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Abstract. – OBJECTIVE: Osteosarcoma is the 
third most frequently diagnosed cancer among 
adolescents. Immunotherapy is an effective cu-
rative treatment for metastatic osteosarcoma 
patients. This study aimed to further reveal the 
significance of metabolism in tumor progres-
sion, and to categorize molecular subtypes for 
guiding personalized therapy.

MATERIALS AND METHODS: Univariate Cox 
regression analysis was performed to screen 
metabolism-related genes associated with os-
teosarcoma prognosis. A molecular subtyping 
system was developed by unsupervised con-
sensus clustering. Survival analysis and func-
tional analysis were used to evaluate the perfor-
mance of subtyping and characterize the TME of 
subtypes. Stepwise Akaike information criterion 
(stepAIC) was employed to optimize the prog-
nostic model.

RESULTS: C1 and C2 subtypes showed dis-
tinct prognosis, with more favorable survival 
in C2 subtype. C2 subtype presented a high-
er immune infiltration and active anti-tumor re-
sponse. Notably, C2 subtype was predicted to 
have better immune response to immune check-
point blockade. In addition, a 5-gene prognos-
tic signature with robust ability to classify pa-
tients into high-risk and low-risk groups was de-
veloped. 

CONCLUSIONS: The study revealed the criti-
cal role of metabolism in tumorigenesis by com-
paring the features between the two subtypes. 
Oncogenic pathways including epithelial mes-
enchymal transition (EMT), glycolysis and hy-
poxia may be closely involved in the correlation 
with metabolism. Importantly, we developed a 
novel subtyping system and a 5-gene signature 
with high potential to be applied in clinical prac-
tice.
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lar subtypes, Tumor microenvironment, Immunother-
apy, Prognostic signature.

Introduction

Osteosarcoma is the most frequently diagnosed 
malignant tumor in primary bone cancers, and it 
is also the third common cancer among adoles-
cents1. Osteosarcoma occurs with bimodal age 
distribution in 15-19 ages and 75-79 age, respec-
tively, but is more frequent among adolescents2. 
Age-standardized rate (ASR) has been rising in 
the past decades, with an incidence of about 3.4 
per million worldwide1,2. The male population 
suffers from osteosarcoma more easily than the 
female population in most countries, with a ratio 
of 1.43:1 in young individuals aged between 0 and 
242. Improved treatments for osteosarcoma have 
greatly elevated 5-year overall survival (OS) from 
around 20% to 65%3. However, for metastatic 
patients, the survival chance markedly drops to 
approximately 30% compared with localized os-
teosarcoma patients who are estimated to have a 
5-year survival rate of 70%-75%3,4. 

Evidence5-10 has revealed that genetic varia-
tions in TP53, RB, CDK, c-Myc and TGFB are 
common factors in osteosarcoma development. 
Nevertheless, the mechanism and biology of 
osteosarcoma metastasis still remain unclear. 
Fritsche-Guenther et al11 observed that the me-
tabolism is distinct between malignant and be-
nign osteosarcoma cells, as in the latter state 
malignant cells have a more activated metabo-
lism. However, metastatic cell lines presented 
faster metabolism than malignant cell lines, 
which are more sensitive to glycolytic inhibi-
tion11. Metabolism in osteosarcoma is modulated 
by many pathways, such as mTORC1 pathway12 
and AMPK-dependent pathway13. Overall, me-
tabolism of osteosarcoma is an essential part to 
understand the tumorigenesis and metastasis, 
and it is considered as a potential target for treat-
ing osteosarcoma14-16. 
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There is a special balance between bone mi-
croenvironment and immune microenvironment, 
where a crosstalk between osteoblasts and mono-
cytes-derived osteoclasts forms a special microen-
vironment17. For metastatic osteosarcoma patients, 
immunotherapy is a potential strategy to improve 
survival quality. Evidence18 has shown that immune 
checkpoint blockade can partially rescue T cell func-
tion in a lung-metastatic mouse model18. However, 
to design a more specialized immunotherapy or to 
determine whether a patient is suitable to receive 
targeted therapy could be difficult to some extent.

In this study, we focused on metabolism of os-
teosarcoma and investigated the relation between 
metabolism and tumor microenvironment (TME). 
Two molecular subtypes were developed based 
on metabolism-related genes and we constructed 
a 5-gene signature for predicting osteosarcoma 
prognosis and guiding personalized treatment. 
Although previous studies19,20 have proposed 
some signatures based on metabolism for osteo-
sarcoma, they also show some limitations such as 
too many genes in one signature or lack of asso-
ciation with TME. Our study proposed a different 
strategy from previous research and categorized 
two molecular subtypes and developed a 5-gene 
signature with a close crosstalk with TME.

