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Abstract. — OBJECTIVES: To identify key
genes and novel potential therapeutic targets
for contused spin cord injury through analyzing
microarray data.

MATERIALS AND METHODS: Gene expres-
sion data set GSE2599 was downloaded from
Gene Expression Omnibus, including 3 rat spinal
cord injury (SCI) samples and 3 healthy controls.
Data pre-treatment and differential analyses were
performed with packages of R. Cluster analysis
was done with gene expression values to global-
ly present the difference between the two states.
Functional enrichment analysis was performed
for all the DEGs with DAVID tools. The most up-
and down-regulated genes were picked out and
their interactors were predicted with String. Path-
way enrichment analysis was done with
GENECODIS for all the genes in the network.

RESULTS: A total of 227 DEGs were screened
out, 132 up-regulated genes and 145 down-regu-
lated genes. Response to wounding, response to
organic substance and defense response was
the top 3 significant functional terms. APOBEC1
was the most up-regulated gene while HPD was
the most down-regulated one. Their interactors
were obtained and network was constructed.
Pathway enrichment analysis revealed that tyro-
sine metabolism and other metabolism-related
pathways were significantly over-represented.

CONCLUSIONS: A range of DEGs were re-
vealed in present study, which could deepen
the understandings about the mechanisms of
SCI and guide future researches on treatment
development.
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and Genomes; SwissProt: Swiss Protein Data-
base; APOBECI1 = Apolipoprotein B mRNA
editing enzyme, catalytic polypeptide 1; A2M =
Alpha-2-macroglobulin; HPD = 4-hydrox-
yphenylpyruvate dioxygenase.

Introduction

Spinal cord injury (SCI) is a severe trauma in
central nervous system, which usually results in
loss of feeling and motor function. Common SCI
comes from traumatic spinal fracture or fracture
dislocation, but tumors, vascular lesions of the
spine, spinal inflammation can also contribute to
it!. Tt presents poor prognosis and high morbidity
and, thus, becomes the focus and difficulty in
medical research. In order to study its pathogene-
sis, pathological changes and treatment mea-
sures, people develop animal models with good
clinical relevance, repeatability, standardized op-
eration, i.e. rat model*>.

Many studies have been carried out to elucidate
the underlying mechanisms. Neuronal and glial
apoptosis after traumatic SCI has been found to
contribute to the neurological dysfunction*?. Up-
regulation of pro-inflammatory cytokines like IL-
Ibeta, TNF-alpha and IL-6 are also observed,
suggesting a role of inflammation in SCI®. At the
same time, people have been trying to develop
treatment methods, which bring hopes to patients
with this disease’. Implantation of autologous
Schwann cells into sites of spinal cord injury to
support and guide axonal growth is a preferred
choice®. Neurotrophic factors can benefit axonal
growth’?. Moreover, other types of cells are also
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taken into consideration. Ankeny et al'® suggest
marrow stromal cells as a potential SCI repair
strategy. Biernaskie et al'! report that skin-derived
precursors generate myelinating Schwann cells
which promote remyelination and functional re-
covery after contusion spinal cord injury.

Nevertheless, more studies are needed to
deepen the knowledge about the molecular
mechanisms, from which gene therapy may be
developed'. Microarray technology is a power-
ful tool to explore the global changes in the in-
cidence and development of cancer!®. There-
fore, in present study, gene expression profiles
for rat SCI samples were compared with
healthy controls to screen out differentially ex-
pressed genes (DEGs), which might play im-
portant roles in development of SCI. Then
bioinformatic tools, like functional enrichment
analysis and network analysis, were adopted to
further disclose key genes, which held potential
for treatment of SCI.

Materials and Methods

Microarray data

Microarray data set GSE2599'* was down-
loaded from Gene Expression Omnibus (GEO),
including 3 SCI samples and 3 normal controls.
Data was collected using GPL85 [RG_U34A]
Affymetrix Rat Genome U34 Array. Probe anno-
tation files were also acquired.

Screening of differentially expressed
genes (DEGs)

Raw data was converted into recognizable for-
mat and missing values were filled up'>. After da-
ta normalization'®, package multtest'” was chosen
for differential analysis. Multiple testing correc-
tion was applied with BH method's. FDR (false
discovery rate) < 0.05 and llogFCl > 1 were set as
the cut-offs to screen out DEGs.

Cluster analysis

To globally present the difference in gene ex-
pression pattern between SCI and healthy con-
trol, cluster analysis was conducted for all the
samples'®.

Functional enrichment analysis
for the DEGs

Functional enrichment analysis is able to re-
veal disturbed biological functions based upon
DEGs?. Therefore, DAVID?*' was chosen in pre-

sent study and FDR <0.05 was selected as the
threshold. DEGs were divided into up- and
down-regulated genes before analysis.

Construction of interaction network

Proteins usually interplay with each other to
display certain functions?. The most up- and
down-regulated gene were picked out and then
interactors were predicted with String®, followed
by construction of interaction network. String
connects major databases and predicts interac-
tions based upon experiments, text mining and
sequence homology.

Pathway enrichment analysis for genes
in the network

GENECODIS is a web-based tool for func-
tional annotation, which integrates information
from GO, KEGG, SwissProt, etc?*. Therefore, it
was selected for pathway enrichment analysis for
all the genes in the network and adj p < 0.05 was
set as the cut-off.

Results

Differentially expressed genes

Normalized gene expression data are shown in
Figure 1A and a good normalization performance
was obtained. A total of 227 DEGs were screened
out, 132 up-regulated genes and 145 down-regu-
lated genes.

