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Abstract. - OBJECTIVE: Prostate cancer
is a malignancy with unsatisfactory prognosis.
Mounting proofs have verified that chromatin
regulators (CRs) participate in the developmen-
tal process of tumor. Hence, this research in-
tended to reveal the biofunction and prognosis
significance of CRs in prostate cancer patients.

MATERIALS AND METHODS: CRs were ob-
tained from previously finished topic research.
The mRNA expression and clinical data were ac-
quired from TCGA and GEO datasets. Molecular
subtypes were identified by ConsensusCluster-
Plus package. Cox regressive analyses, LASSO
regressive analyses and stepAlC were utilized to
screen the prognosis-related genes and estab-
lish the risk model for forecasting outcomes in
prostate cancer. Genomic variation, immune in-
filtration, drug sensitivity difference and analy-
sis of clinical features were all investigated.

RESULTS: 462 samples in TCGA cohort study
were classified into two clusters base on 23 prog-
nosis CRs. Patients in cluster 1 (clust1) present-
ed better overall survival (OS), lower tumor mu-
tation burden (TMB), enhanced immune infiltra-
tion, higher immune escape and hyposensitivity
to several drugs. Furthermore, our team smooth-
ly established and substantiated a 10 CR-derived
model for forecasting the prognostic results of
individuals with prostate cancer, which was an in-
dependent prognosis indicator. Functional anal-
yses revealed that CRs were predominantly en-
riched in tumor-associated signal paths. The
CR-derived model was related to immunocyte in-
filtration and sensitive to several drugs.

CONCLUSIONS: Holistically, the present re-
search offered fresh enlightenment regarding
the biofunction of CRs in prostate cancer. Our
team discovered a dependable prognosis mark-
er for the survival of individuals with prostate
cancer.
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Introduction

Prostate carcinoma is one of the most common
diagnosed tumors in males and is particularly
common in developing nations'. About 15% of
prostate cancer cases are high-risk and potential-
ly fatal®. Although radical therapies like prostate
excision and radiation treatment have been suc-
cessful in prostate cancer, there are still problems
like determination and localization of prostate
lesions, that remain to be solved®*. To ameliorate
the survival and quality of prostate carcinoma
sufferers, further research is needed to persona-
lize treatment, which depends on the knowledge
of the developmental process of prostate cancer.

Chromatin regulators (CRs) are indispensable
regulatory elements in epigenetics’. In healthy
mammalian cells, chromatin architecture is modu-
lated by epigene events, like heritable DNA CpG
methylation and histone modifications and chro-
matin remodeling, which ensures normal genetic
expressions in reaction to different bio-signals®.
During tumorigenesis, abnormal regulation of epi-
gene mechanisms induces abnormal chromatin
conformation and aberrant stimulation or silencing
of genes that control cellular development and
death, hence facilitating tumorigenesis and deve-
lopmental process’™. CRs have been shown to be
aberrantly expressed and correlated to prognosis
in different tumor types. HMGAI is on the short
arm of human chromosome 6 (6p21), a region par-
ticipating in chromosome abnormities related to
mankind tumors. An elevation of the expressing
level of HMGAL is related to high grade can-
cers and advanced prostate cancer, overexpressed
HMGALI in prostate cancer lineage cells induced
chromosomal unsteadiness and structure abnor-
mities'™!". In prostate cancer, histone demethylase
KDMT7A controls androgen receptor activity and
tumor growth'?. EZH2, a histone lysine methyl-
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transferase, participated in different malignancy
phenotypes like programmed cell death and meta-
stases in prostate cancer'.

In the present paper, our team highlighted
the expression profile of CRs in prostate cancer
and their prognostic value through bioinformatics
analysis. We intended to construct and demon-
strate a prognosis marker on the basis of CRs
that can validly forecast the prognosis of indivi-
duals with prostate cancer. Moreover, our team
explored the association between the prognostic
features of prostate cancer and the immune mi-
cro-environment, which provides a theory-wise
foundation for immuno-checkpoint treatment re-
gimens.