Materials and Methods

Data Source and Preprocessing
RNA-seq data of osteosarcoma samples with 

clinical information (named as TARGET co-

hort) were downloaded from Therapeutical-
ly Applicable Research To Generate Effective 
Treatments (TARGET, https://ocg.cancer.gov/
programs/target) database in August 15, 2021. 
GSE39058 and GSE21257 cohorts with ex-
pression profiles and clinical information were 
downloaded from Gene Expression Omnibus 
(GEO, https://www.ncbi.nlm.nih.gov/geo/) da-
tabase on August 15, 2021. Osteosarcoma sam-
ples with survival time and survival status 
were retained (Table I). For the two GSE co-
horts, ComBat function in sva R package was 
applied to remove batch effects (Supplementa-
ry Figure 1). Metabolism-related genes were 
obtained from previous research21.

Unsupervised Consensus Clustering
Firstly, univariate Cox regression analysis was 

conducted in survival (V3.2-7) R package to 
screen metabolism-related genes in TARGET and 
GSE cohorts significantly associated with osteo-
sarcoma prognosis (p < 0.05). The intersection of 
the screened genes between the two cohorts was 
selected for further analysis. Then, unsupervised 
consensus clustering in ConsensusClusterPlus 
(V1.52.0) R package was employed to classify 
samples into different subtypes22. Cluster number 
k from 2 to 10 was included to select the optimal 
clusters. The optimal k was confirmed by cumu-
lative distribution function (CDF). Consensus 
clustering is a convenient and useful technique in 
cancer study providing stable classifications by 
using gene expression data.

Table I. Clinical information of osteosarcoma patients.

	 Feature	 TARGET	 GSE21257	 GSE39058

Event			 
    Alive	 55	 30	 29
    Dead	 29	 23	 12
Gender			 
    Female	 37	 19	 20
    Male	 47	 34	 21
    NA			 
Age			 
    > 14	 44	 38	 11
    < =14	 40	 15	 30
    Unknown			 
Relapse			 
    YES	 38		  20
    NO	 14		  21
    Unknown	 32		
Metastatic			 
    YES	 21	 34	
    NO	 63	 19	

https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Figure-1-11433.pdf
https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Figure-1-11433.pdf
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SubMap Analysis
Gene Pattern SubMap analysis, which is a 

measurement that assesses the similarity of ex-
pression profiles between two independent data-
sets21, was applied here to validate the effective-
ness of molecular subtyping through comparing 
the gene expression data between C1 and C2 
subtypes. In addition, SubMap analysis was also 
used to predict the response to immunotherapy 
by comparing the expression profiles of untreated 
patients with those of treated patients.

Functional Analysis
Differentially expressed genes (DEGs) were 

identified by limma R package under the con-
ditions of |FC(fold change)| > 1.5 and FDR 
(false discovery rate) < 0.0523. For the screened 
DEGs, clusterProfiler R package was applied to 
annotate up-regulated genes (C1/C2) to Gene 
Ontology (GO, http://geneontology.org/) terms 
and Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG, https://www.genome.jp/kegg/) 
pathways24. Under FDR < 0.05, GO terms and 
KEGG pathways were screened. ClusterProfiler 
enables the automation of biological-term classi-
fication and the enrichment of gene sets. Single 
sample gene set enrichment analysis (ssGSEA) 
in clusterProfiler was used to enrich significant 
pathways in “h.all.v7.4.symbols.gmt” and “c2.
cp.kegg.v7.4.symbols.gmt”. 

Gene Set Variation Analysis (GSVA)
GSVA is a gene set enrichment method for 

calculating the enrichment score of gene sets in 
one sample or a group of samples based on RNA-
seq data25. GSVA R package and GSEABase 
(V1.50.1) were implemented to evaluate the en-
richment of human signatures and inflammatory 
signatures in the two subtypes. Kruskal-Wallis 
test was conducted to compare the difference of 
human signatures between the two subtypes.

Assessment of Tumor Microenvironment
The fraction of immune cells in TME was 

estimated by two measurements. Microenviron-
ment Cell Populations-counter (MCP-counter) 
allows the quantification of 8 immune cells (T 
cells, CD8 T cells, cytotoxic lymphocytes, B 
lineage, NK cells, monocytic lineage, myeloid 
dendritic cells, neutrophils) and 2 stromal cells 
(endothelial cells and fibroblasts)26. MCP-counter 
can count the abundance and enrichment scores 

of 10 cell types in one sample across a cohort. 
Kruskal-Wallis test was conducted to compare 
the difference of immune infiltration between the 
two subtypes.

