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Abstract. – AIM: To investigate the underly-
ing molecular mechanisms of renal cell carcino-
ma (RCC) by using the microarray expression
profiles of normal kidney and RCC tissue for ear-
ly diagnosis and treatment of RCC.

MATERIALS AND METHODS: The gene ex-
pression profile of GES781 was downloaded from
Gene Expression Omnibus database, including
including nine tissue samples of RCC tissues re-
moved from nine patients and eight adjacent nor-
mal renal tissue samples. We identified the differ-
entially expressed genes (DEGs) by Multtest
package in R software. The screened DEGs were
further analyzed by bioinformatics methods. First-
ly, the comparison of the DEGs expression de-
gree was performed by cluster analysis. Secondly,
DAVID was used to perform functional analysis of
up- and down- regulated genes and the protein-
protein interaction (PPI) networks were construct-
ed by prePPI. Finally, the pathways of genes in
PPI networks were discovered by WebGestalt.

RESULTS: Compared with the control, we
screened 648 down-regulated and 681 up-regu-
lated DEGs. And the down- and up-regulated
DEGs with maximum expression degree were
UMOD (uromodulin) and FABP7 (fatty acid bind-
ing protein 7), respectively. There was significant
difference in the gene expression between the
normal kidney and RCC tissue. The up-regulated
DEGs in RCC tissue were significantly related to
the immune responses and the down-regulated
DEGs were significantly related to the oxidation
reduction. The most significant pathway in the
PPI network of UMOD was cytokine-cytokine re-
ceptor interaction.

CONCLUSIONS: The screened DEGs have the
potential to become candidate target molecules
to monitor, diagnose and treat the RCC, and
might be beneficial for the early diagnosis and
medication control of RCC.
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Introduction

Renal cell carcinoma (RCC) is a common ma-
lignant tumor of the highest mortality rate in the
genitourinary cancers and the incidence of RCC
has been steadily rising by 2-4% each year1,2.
Since the biological behavior of RCC is various
and the molecular pathogenesis of RCC remains
unclear, patients are picked up with advanced
stages3. Therefore, discovery of the underlying
molecular mechanisms of RCC is urgently need-
ed and would contribute to improving early diag-
nosis and patient therapy.

Many genes and signaling pathways are in-
volved in RCC development4. Two loci on chro-
mosome 11 including WT1 (Wilms’ tumor 1, lo-
cated at 11p13) gene and WT2 (Wilms’ tumor 2,
located at 11p15) gene have been implicated in the
genesis of a minority of Wilms tumors. An abnor-
mal WT1 gene is present in patients with WAGR
syndrome (Wilms tumor, aniridia, genitourinary
abnormalities, mental retardation) or Drash syn-
drome (male pseudohermaphroditism, progressive
glomerulonephritis); an abnormal WT2 gene is
present in patients with Beckwith-Wiedemann
syndrome or hemihypertrophy5-7. Several studies
have revealed altered expression of epidermal
growth factor receptor (EGFR)-family members in
RCC8,9. And it has been reported that CXCR2
(chemokine receptors 2)/CXCR2 ligand biology is
an important component of RCC tumor-associated
angiogenesis and tumorigenesis10. What s more,
Petrella et al11 reported that IL (interleukin)-12 in-
duced tumor cell invasion of RCC cells through a
process that was dependent on the activity of ma-
trix metalloproteinases and was independent of
migration rate. Fatty acid-binding proteins (FABP)
are involved in the intracellular transport of fatty
acids, and the level of brain-type FABP was over
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expressed and the liver-type FABP appeared to be
reduced in RCC, which are important in cell sig-
naling, regulation of gene expression, cell growth,
and differentiation12,13. Furthermore, bone mor-
phogenetic proteins (BMPs) are cytokines which
are important for kidney homeostasis and play im-
portant roles in the RCC. Markic et al14,15 found
that the expression of BMP2, BMP4, BMP6,
BMP7, BMPRIA, BMPRIB and BMPRII have
stronger expression levels in RCC, especially the
expression level of BMP2. Though an increasing
number of molecular changes have been identified
in RCC, the molecular mechanisms of RCC aren’t
fully understood.

Since DNA microarray analysis is an estab-
lished technique to simultaneously compare gene
expression patterns between different conditions,
it is one approach to identifying key molecular
events and pathways involved in RCC16,17. In this
study, we downloaded the gene expression pro-
files of RCC tissues and patient-matched normal
kidney tissues. The differentially expressed genes
(DEGs) in RCC tissue were selected by using the
expression profiling of normal kidney tissue and
RCC tissue. In addition, the screened DEGs were
further analyzed by bioinformatics methods. We
anticipate that our work could improve the under-
standing to the underlying molecular mecha-
nisms of RCC and could provide novel insights
for the early diagnosis and medication control of
RCC.

