes
Under normal physiological conditions, po-

docytes exhibit high basal levels of autopha-
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gy (much higher than that of other renal cel-
ls), indicating a key role for autophagy in the 
maintenance of podocyte homeostasis under 
non-stressful conditions40, leading to additio-
nal studies on podocytes autophagy. Certain 
reports have found that autophagic activity in 
podocytes under streptozotocin (STZ) -induced 
type 1 diabetic or high glucose conditions de-
creases with reduced levels of autophagyrelated 
protein expression, including beclin-1, LC3- II 
and the Atg5–Atg12 complex15,41-45, and that de-
fective autophagy may be restored by HDAC4 
knockdown43, rapamycin44,45, and taurine-conju-
gated derivatives (TUDCA)41. In addition, Li 
and Siragy46 showed deficient autophagy in 
podocytes with LC3II decline and accumula-

tion of p62. These results suggest that hyper-
glycaemia reduces autophagic activity in po-
docytes. However, increased expression of the 
autophagy-related protein LC3-II, beclin-1, and 
autophagosomes in podocytes during high glu-
cose treatment has also been reported47,48, which 
is indicative of high glucosepromoted autopha-
gy in podocytes (Figure 2). Similar results on 
primary podocytes and podocyte cell lines have 
been shown by the Lenoir et al49 and Dong et 
al50. Wei et al48 further showed that high glucose 
promotes autophagy in podocytes with accumu-
lation of autophagosomes and that this effect is 
further enhanced by bafilomycin A1, a specific 
inhibitor of vacuolar-type H (1)-ATPase that 
inhibits acidification and protein degradation 

Figure 1. Schematic diagram of autophagy pathway.
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in the lysosomes of cultured cells. However, 
the effect may be inhibited by 3-methyadenine, 
proving that enhanced autophagy results from 
augmentation of autophagic flux and not from 
prohibition of autophagosome-lysosome fusion. 
Renal Tubular Epithelial Cells

In contrast to that observed in podocytes, 
tubular epithelial cells (TECs) under basal con-
ditions show a low level of autophagy. The in-
creased p62 in the proximal and distal tubular 
cells of both types 1 and 2 diabetic animals has 
previously been shown in several assays38,51,52. 
Also, accumulation of p62 protein and hype-
ractivation of mTORC1 have been observed in 
proximal tubular cells under diabetic conditions 
and from patients with type 2 DM, indicating 

a deficiency in autophagy53. Furthermore, LC3-
II expression is significantly reduced in tubules 
under STZ-induced type 1 diabetic conditions or 
high glucose treatment. Indeed, not just reduced 
autophagy but increased mitochondrial frag-
mentation under high glucose conditions has 
been observed in tubular cells in both in vitro 
and in vivo studies54, suggesting that impairment 
of the autophagy system induces mitochondrial 
damage. Similar to the results observed in the 
afore-mentioned studies, our recent investi-
gation showed that both LC3-II and p62 were 
significantly enhanced after exposure of HK-2 
cells to advanced glycation end products due to 
lysosomal membrane permeabilization (LMP) 
and lysosomal dysfunction55, suggesting that the 

Figure 2. Overview of autophagic activity and role in renal inherent cells under diabetic conditions. Autophagy inactivation 
was reported in most of the studies by assessing autophagic induction and autophagy substrate. However, autophagy activation 
was also implicated in a few investigations, as evidenced by an up-regulation of beclin 1 and an accumulation of autophogo-
somes under diabetic condition.
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accumulation of autophagosomes resulted from 
the decreased lysosomal degradation in renal 
tubules56. Both hyperactivation of the mTOR 
pathway and inhibition of the AMPK pathway 
play an important role in autophagy deficiency 
in DN57. Sirt1, an important autophagy-activa-
ting regulator via directly deacetylating Atg5, 
Atg7, Atg8 and FoxO3, is also down-regula-
ted in DN58-60. In contrast, levels of LC3-II, 
autophagosomes and beclin1 in HK-2 cells as 
well as the kidneys of diabetic rats have been 
shown to be significantly up-regulated, leading 
the author of that particular study to conclude 
that high glucose conditions may activate the 
autophagy pathway61 (Figure 2). However, it is 
well known that an accumulation of autophago-
somes does not definitively indicate autophagy 
induction and may represent inhibited matura-
tion of autolysosomes. The downstream of au-
tophagic pathway should therefore be studied in 
order to validate these results.