Estimation of STromal and Immune cells in 
MAlignant Tumours using Expression data’ (ES-
TIMATE) is a method for quantifying the pro-
portion of immune cells and stromal cells based 
on the expression of gene signatures27. Stro-
mal score, immune score and ESTIMATE score 
were calculated for each sample, and ESTIMATE 
score is the combined score of stromal score and 
immune score. Kruskal-Wallis test was conduct-
ed to compare the difference of immune infiltra-
tion between the two subtypes.

The fraction of 28 biomarkers of immune-re-
lated cells obtained from a previous study was 
assessed by ssGSEA in GSVA R package28. The 
expression of immune checkpoints screened from 
previous studies29,30 was evaluated in the two sub-
types. Kruskal-Wallis test was conducted to com-
pare the difference between the two subtypes.

Prediction of Sensitivity to  
Immunotherapy and Chemotherapy

Tumor Immune Dysfunction and Exclusion 
(TIDE) analysis was employed to evaluate T cell 
function, according to gene signatures for each 
sample31. TIDE score was calculated as a surrogate 
biomarker to predict response to immune check-
point inhibitors, such as anti-PD-1 and anti-CT-
LA-4. Specifically, a higher TIDE score represents 
lower sensitivity to immune checkpoint blockade.

SubMap analysis was performed for compar-
ing the gene expression patterns between sub-
types and the estimated outcome of a patient 
receiving anti-PD-1 inhibitors of nivolumab and 
pembrolizumab (GSE93157)32,33. pRRophetic R 
package was used to predict the estimated bio-
chemical half-maximal inhibitory concentration 
(IC50) of chemotherapeutic drugs including cis-
platin, AKT inhibitor VIII, doxorubicin, embelin, 
etoposide, obatoclax mesylate, thapsigargin and 
vinorelbine34. 

Construction and Validation of a 
Prognostic Model

The intersection of metabolism-related genes 
significantly associated with prognosis between 
TARGET and GSE cohorts was filtered and sub-
jected to Kaplan-Meier survival analysis. Log-
rank test was performed in the survival analysis, 
and genes of p < 0.05 in both cohorts remained. 
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Then, stepwise Akaike information criterion 
(stepAIC) was conducted to reduce the number 
of genes35. Multivariate Cox regression analysis 
was performed to calculate the coefficients of 
the remained genes. The prognostic model was 
defined as: “Risk Score”=∑n

i=1coef(i)*gene(i), 
where i represents genes and coef represents 
coefficients of genes. Risk score of each sam-
ple in TARGET cohort was calculated, and 
surv_cutpoint function in survminer (V0.4.9) R 
package was employed to confirm the optimal 
cut-off in classifying samples into high-risk and 
low-risk groups (http://www.sthda.com/english/
rpkgs/survminer/). GSE cohort was used to val-
idate the prognostic model. Receiver operating 
characteristic of the model for predicting 1-year, 
3-year and 5-year survival was shown by Tim-
eROC R package36. Univariate and multivariate 
Cox regression analysis were performed to eval-
uate the independence of risk score as an indi-
cator. Decision curve analysis (DCA) was used 
to assess the potential benefit that patients could 
receive based on different indicators.

Statistical Analysis
All statistical analysis was conducted in R 

(V4.1.1) software. Specific statistical methods 
were indicated in the corresponding figure leg-
ends. Parameters without specific description 
were default. p < 0.05 was considered as a signif-
icance. ns, no significance. *p < 0.05, **p < 0.01, 
***p < 0.001, ****p < 0.0001.

Results

Molecular Subtyping for Osteosarcoma 
Based on Metabolism-Related Genes

We obtained 200 metabolism-related genes 
from the previous research. Univariate Cox re-
gression analysis on GSE and TARGET cohorts 
screened 156 genes and 274 genes, respectively 
(p < 0.05, Figure 1A). The intersection of the 
two cohorts were selected for consensus cluster-
ing analysis. From cluster number k = 2 to 10, 
suitable clusters were confirmed by CDF curve 
(Supplementary Figure 2). Finally, k = 2 was 
selected, and samples were neatly classified into 
C1 and C2 subtypes (Figure 1B). Similarly, sam-
ples in TARGET cohort were also clustered into 
two groups (Figure 1C). Kaplan-Meier survival 
analysis showed that C1 and C2 subtypes had 
significantly differential overall survival (OS) in 

the GSE and TARGET cohorts, with p = 0.016 
and 0.0068, respectively (Figure 1D and E). Sub-
Map analysis revealed that C1 and C2 subtypes 
in the two cohorts manifested similar expression 
pattern (p < 0.05, Figure 1F), indicating that the 
molecular subtyping was effective.