Cluster analysis result

The cluster analysis result is shown in Figure
1B. SCI samples could be easily distinguished
from the healthy controls as obvious differences
existed in the gene expression pattern.

Functional enrichment analysis result

The results are shown in Figure 2. Response to
wounding, response to organic substance and de-
fense response were the top 3 significantly over-
represented terms. There terms were closely re-
lated with SCI, proving the confidence of our
findings.

Interaction network

APOBEC1 and HPD were the most up- and
down-regulated gene, respectively (Figure 3). In-
teractors of these two genes were retrieved by
String and then network was constructed (Figure
4), comprised of 73 interactions among 20 genes.
Details were listed in Table I.
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Figure 1. Box plot for normalized gene expression data and cluster analysis result. A, Box plot for gene expression data. The
medians are almost at the same level, indicating a high performance of normalization. B, Cluster analysis result for gene ex-
pression data. The expression values Clustering Figure Red indicates over-expression while green for under-expression.
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Figure 2. Functional enrichment analysis result for DEGs.
Pathway enrichment analysis result Discussion
Four functional terms were over-represented in
the network and all of them were associated with In present study, gene expression data for SCI
metabolism. Tyrosine metabolism was the most samples were compared with those for healthy
significant one and HPD was also included in controls and a range of DEGs were identified.
this term. Functional enrichment analysis showed that re-
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Figure 4. Interaction network for APOBEC1 and HPD.

sponse to wounding was most significantly over- and Schwab find that administration of pro-in-
represented. A considerable number of genes were flammatory cytokines (IL-1 beta, IL-6 and INF al-
associated with inflammatory response, which was pha) to mice after SCI can reduce the amount of
in accordance with previous studies*?¢. Klusman tissue loss”, indicating the role of inflammation in
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Table I. Pathway enrichment analysis result for genes in the network.

Pathway Test

Genes

Tyrosine metabolism
Phenylalanine metabolism
Phenylalanine, tyrosine

and tryptophan biosynthesis
Cysteine and methionine metabolism

O=38;adjp=1.99%-18
O =6;adjp=1.58e-15
O=4;adjp=19%e-12

O =4; adj p=1.20e-08

MIF, GOT1, LAO1, TAT, HGD, FAH, HPD, GOT2
MIF, GOT1, LAO1, TAT, HPD, GOT2
GOT1, LAO1, TAT, GOT2

GOT1, LAOL, TAT, GOT2

O: number of genes in the pathways; adj p: p values after multiple testing correction.

SCI is rather complex. More and more evidence
show that early inflammatory responses may par-
ticipate in secondary injury processes while de-
layed inflammatory events may be reparative®.
Our findings might provide molecular targets to
modulate the inflammatory response.

Alpha-2-macroglobulin (A2M) is a protease in-
hibitor and cytokine transporter, i.e. IL-6%. It has
been confirmed to be a modulator of hemostatic
and inflammatory reactions®. It might stimulate
the inflammatory response as it was up-regulated
in SCI. However, according to Bai et al®!, it can
bind to nerve growth factor and, thus, neutralize
neuroprotection during glaucoma. Therefore, its
expression should be accurately controlled. Ser-
pin peptidase inhibitor, clade G (C1 inhibitor),
member 1 (SERPING1) is a highly glycosylated
plasma protein involved in the regulation of the
complement cascade®. Fibronectin 1 (FN1) is in-
volved in cell adhesion and migration processes
such as wound healing. It exists in a soluble
dimeric form in plasma and diffuses into lesions
as intramedullary hemorrhages occur®3., It may
work as an indicator to reflect the degree of in-
jury. However, Sroga et al® indicate that rats and
mice exhibit distinct inflammatory reactions after
spinal cord injury, therefore, it should be cautious
to interpret these findings.

Apolipoprotein B mRNA editing enzyme, cat-
alytic polypeptide 1 (APOBECI) was the most
up-regulated gene while 4-hydroxyphenylpyru-
vate dioxygenase (HPD) was the most down-reg-
ulated gene. APOBECI is a member of the cyti-
dine deaminase enzyme family*® and HPD is an
enzyme in the catabolic pathway of tyrosine?’.
Pathway enrichment analysis indicated that genes
in their interaction network were involved in me-
tabolisms like tyrosine metabolism and pheny-
lalanine metabolism.

Secondary injury is featured by a series of al-
terations in intracellular metabolism and gene ex-
pression, such as release of excitatory amino
acids® and lipid peroxidation®’, which eventually

lead to apoptosis of nerve cells®. Liu et al*! indi-
cate that excitatory amino acids rise to toxic lev-
els upon impact injury to the rat spinal cord. Ac-
cordingly, we found that metabolisms about
amino acids like tyrosine, phenylalanine, trypto-
phan, cysteine and methionine were enriched in
the DEGs included in the interaction network. Ty-
rosine nitration can serve as an indicator for nitric
oxide (NO)-mediated oxidative inflammatory re-
actions. Spinal ischemia, hypoxia-induced oxida-
tive stress and inflammatory responses lead to a
number of superoxide anion and it reacts with NO
and then generate ONOO-ion, which further react
with tyrosine and finally generate nitrotyrosine®.
It could be speculated that tyrosine nitration re-
sults in conformational changes in proteins and
thus contributes to the disturbation of normal bio-
logical functions. Therefore, HPD might be a po-
tential target to modulate these metabolisms and
thus reduce the degree of injury.

Conclusions

Taken together, a range of DEGs were ob-
tained through comparing gene expression pro-
files of rat SCI with those of healthy controls.
These genes might play important roles in the de-
velopment of SCI according to the functional en-
richment analysis. Of course, more researches
are needed to exploit their potentials in clinical
applications.
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