Glomerular Mesangial Cells
Relatively speaking, autophagy activity in me-

sangial cells is the most controversial of all the in-
trinsic renal cell types. Several studies have shown 
that high glucose conditions inhibit rat mesangial 
cel l autophagy by upregulat ing p62/SQSTMI and 
downregulating LC3 expression at 24 h62 and 72 
h63,64, and that insufficient autophagy can be attenua-
ted with the use of ursolic acid62 and rapamycin64. 
It has been reported that TIMP3 (a type of tissue 
inhibitor) expression is reduced in the renal cells of 
both STZ-induced diabetic mice and patients with 
DN, and that TIMP3 knockdown mesangial cells 
showed decreased expression of the autophagy ge-
nes Atg5, Atg8, Lc3a and beclin as well as Foxo1 
and FoxO3 expression, suggesting that TIMP3 de-
ficiency under diabetic conditions could suppress 
autophagy39. These results indicate that DN inhibits 
the mesangial cells autophagy pathway. However, 
other studies have reported that the expression of 
LC3-II is significantly increased in sections of dia-
betic kidneys or mesangial cells treated with high 
glucose and that mesangial cell autophagy is in fact 
activated under diabetic conditions65 (Figure 2). 
Glomerular Endothelial Cells While glomerular 
endothelial dysfunction is an important characteri-
stic of DN, few studies have previously investiga-
ted the role of autophagy in glomerular endothelial 
cells under diabetic conditions. It has been repor-
ted that high glucose decreases the expression of 
Atg5, Atg7, Atg3 and consequently the LC3B/A 
ratio, thus inhibiting autophagy induction66. The 

most commonly reported component of glomerular 
endothelial cell autophagy is bone morphogenetic 
protein and activin receptor membrane-bound inhi-
bitor (BAMBI), the expression of which is suppres-
sed in both human and murine models of DN67. As 
BAMBI is degraded by autophagosomal and au-
tolysosomal processes68, an excessive degradation 
of BAMBI may result from autophagy activation in 
DN (Figure 2).

 

Conclusions 

When considering the afore-mentioned studies, it 
is clear that in most cases, autophagy is inactivated 
in DN. The body of evidence shows that impaired 
autophagy is involved in the pathogenesis of DN, 
suggesting that autophagy activation could be a po-
tential therapy for combatting DN. However, activa-
tion of autophagy has also been reported. The root 
cause of this dispute must be clarified. While the un-
derlying causes may vary, observing only the chan-
ges in Atg, LC3-II and beclin 1 is not sufficient for 
the evaluation of autophagy activity, as accumula-
tion of autophagosomes and induction of autophagy 
does not fully represent activation of the autophagy 
pathway. As we know, both increased induction and 
inhibited degradation of autophagy could lead to an 
increase in autophagic vacuoles. Therefore, in or-
der to better evaluate autophagic activity, improved 
assessment of the degradation process is required; 
including determining the efficiency of autophago-
some fusion to lysosomes, the activity of lysosomal 
enzymes, and whether or not autophagic vacuoles 
can be digested and the protein effectively degra-
ded. As the blocked autophagy pathway caused by 
lysosome dysfunction plays an important role in the 
pathogenesis of various diseases, including those re-
lated to the nervous system, the relationship between 
the autophagy-lysosome pathway and DN requires 
further exploration. In addition, whether autophagy 
activation is a safe therapy for DN, and the specific 
role it plays, must be defined.
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