Comparison of Clinical Features 
Between Two Molecular Subtypes

We also analyzed the relation between the two 
molecular subtypes and clinical features includ-
ing survival status, ages, genders, relapse and 
metastasis. C1 subtype had a significantly higher 
proportion of samples in dead status (p = 0.0332, 
Figure 2A and B). Two subtypes did not show 
significant difference on the distribution of ages 
and genders (p > 0.05, Figure 2C and D). As for 
relapse possibility, C2 subtype was more likely 
to develop a relapse after treatment (p = 0.0373, 
Figure 2E). However, two subtypes manifested 
similar proportion in metastasis (Figure 2F). The 
results further illustrated a worse prognosis of C2 
subtype than C1 subtype.

Enriched Pathways of DEGs Identified 
from C1 and C2 Subtypes

To evaluate whether there were differentially 
enriched pathways between the two subtypes, we 
firstly identified differentially expressed genes 
(DEGs) between them in GSE cohorts using 
limma R package. p < 0.05 and |FC| > 1.5 were 
the threshold to screen DEGs. Here, we filtered 
955 DEGs incorporating 762 up-regulated and 
193 down-regulated genes. Next, ClusterProfiler 
R package was applied to conduct functional 
analysis (KEGG pathways and GO terms) for 
the up-regulated genes in C1 subtype (p < 0.05, 
(Supplementary Figure 3). Biological process 
terms related to osteosarcoma, such as ossifica-
tion and osteoblast differentiation, were anno-
tated (Supplementary Figure 3). Tumor-related 
pathways including cell cycle and TGF-beta sig-
naling pathway were significantly enriched (Sup-
plementary Figure 3). We conducted the same 
analysis on TARGET cohort and identified 495 
DEGs between C1 and C2 subtypes. Functional 
analysis revealed that the up-regulated genes 
were closely associated with focal adhesion, pro-
teoglycans in cancer, ECM-receptor interaction 
(p < 0.05, (Supplementary Figure 4). The above 
results suggested that tumor-related pathways 
were greatly activated in C1 subtype. Further-

https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Figure-2-11433.pdf
https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Figure-3-11433.pdf
https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Figure-3-11433.pdf
https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Figure-3-11433.pdf
https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Figure-3-11433.pdf
https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Figure-4-11433.pdf
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more, we performed ssGSEA to assess specific 
pathways from “h.all.v7.4.symbols.gmt” and “c2.
cp.kegg.v7.4.symbols.gmt” in two subtypes. The 
results showed that in both GSE and TARGET 
cohorts C1 subtype was closely related to a high 
enrichment of tumor-related pathways, including 
epithelial mesenchymal transition (EMT), glycol-
ysis, hypoxia, cell cycle, focal adhesion and ECM 
receptor interaction (Figure 3A and B). Mean-
while, immune-related pathways including natu-
ral killer cell-mediated cytotoxicity, cytokine-cy-
tokine receptor interaction, toll-like receptor 
signaling pathway, primary immunodeficiency 
and autoimmune thyroid disease were noticeably 
enriched in C2 subtype (Figure 3C and D).

C2 Subtype Is More Immune Infiltrated 
Than C1 Subtype

We analyzed the immune infiltration of the 
two subtypes in GSE and TARGET cohorts 

using three methods (ESTIMATE, MCP-count-
er and ssGSEA). In GSE cohorts, ESTIMATE 
score, immune score and stromal score calculat-
ed by ESTIMATE were significantly higher in 
C2 than C1 (p < 0.05, Figure 4A). MCP-count-
er assessed the estimated proportion of 9 im-
mune-related cells, and we observed that 7 out 
of 9 immune-related cells including B lineage, 
cytotoxic lymphocytes, monocytic lineage, my-
eloid dendritic cells, neutrophils, natural killer 
(NK) cells and T cell showed a higher enrich-
ment score in C2 subtype (p < 0.05, Figure 4B). 
We then used ssGSEA to assess the distribution 
of 28 immune-related cells obtained from the 
previous research28 in GSE cohorts. The data 
showed that compared with C1 subtype, C2 sub-
type had higher proportion of most immune-re-
lated cells such as activated B cells, activated 
CD4 T cells, activated CD8 T cells, and acti-
vated dendritic cells (p < 0.001, Figure 4C). We 

Figure 1. Identification of molecular subtypes based on metabolism-related genes. A, Venn plot of prognostic genes in 
TARGET and GSE cohorts. Blue indicates TARGET cohort and red indicates GSE cohorts. B-C, Consensus clustering when 
cluster number k = 2 in GSE and TARGET cohorts, respectively. Horizontal axis represents clusters where red indicates 
cluster 1 (C1) and blue indicates cluster 2 (C2). D-E, Kaplan-Meier survival plots of C1 and C2 subtypes in GSE and TARGET 
cohorts. Log-rank test was performed. F, SubMap analysis for analyzing the similarity of the same subtypes between two 
cohorts. p-value was corrected by Bonferroni correction. Lower p-value indicates higher similarity.
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applied the same analysis in TARGET cohorts, 
and similar results to GSE cohorts was found 
(Supplementary Figure 5). 