Materials and methods

Raw Data Acquisition

Public prostate cancer RNA-seq data, clinico-
pathological characteristics, and mutation data
(CNV and SNP) were acquired from TCGA
database and GEO database (GSE116918). In
total, 462 tumor and 52 normal specimens in the
TCGA-prostate cancer cohort and 248 tumor spe-
cimens in the GSE116918 cohort were utilized for
analyses. An overall 870 CRs were acquired from
previously finished topic researches®.

Cluster Analysis

As per the standards of [logFC| >1 and FDR
< 0.05, CRs with differential expression were
determined via limma package of R program.
Next, above differentially expressed CRs were
studied via univariable Cox analysis through the
Coxph function of R package survival in TCGA
dataset, and p < 0.05 was considered the liminal
value. Then, molecular typing was performed
separately for TCGA dataset samples via the R
package Consensus Cluster Plus 1.52.0'. Pam
arithmetic and “Pearson” distance were utilized
to complete 500 bootstraps with every bootstrap
having specimens (> 80%) of TCGA dataset.
Cluster number k was between 2 and 10, and
the optimum k was identified as per cumulative
distribution function (CDF) and AUC. The clu-
stering was substantiated in GSE116918 dataset.
Survival curves (KM curves) between molecular
subtypes were then analyzed for difference. In
addition, differences in the distribution of clinical
characteristics between molecular subtypes were
compared and a Chi-square test was completed; p
< 0.05 had significance on statistics.
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Mutation Analysis

Waterfall plot was generated to explore the de-
tailed single-nucleotide variant (SN'V) characteri-
stics between molecular subtypes via “oncoplot”
function in R software, “maftools” package'.

Cell-type Identification by
Estimating Relative Subsets of
RNA Transcripts (CIBERSORT)
CIBERSORT analyses were utilized to com-
pare diversities in different immunocytes in mo-
lecular subtypes. Wilcox.test analyses were com-
pleted to identify the difference of 22 kinds of
infiltrating immunocyte score between molecular
subtypes. The “ggplot2” package'® was used to
realize the visualization of the distributional sta-
tus of the diversities in 22 kinds of infiltration
immunocytes.

Computation of Immune Score, Stromal
Score, and Estimate Score

R software ESTIMATE arithmetic’® was uti-
lized to compute overall stroma level (Stromal
Score), the immunocyte infiltration (Immune
Score) and the combination (ESTIMATE Score)
of sufferers in the TCGA-prostate cancer cohort
using Wilcox.test analysis to determine differen-
ce between molecular subtypes.

Tumor Immune Dysfunction and
Exclusion (TIDE)

TIDE?*?! is a calculation framework designed
to assess the potential of cancer immunoescape
from the genetic expression profiles of tumor spe-
cimens. TIDE was used to predict sample respon-
ses in the TCGA-prostate cancer datasets, and to
compare the proportion of treatment responses in
different subtypes, as well as TIDE scores.

Drug Sensitivity Analysis

pRRophetic*? was used to predict the sensiti-
vity of erlotinib, sunitinib, paclitaxel, VX-680,
TAE684 and crizotinib to IC50 in molecular
subtypes.

Establishment and Corroboration of a
Prognosis Model on the Basis of CRs

Our team completed univariable Cox re-
gressive analyses to identify the prognosis si-
gnificance of CRs. Then lasso-penalized Cox
regressive analyses were leveraged to establish
the prognosis risk model via the glmnet R
package. Risk scoring was computed via the
equation below:
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n
Risk Score = Z Coef ficient (mRNAiQ) X Expression (mRN Ai)

i=1

where Coefficient is lasso Cox regressive
model coefficient of the relevant mRNA. Our
team separated prostate cancer sufferers into
risk,, ~and risk, groups as per the mid-value
of risk scoring. Survival analyses were comple-
ted via the Kaplan-Meier (K-M) curve to assess
the prognoses. Time-associated ROC analyses
were utilized to analyze the prognosis signi-
ficance of our modeling method through the
survival ROC package. GSE116918 data set was
deemed as the verified set for further validating
the prognosis value of the modeling method.
In addition, diversities in the distributional
status of clinical characteristics between these
two groups were compared and a Chi-square
test was utilized; p < 0.05 had significance on
statistics.