Materials and Methods

Samples
The transcription profile of GSE78116 was

downloaded from Gene Expression Omnibus
(GEO, http://www.ncbi.nlm.nih.gov/geo/) which
was based on the Affymetrix Human Genome
U133A Array. Total seventeen kidney tissue
specimens were available for further analysis, in-
cluding nine tissue samples of RCC tissues re-
moved from nine patients during radial nephrec-
tomy as well as eight adjacent normal renal tis-
sue present in the same surgical samples. The an-
notation information of all probe sets was provid-
ed by Affymetrix Company where we down-
loaded the raw data files.

Data Preprocessing and Differential
Expression Analysis

Data preprocessing and normalization were
performed using the Support Vector Regression18.

Firstly, the probe-level data in CEL files were
converted into expression measures. We used
scoring methods to select a single representative
probe set for each gene, thus creating a simple
one-to-one mapping between gene and probe
set19. Then, the missing parts of data were imput-
ed20 and the complete data were standardized
with Support Vector Regression21. The Multtest
package in R software22 was used to identify
DEGs in RCC tissue. In order to circumvent the
multi-test problem which might induce too much
false positive results, the Benjamini-Hochberg
(BH) procedure23 was used to adjust the raw p-
values into false discovery rate (FDR). The FDR
< 0.05 and |logFC| > 1 were used as the cut-off
criteria.

Comparison of the Gene Expression
Between the Normal Kidney and
RCC Tissue

The gene expression levels of the same tissue
were significantly different in various disease
states because of the specificity of gene expres-
sion in the same species under different condi-
tions. The expression values of DEGs screened
from RCC tissue were hierarchically clustered by
Cluster24 to intuitively observe the differences in
gene expression levels between the normal kid-
ney tissue and RCC tissue.

Functional Enrichment Analysis of DEGs
Based on the deficiency of individual gene

analysis, the gene set enrichment analysis could
evaluate differential expression patterns of gene
groups instead of those of individual genes to
distinguish whether the biological functions and
characteristics changed25. The p value indicated
the probability that a gene was endowed a Gene
Ontology (GO) function randomly and it was
usually used as the criterion for assigning a cer-
tain function to a module. The smaller the p val-
ue was, the more likely to prove that function of
the module was not occurred randomly but for
the purpose to accomplish a certain biological
function, and it has unparalleled biological sig-
nificance26. DAVID (Database for Annotation,
Visualization and Integrated Discovery) bioinfor-
matics resources consists of an integrated biolog-
ical knowledgebase and analytic tools aimed at
systematically extracting biological meaning
from large gene or protein lists27. The functional
enrichment analysis for the screened DEGs was
performed by DAVID and the FDR < 0.05 was
chosen as the cut-off criterion.
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Figure 1. The box-plot of standardized expression data of normal kidney and RCC tissue (the medians of the samples were
almost on the second dotted line, which indicated that the degree of standardization was very well).

Results

Identification of DEGs
The standardized expression profiling data af-

ter preprocessing were shown in Figure 1. For
dataset GSE781, a total of 1329 DEGs were
identified at the criteria of FDR < 0.05 and
|logFC|>1, including 648 down-regulated genes
and 681 up-regulated genes. The top ten down-
regulated DEGs and up-regulated DEGs were
listed in Table I. And the down- and up-regulated
DEGs with maximum expression degree were
UMOD (uromodulin) and FABP7 (fatty acid
binding protein 7), respectively.

Comparison of the Gene Expression
Between the Normal Kidney and
RCC Tissue

The expression values of DEGs screened from
the RCC tissue were hierarchically clustered by
Cluster, and the differences in gene expression
between the normal kidney and RCC tissue were
intuitively observed. The color contrast indicated
that there was significant difference in the gene
expression between the normal kidney and RCC
tissue (Figure 2).

Functional Enrichment Analysis of DEGs
The functional enrichment analysis of all

DEGs was performed by DAVID and the FDR <
0.05 was chosen as the cut-off criterion. The up-
regulated DEGs in RCC tissue were significantly

Protein-Protein Interaction (PPI)
Network Construction

The protein-protein interactions (PPIs) re-
search could reveal the functions of proteins at
the molecular level and help discover the rules of
cellular activities including growth, development,
metabolism, differentiation and apoptosis28. The
identification of protein interactions in a
genome-wide scale is an important step for the
interpretation of the cellular control mecha-
nisms29. In this analysis, we screened the up- and
down-regulated DEGs with the maximal expres-
sion levels and constructed the PPI networks by
prePPI30.