In addition, we obtained a series of immune 
checkpoint from previous studies29,30, and cal-
culated their expression using ssGSEA. In GSE 
cohorts, immune checkpoints, such as CTLA-4 
and PDCD1, were much higher-expressed in C2 
subtype (p < 0.05, Figure 5). Moreover, the sim-
ilar results were observed in TARGET cohort 
(Supplementary Figure 6). The above results 
indicated that C2 subtype, which had more favor-
able prognosis, exhibited more activated immune 
response than C1 subtype.

Different Enrichment of Human 
Signatures Between C1 and C2 Subtypes

To further characterize the differential fea-
tures between the two subtypes, we included 15 
human signatures from the previous research37. 

7 out of 15 signatures including CD8 T effector, 
cell cycle, DNA damage repair (DDR), DNA 
replication, mismatch repair, nucleotide excision 
repair, and WNT target were differentially en-
riched between C1 and C2 subtypes (p < 0.05, 
Figure 6). Apart from CD8 T effector, other 
signatures related to cell cycle and DNA repair 
all showed a higher enrichment in C1 subtype. 
In TARGET cohort, we observed the similar re-
sults, although there was no significance in some 
signatures between the two subtypes (Supple-
mentary Figure 7).

C2 Subtype Is Predicted to Be Sensitive 
to Immunotherapy by TIDE Analysis

As differential TME between C1 and C2 sub-
types was examined, TIDE was applied to predict 
their sensitivity to immunotherapy. Scores of 
three aspects (T cell dysfunction, T cell exclusion 
and TIDE score) were calculated by TIDE based 

Figure 2. The distribution of two subtypes in clinical features (A) including survival status (B), ages (C), genders (D), relapse 
(E), and metastasis (F). Chi-square test was performed.

https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Figure-5-11433.pdf
https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Figure-6-11433.pdf
https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Figure-7-11433.pdf
https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Figure-7-11433.pdf
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Figure 3. Enriched pathways of C1 subtype in GSE (A) and TARGET (B) cohorts, and C2 subtype in GSE (C) and TARGET 
(D) cohorts. Horizontal axis indicates samples, and vertical axis indicates enrichment score of pathways. Five pathways were 
labeled in different colors.

Figure 4. Immune infiltration analysis of two molecular subtypes in GSE cohorts by MCP-counter (A), ESTIMATE (B) 
and ssGSEA (C). Kruskal-Wallis test was conducted. ns, no significance. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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Figure 6. Analysis of human signatures including CD8 T effector, cell cycle, DDR, DNA replication, FGFR3-related pathways, 
mismatch repair, nucleotide excision repair and WNT target. Student t-test was conducted. Red indicates C1 subtype and blue 
indicates C2 subtype. ns, no significance. *p < 0.05, **p < 0.01, ****p < 0.0001.

Figure 5. Comparison of immune checkpoints expression between C1 and C2 subtypes in GSE cohorts. Kruskal-Wallis test 
was conducted. Red indicates C1 subtype and blue indicates C2 subtype. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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on the corresponding gene signatures. In GSE 
cohorts, C1 subtype had lower score of T cell 
dysfunction than C2 subtype, indicating a less 
damage of T cells in C1 subtype (p < 0.0001, Fig-
ure 7A). However, higher score of T cell exclusion 
was shown in C1 subtype (p < 0.0001, Figure 7A), 
which could result in a suppressed immune re-
sponse. Moreover, C2 subtype manifested a lower 
TIDE score, suggesting a higher sensitivity to 
immunotherapy (p < 0.05). The same conclusion 
was also found in TARGET cohort (p < 0.05, Fig-
ure 7B), which indirectly proved the robustness of 
our molecular subtyping.

Different Responses of Two Subtypes to 
Immunotherapy and Chemotherapy

To predict the responses to immunotherapy 
more precisely, we used the expression profiles of 
another dataset (GSE93157) with treatment data 
of anti-PD-1 (nivolumab) and anti-PD-L1 (pem-
brolizumab) and compared the expression pattern 
between GSE93157 and GSE cohorts by SubMap 
analysis. Compared with GSE cohorts, C2 sub-

type showed a similar expression pattern with 
patients treated by nivolumab in GSE93157 data-
set (p = 0.001, Figure 8A), while C1 subtype was 
insensitive to nivolumab and pembrolizumab. In 
addition, we further examined their sensitivity 
to chemotherapeutic drugs using estimated IC50. 
The current data revealed that the two subtypes 
displayed significantly differential responses to all 
the 8 chemotherapeutic drugs (p < 0.0001, Figure 
8B). C2 subtype had a higher estimated IC50 to all 
the 8 drugs than C1 subtype, indicating that C2 
subtype was more sensitive to these chemothera-
peutic drugs. This also suggested that C2 subtype 
could greatly benefit from immunotherapy and 
chemotherapy compared to C1 subtype, which was 
also consistent with the result of TIDE prediction.