A predictive Nomogram was Developed

Univariable cox regressive analyses were com-
pleted to identify the association between age, T
Stage, N Stage, Cluster and Risk Score. Clinical
factors which could forecast the prognoses in an
independent manner were identified via multiva-
riable cox regressive survival analyses as per Ha-
zard ratio (HR), 95% CI and p-value. Clinical va-
riables and the CR-derived hallmark risk scoring
were utilized to construct a nomograph related to
the outcomes for assessing the possibility of 1-,
3-, and 5-year OS for prostate cancer sufferers.
The concordance index (C-index) and correction
curve were utilized to analyze the prediction ca-
pability of the nomograph.

Statistical Analysis

The R program 4.0.3 was utilized for statistic
assay. K-M curves were utilized for analyzing
survival status via the Survminer R package 2.43-
3. p<0.05 had significance on statistics (*» <0.05;
**p<0.01; ***¥p<0.001; ****p<0.0001).

Results

Construction of CRs-Related Subtypes
Limma package was used to analyze DEGs
between tumor and healthy specimens in TCGA
cohort study, and 756 up-regulated and 1,199
down-regulated genes were discovered (Figure
1A). Among them, 58 genes belonged to CRs

(Figure 1B). 23 prognosis factors were deter-
mined via univariable cox survival analyses
(Figure 1C), and they were closely correlated
(Figure 1D).

Based on 23 prognostic factors, 462 samples
in TCGA cohort study were classified into two
clusters using ConsensusClusterPlus package
(Figure 2A-C). KM survival curve results reve-
aled that sufferers in clustl had a better survival
duration compared to clust2 in TCGA cohort
study and GSE116918 dataset (Figure 2D, E). Of
the distributional status of two clusters in diver-
se clinical characteristics, remarkable diversity
in Event in TCGA cohort study were observed
(Figure 3).

Functional Enrichment Analysis of
CRs-Related Subtypes

To better reveal the value of our sub-types,
the function enrichment was analyzed. First, 154
significance pathways between two clusters we-
re obtained using GSVA package (Figure 4A).
GSEA analysis in ClusterProfiler package di-
splayed that the majority of pathways were sti-
mulated in clustl: for example, enrich score of
ALLOGRAFT REJETION were higher in clustl
than that in clust2; moreover, this pathway also
activated in clustl(Figure 4B).

Analysis of Genomic Variation in
CRs Related Subtypes

Genomic variation between two clusters we-
re analyzed in TCGA cohort study. Firstly, we
extracted molecular genetic characteristics, in-
cluding Aneuploidy Score, Nonsilent Mutation
Rate, Fraction Altered, Number of Segments and
Homologous Recombination Defects, the results
showed that those characteristics were higher in
cluster2 than in clusterl (Figure 5A). Moreover,
our team identified the top 15 mutation genes
based on SNV data using maftools software (Fi-
gure 5B). TP53 and SPOP are two top mutation
genes in which missense variants facilitated the
majority of SN'Vs.

Immune Infiltration Level Analysis and
Drug Sensitivity Analysis in two Clusters
Next, we evaluated the speculated percentage
of 22 immunocytes in 2 clusters in TCGA data-
set. 8 kinds of immunocytes with significantly
different distributions between two clusters were
found (Figure 6A). Surprisingly, clustl had higher
score of StromalScore, ImmuneScore and ESTI-
MATEScore (Figure 6B). Our team afterwards

277



W.-B. Liao, L. Liu

B

TCGA. diff.gene

chromatin_regulator

Figure 1. Determination of
chromatin regulators with dif-
ferential expression. A, DEGs
between prostate carcinoma
and para-carcinoma tissue in
TCGA dataset. B, Venn of
differentially expressed genes