PrePPI is a prediction method of genome-wide
protein interaction based on the three-dimension-
al information. This method based on the three-
dimensional structures of proteins and could pro-
vide accurately predictive information with high
coverage. The accuracy and covering rate of
prePPI are vastly superior to the method based
on non-structure information, due to the use of
homology model and combination of the geomet-
rical relationship31.

Pathway Enrichment Analysis
The pathway enrichment analysis of genes in

the constructed PPI networks where the up- and
down-regulated DEGs with maximal expression
levels located was performed by using We-
bGestalt32,33. The FDR < 0.05 was selected as the
cut-off criterion.
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Top ten down-regulated DEGs Top ten up-regulated DEGs

ID Gene logFC FDR ID Gene logFC FDR

206716_at UMOD -8.34201 3.98E-08 205029_s_at FABP7 6.934455 0.000348
206054_at KNG1 -7.20445 3.98E-08 218484_at NDUFA4L2 6.594476 2.4E-07
204704_s_at ALDOB -7.01503 7.33E-05 213479_at NPTX2 4.971608 0.000188
206024_at HPD -7.0068 4.07E-06 206025_s_at TNFAIP6 4.696365 2.95E-06
205244_s_at SLC13A3 -6.77881 9.2E-07 216834_at RGS1 4.652913 4.49E-05
220281_at SLC12A1 -6.3331 1.35E-05 221870_at EHD2 4.60127 9.2E-07
221298_s_at SLC22A8 -6.33018 3.91E-06 204416_x_at APOC1 4.535479 4.7E-06
219554_at RHCG -6.24629 3.98E-08 201313_at ENO2 4.476422 1.35E-05
205892_s_at FABP1 -6.22295 8.47E-05 213915_at NKG7 4.395586 3.63E-06
209977_at PLG -6.20962 9.35E-05 221009_s_at ANGPTL4 4.392976 1.78E-06

Table I. The top ten down-regulated DEGs and up-regulated DEGs.

Figure 2. The differences in expression values of DEGs between the normal kidney and RCC tissue..

works were constructed. According to the
three-dimensional structure information of pro-
teins included in prePPI software, we found
207 and 44 interaction partners for UMOD
gene and FABP7 gene respectively (Figure 3).
The IL-8 and IGFBP7 (Insulin-like growth fac-
tor binding protein 7) were involved in the PPI
network of FABP7.

related to the immune responses and the down-
regulated DEGs were significantly related to the
oxidation reduction (Table II).

PPI Network Construction
The interactive objects of the UMOD gene and

FABP7 gene were searched by prePPI software
published in Nature in 2012, and the PPI net-
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Term Count FDR

Up-regulated genes GO:0006955~immune response 105 5.81E-29
GO:0006952~defense response 75 6.38E-14
GO:0045321~leukocyte activation 42 1.56E-11
GO:0002684~positive regulation of immune system process 40 2.21E-10
GO:0046649~lymphocyte activation 34 1.27E-08
GO:0009611~response to wounding 58 4.96E-08
GO:0048584~positive regulation of response to stimulus 33 5.34E-06
GO:0006954~inflammatory response 39 1.22E-05
GO:0001568~blood vessel development 32 4.98E-05
GO:0001944~vasculature development 32 8.82E-05
GO:0002520~immune system development 33 2.37E-04

Down-regulated genes GO:0009725~response to hormone stimulus 35 0.005852
GO:0016054~organic acid catabolic process 37 1.72E-20
GO:0046395~carboxylic acid catabolic process 37 1.72E-20
GO:0006732~coenzyme metabolic process 37 2.50E-15
GO:0044271~nitrogen compound biosynthetic process 37 3.61E-05
GO:0051186~cofactor metabolic process 40 3.66E-14
GO:0048878~chemical homeostasis 43 0.009707
GO:0006812~cation transport 47 0.002305
GO:0055085~transmembrane transport 48 0.002161
GO:0006091~generation of precursor metabolites and energy 49 7.88E-13
GO:0010033~response to organic substance 56 0.003157
GO:0006811~ion transport 68 9.90E-07
GO:0055114~oxidation reduction 108 3.88E-36

Table II. The functional enrichment analysis for the identified up- and down-regulated DEGs.

tively. Furthermore, the screened DEGs in RCC
tissue are closely related with immune responses,
hormone responses and cytokine-cytokine recep-
tors.