Constructing a 5-Gene Prognostic 
Model for Osteosarcoma Based on 
Metabolism-Related Genes

The intersection of metabolism-related genes 
associated with prognosis between GSE and TAR-
GET cohorts was selected, and 19 genes remained. 

Figure 7. TIDE analysis for predicting the sensitivity of two subtypes to immunotherapy in GSE (A) and TARGET (B) 
cohorts. Red indicates C1 subtype and blue indicates C2 subtype. Dysfunction indicates T cell dysfunction and exclusion 
indicates T cell exclusion. Student t-test was conducted. *p < 0.05, ***p < 0.001, ****p < 0.0001.
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Survival analysis was used to further screen these 
19 metabolism-related genes, and 7 genes (CBS, 
ACSL5, ATP6V0D1, DDAH2, PDE4C, SLC7A1 
and PNPO) that were capable of neatly classi-
fying patients into C1 and C2 subtypes were 
selected (Supplementary Figure 8 and Sup-

plementary Figure 9). Furthermore, multivar-
iate Cox regression analysis and stepAIC were 
performed to confirm the prognostic genes in 
TARGET cohort. Finally, 5 genes (CBS, ACSL5, 
DDAH2, PDE4C, and PNPO) were determined 
(Figure 9). The prognostic model was defined 

Figure 8. Predicted responses to immunotherapy and chemotherapy of C1 and C2 subtypes. (A) SubMap analysis between 
GSE and GSE93157 cohorts in response to nivolumab and pembrolizumab. (B) Estimated IC50 of C1 and C2 subtypes to eight 
chemotherapeutic drugs in GSE cohorts. Student t-test was conducted to test the significance between two groups. ns, no 
significance. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

Figure 9. Multivariate Cox regression analysis of 5 prognostic genes. The bottom numbers indicate hazard ratio (HR). The 
columns from left to right represent genes, total samples, HR (95% confidence interval), and p-values.

https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Figure-8-11433.pdf
https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Figure-9-11433.pdf
https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Figure-9-11433.pdf
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as: risk score = 0.400*CBS-0.475*ACSL5-0.430* 
DDAH2+0.654*PDE4C-0.878*PNPO. Risk score 
of each sample in TARGET cohort was calculat-
ed, and median value was selected as a cut-off. 
Samples were significantly stratified into high-risk 
and low-risk groups (p < 0.0001, Figure 10A), and 
ROC analysis showed a favorable AUC of 1-year, 
3-year and 5-year survival of 0.79, 0.87 and 0.81, 
respectively (Figure 10B). In GSE cohorts, the 
samples were also neatly stratified into high-risk 
and low-risk groups (p = 0.0048, Figure 10C). 
High AUC score for 1-year, 3-year and 5-year sur-
vival was found, demonstrating the stability of the 
5-gene prognostic model (Figure 10D).

Risk Score is Highly Associated with 
Clinical Features

The relation between risk score and survival 
was demonstrated, and then we analyzed the dis-
tribution of risk score in other clinical features 
such as in metastasis, relapse, genders, ages, and 
molecular subtypes. The result presented that 
metastatic patients had a higher risk score than 
non-metastatic patients (p < 0.05, Figure 11A). 
C1 subtype faced a higher risk than C2 subtype, 
which was consistent with the previous result 
(p < 0.01, Figure 11B). However, risk score 
was similarly distributed between relapse and 
non-relapse, females and males, ≤ 14 and > 14 

Figure 10. Kaplan-Meier survival plots and ROC analysis of the 5-gene prognostic model in TARGET (A-B) and GSE (C-D) 
cohorts. Log-rank test was conducted in survival analysis. 
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years old (Figure 11C-E). In different clinical fea-
tures, risk score was stable and effective in strati-
fying samples into high-risk and low-risk groups, 
except for the samples with non-relapse (p < 0.05, 
Figure 12). Furthermore, univariate and multivari-

ate Cox regression analysis showed that risk score 
was the most significant risk factor among other 
clinical features, with HR = 2.7 (95%CI = 1.8-4.1, 
p = 1.7e-06) and HR = 2.7 (95%CI = 1.7-4.3, p < 
1e-5), respectively (Figure 13).

Figure 11. The distribution of risk score in different features including metastasis (A), molecular subtypes (B), relapse (C), 
genders (D) and ages (E). Student t-test was conducted. NS, no significance. *p < 0.05, **p < 0.01.

Figure 12. Survival analysis of high-risk and low-risk groups in different clinical features including ages (A-B), genders (C-
D), relapse (E-F), metastasis (G-H). Log-rank test was conducted.
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A Nomogram Based on Risk Score for 
Clinical Application

To promote the applicability of the prognos-
tic model in clinical practice, we developed a 
nomogram based on risk score, metastasis, and 
relapse in TARGET cohorts (Figure 14A). Each 
sample could gain a total score by combining the 
scores from the three features, and 1-year, 3-year 
and 5-year survival rate could be predicted. The 
predicted 1-year, 3-year and 5-year survival rates 
were corrected by the actual survival (Figure 
14B). Decision curve analysis demonstrated that 
the nomogram exhibited the highest standardized 
net benefit among these indicators, indicating its 
optimal performance in assisting clinical predic-
tion (Figure 14C).

Risk Score Is Negatively Correlated with 
Inflammatory Signatures

We explored the association between risk score 
and inflammatory signatures including HCK, IgG, 

interferon, LCK, MHC-I, MHC-II and STAT1. 
A heatmap presented that these signatures were 
highly enriched in low-risk group, and strong 
negative correlations were observed between risk 
score and inflammatory signatures (p < 0.001, 
Figure 15). The result further demonstrated that 
risk score was closely associated with inflamma-
tory response, and indirectly indicated a strong 
correlation between metabolism and inflammatory 
response.

Discussion

Previous studies19,38,39 have discovered the close 
relationship between metabolism and osteosarco-
ma development and metastasis. Based on metab-
olism-related genes, Li et al19 identified a metabo-
lism-related signature composed of 39 prognostic 
genes for osteosarcoma. The score calculated by 
the signature was positively associated with im-

Figure 13. Univariate (A) and multivariate (B) Cox regression analysis of clinical features, subtypes and risk score. Log-rank 
test was performed. HR, hazard ratio.



Role of metabolism in osteosarcoma

2939

mune infiltration, supporting the important effect 
of metabolism in TME. Although the signature 
was effective to predict prognosis and provided 
a guidance to immunotherapy, the number of 
genes in the signature was too many for clinical 
use. In another study, Lussier et al18 developed 
a 7-gene signature based on metabolism-related 
genes through “NFM” algorithm and weight-
ed gene co-expression network analysis (WGC-
NA)20. However, the study focused less on the 
relation between metabolism and TME, but much 
more on the advantage of the signature.

In the current study, we included 200 metabo-
lism-related genes and performed Cox regression 
analysis to filter genes associated with prognosis. 
Unlike the above-mentioned studies, the inter-
sected genes between TARGET and GSE cohorts 
were determined as a basis for consensus cluster-
ing. Two molecular subtypes were categorized to 
have a close association with patients’ prognosis 
in the two cohorts, where C1 subtype had a worse 
overall survival. GSEA revealed the enriched 

KEGG pathways of two subtypes respectively, 
and six oncogenic pathways, including EMT, gly-
colysis, hypoxia, cell cycle, focal adhesion, and 
ECM receptor interaction pathways, were highly 
enriched in C1 subtype. This result indicated that 
metabolism-related genes were strongly involved 
in tumorigenesis of osteosarcoma and may serve 
as modulators on these oncogenic pathways.

EMT, which can promote cancer progression 
and metastasis, is a critical step in the patho-
genesis of many cancer types, including in os-
teosarcoma. EMT is modulated by complicated 
signaling pathways such as Wnt/β-catenin signal-
ing pathway40 and PI3K/AKT/mTOR pathway41. 
The EMT process could be significantly sup-
pressed42 via inhibiting Wnt/β‑catenin signaling 
pathway, suggesting that these EMT-associated 
pathways may be considered as potential targets 
to treat osteosarcoma. In the relation of metabo-
lism to EMT, Zhang et al43 observed that leuko-
cyte-associated immunoglobulin-like receptor-1 
(LAIR-1), a collagen receptor, could inhibit EMT 

Figure 14. Construction and validation of a nomogram. A, A nomogram based on relapse, metastasis and risk score for 
predicting 1-year, 3-year and 5-year survival rate. B, Correction of predicted overall survival (OS) by observed OS. C, DCA 
curve for validating the effectiveness of four indicators including relapse, metastasis, risk score and the nomogram. 
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by down-regulating the expression of metab-
olism-related molecule of glucose transporter 
1. Glycolysis, one of metabolism processes, is 
greatly activated in tumor cells, especially when 
aerobic glycolysis allows tumor cells to adapt to 
hypoxia and resists chemotherapeutic drugs44. In 
C1 subtypes, glycolysis and hypoxia pathways 
were both enriched, which provided an enhanced 
microenvironment for tumor progression. Shen et 
al45 have found that CircECE1 regulates glycol-
ysis through c-Myc/TXNIP axis, and CircECE1 
knockdown interferes tumor cell proliferation in 
osteosarcoma cells.