The FABP7 is a member of fatty acid binding
protein family and FABPs play roles in fatty acid
uptake, transport, and metabolism34. Several
types of carcinomas, including RCC, overexpress
FABP735. Domoto et al36 found that S100A10,
annexin II and FABP7 performed well as RCC
markers and FABP7 was the most specific to
RCC. Furthermore, we found IL-8 and IGFBP7
were involved in the PPI network of FABP7. It
has been reported that IGFBP7 is a potential
transcription factor with a variable distribution
along the renal tubular epithelium and it could be
involved in the regulation of cell growth and dif-
ferentiation37,38. Koo et al39 revealed that the IL8
gene is maximally hypomethylated in RCC tissue
compared to normal tissue. Therefore, our results
were consistent with the previous reports.

The UMOD gene is exclusively transcribed in
the kidney and encodes Tamm Horsfall protein
(THP), also known as uromodulin40. Recent
genome-wide association studies41 have identified
common variants in the UMOD region associated
with kidney function and chronic kidney disease.
In this study, we found that the most significant
pathway in the PPI network of UMOD was

Pathway Enrichment Analysis
The pathway enrichment analysis for genes in

the PPI networks was analyzed by using We-
bGestalt. Two significant pathways in the PPI
network of UMOD gene were obtained (Table
III). The most significant pathway was hsa04060:
cytokine-cytokine receptor interaction (FDR =2
.20E-11). The IL2RA, TNFRSF4, CXCL1, CX-
CL9, CXCR2, BMP2, BMPR2, BMP7 and IL-8
genes participated in this pathway were interact-
ed with the UMOD gene. The second most im-
portant pathway was TGF-beta signaling path-
way (FDR = 5.26E-05). And the BMP4, BMP2,
ABMPR2, TGFB3, BMP7 and BMP6 were par-
ticipated in this pathway. No significant pathway
in the PPI network of FABP7 gene was discov-
ered because of low number of genes related to
FABP7.

Discussion

In this study, we investigated the underlying
molecular mechanism of RCC by using bioinfor-
matics methods. Total 1329 DEGs were identi-
fied by the gene expression profiles of normal
kidney tissue and RCC tissue. The down- and up-
regulated DEGs with maximum expression de-
gree were UMOD gene and FABP7 gene, respec-
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Figure 3. The constructed protein-protein interaction networks of UMOD gene (A) and FABP7 gene (B).

Term Count FDR Genes

hsa04060: Cytokine-cytokine receptor interaction 26 2.20E-11 CXCL1, ACVRL1, OSMR, BMPR2,
TGFB3, CXCL9, CNTFR, CXCR2,
CCL5, TNFRSF4, TGFB2, CSF3R,
EGF, LTA, BMP2, FLT1, IL2RA, IL8,
FLT3, TGFBR1, CCR9, INHBB,
CCR6, TNFSF11, CCR3, BMP7

hsa04350: TGF-beta signaling pathway 12 5.26E-05 INHBB, BMP4, NOG, BMP2,
ACVRL1, ACVRL1, TGFBR1, BMPR2,
TGFB3, BMP7, THBS1, BMP6, TGFB2

Table III. The most significant pathways enriched in the PPI network of UMOD gene.
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hsa04060: cytokine-cytokine receptor interaction.
And the IL2RA, TNFRSF4, CXCL1, CXCR2 and
IL-8 were participated in this pathway. Liu et al42

found that the elimination of THP expression from
mouse kidneys caused a marked elevation of cir-
culating IFN-γ, IL1α, TNF-α, IL6, CXCL1, and
IL13. Several immune response and inflammatory
genes were found to be up-regulated in RCC, in-
cluding IL2RA, IL2RB, IL7R, IL10RB as well as
tumour necrosis factor family genes TNFAIP3,
TNFAIP6, TNFAIP8, TNFRSF4 by Magdalena et
al43. And the BMP4, BMP2, ABMPR2, TGFB3,
BMP7 and BMP6 were participated the second
most important pathway: TGF-beta signaling.
Wang et al44 found that BMP-2 could inhibit the
growth of RCC as well as cause induction of os-
seous bone formation.

Conclusions

As expected, the screened DEGs have the poten-
tial to become candidate target molecules to moni-
tor, diagnose and treat the RCC. And we anticipate
that our work could contribute to understanding the
molecular mechanisms of RCC. Since our study
was designed to identify genes that are differential-
ly regulated in RCC, we did not analyze enough
samples of different tumor grades. Therefore, the
molecular mechanism and target therapy of RCC
need to be further explored and researched. Fur-
thermore, the results of our study need to be con-
firmed by experimental research.
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