Immunotherapy is a hopeful treatment for met-
astatic osteosarcoma patients46. The efficiency of 
immune checkpoint inhibitors such as anti-PD-1 

largely depends on the expression of immune 
checkpoints and T cell status. The component 
and activity of TME can decide patient’s response 
to immunotherapy. Several clinical trials on im-
mune checkpoint inhibitors are undergoing. A 
phase-2 trial of anti-PD-1 mAb pembrolizumab 
revealed that only 1 of 22 osteosarcoma patients 
shows a partial response47. Although the outcome 
is dismal, it does prove that immune checkpoint 
blockade can be beneficial to osteosarcoma pa-
tients. Therefore, to reach an optimized therapy, 
characterizing TME for osteosarcoma patient can 
facilitate the design of a suitable treatment. 

In our study, TME of the two subtypes exhib-
ited a great difference that C2 subtype was more 
active in immune response to tumor cells than 

Figure 15. The relation between risk score and inflammatory signatures. A, A heatmap presenting the expression of 
inflammatory signatures in high-risk and low-risk groups. Horizontal axis represents risk score and vertical axis represents 
each gene in inflammatory signatures. Red indicates relatively high expression and blue represents relatively low expression. B, 
The differential enrichment of inflammatory signatures in high-risk and low-risk groups. Kruskal-Wallis test was conducted. 
C, Pearson correlation analysis among risk score and inflammatory signatures. Red represents negative correlation and blue 
represents positive correlation. Correlation coefficients were presented in box.
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C1 subtype. Anti-tumor immune cells including 
activated B cells, activated CD4 T cells, activat-
ed CD8 T cells and NK cells were significantly 
enriched in C2 subtype, which contributed to a 
more favorable prognosis. The predicted immune 
response to immune checkpoint blockade was also 
more activated in C2 subtype, which was possi-
bly resulted from a higher expression of immune 
checkpoints in C2 subtype. Although TIDE pre-
diction manifested that T cell function was better 
in C1 subtype, T cell exclusion was more severe 
in C1, and this could lead to a lower efficiency of 
immunotherapy. In addition, C2 subtype could 
benefit much from four chemotherapeutic drugs, 
therefore, this molecular subtyping could be much 
more helpful in guiding the personalized manage-
ment to osteosarcoma patients with metastasis.

Based on metabolism-related genes, we con-
structed a 5-gene prognostic model with robust 
performance to predict prognosis for osteosarco-
ma patients. Through correlation analysis with 
inflammatory signatures, we found that all the 
seven signatures were higher-expressed in low-
risk group, suggesting that inflammatory re-
sponse was positively correlative with prognosis. 
For example, interferons are a group of cytokines 
with anti-tumor property against osteosarcoma 
in xenograft models44. High inflammation of C2 
subtype with favorable prognosis indicated that 
metabolism-related pathways could serve as an 
important role in regulating inflammatory re-
sponse in TME. In addition, we used risk score 
together with clinical features to build a nomo-
gram that could be more conveniently applied 
in clinical practice. Importantly, the nomogram 
exhibited a better performance than the 5-gene 
prognostic model in predicting overall survival. 

Some limitations of this study should be noted. 
Firstly, the samples lacked some clinical fol-
low-up information, particularly some diagnostic 
detail information, therefore we did not consider 
factors such as the presence of other health states 
of the patient to distinguish diagnostic biomark-
ers. Secondly, the results were obtained only by 
bioinformatics analysis, which was insufficient; 
moreover, an experimental validation is needed 
to confirm these results. 

Conclusions

This study proposed two molecular subtypes 
based on metabolism-related genes. Two novel 
subtypes showed distinct differences in progno-

sis, enriched pathways and TME, which strongly 
supported that metabolism played a critical role 
in tumorigenesis. Notably, the subtyping had a 
great significance in providing assistance in clini-
cal decision-making, especially for metastatic os-
teosarcoma patients. Furthermore, we established 
a 5-gene prognostic signature to predict survival 
for osteosarcoma patients. Overall, the study em-
phasized the importance of metabolism in tumor 
development, and further revealed the crosstalk 
between metabolism and TME responsible for 
anti-tumor activity.
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