= TusN
g
& ® Dpown .
£ o and chromatin regulators. C,
E
N o Lo
. Forest map of significant pro-
gnostic chromatin regulators.
D, Heatmap of significant pro-
gnostic chromatin regulators.
; H
: o <
log2(Fold Change) a 5 - g Iz .
2 3EseB8< o2 982
Be-wsal=cs8 228, _SEagg82
SEIZIEREE5CEex22=8830g8g=z3sz28E2
c D 855523283582 E20E28508¢
pralue Hazard ratio ' apoBeCcsC [T
AOBECIC 0049 03100657099 - p s G B -
CBX8 0.007 1934(1.200-3.117) | —— ;
EYAL 0002 0.593(0423-0.830) [ EYAL wrsaas o R R
EvA4 0002 0361(0.159-0689) el EYAd » R e+ R SRR i
B <ol 26317933568 v —— EZH2 | ST TN T
FOXOL 0002 0SH0371-0509) - FoXol omnsis  wer o R B
GLYATLI 0028 08370.713-0981) =] GLYATLI #as% : BB ex s e sk ke
HIURP <0001 2017(1.609-2.786) Ve HIURP  swsmcmcndiniiers  [[lsoncns  wlimmesmmmammos: [ bk
HMGB3 0008 1868(1.176-2967) " —— HMGB3  okissmtatin ot +- i o+ 4 i ok o Rk ok e R
KATA <0001 2225(1.585-3.123) Ve KAT2A ke I Tee————— e
oGT <0.001 1.796(1.345-2398) 1 oGT EREEY == e S R
5 —
PARP 0028 1S2K(1L081-2230) ! rares [ TR B . e i
PHF2IB, 0.002 1.711(1.216-2.408) | —— PHF21B Y —
PARGCIA Ot 02016060 b ) s
o s s - PrARGCI  ERHRRHRATR - g Fire
RCCI 0036 1423010241979 — RAC3 [ onk i ol + #ashbofi: ook
RPSGKA4 <0001 2071(1365-3.134) U —a— RCCI somsssiithass s kibssstiont s s
RUVBLI <0001  2.020(1330-3.069) | —— RPSGKAd  smsmemppsrsspmseaseomss «  xx prmpeers fpessmancs « tormsn
SNAR oms  07750.620-0969) bt RUVBLI MR, s o EEe s R o
Ssis2 0006 1S20(Li26-205]) J—-— ROV e S S S )
TOPA <000 L60S(1302-1.980) e SSISLY  ww s NEME [MBF s semr  semcmemer  sssoooofibeo @i
ZBIBIS 0005 0.624(0.448-0367) - TOP2A [ R R e
2ZNF516 0038 0.703(0.504-0981) o ZBTB38 —_— L
oo | 10 | 20 | 30 nests e B R oo il
Hazard matio L —— ]
-1 -0.5 0 05 1
A consensus CDF B Delta area C consensus matrix k=2
P
¢ oz
Z
5
O o
5 21 °
= g
o & 34
= :
s H S
= Z
= T _
- s 7
L]
o,
—_—
00 - o—o °
T T T T T T < T T T T T
H g 2 H 3 s 2 s . s w0
consensus ind ex k
D E
1.00 Group 1.00 Group
- clust] = clust]
- chs2 | | ey T, T - Clust2
07s 07s
2 2
| Ry H
3 2
£ £ N
& 050 & 050
2 4
H H
& : a
025 H 0.2
p<0.0001 ' p=0.029
0.00 | 0.00
g clust 1222 31 0 0 Selust1 1121 110 99 44 0
H
& ausa{240 31 4 0| Seaweqi2z 118 102 37 0
g 3 % [ b 2 7 7 i3
Time Time

Figure 2. Identification of chromatin regulators associated molecular subtypes. A, CDF curve of patients in TCGA dataset
when K=2-10. B, CDF delta area when K=2-10. C, ConsensusClusterPlus identifies two chromatin regulators associated
molecule sub-types. D, K-M curve between C1 and C2 sub-types in TCGA cohorts. Log-rank test was utilized. E, K-M curve
between C1 and C2 sub-types in GSE116918 dataset. Log-rank test was utilized.
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Figure 3. The distributional status of diverse clinical characteristics in C1 and C2 sub-types, which involved T stage, N stage,
M stage, and Age, Event and cancer status. Chi-square test was utilized.

evaluated the 10 enriched oncogenesis pathways
and discovered that 8 of 10 oncogenesis pathways
were enriched in a differential manner between
two clusters (Figure 6C).

Moreover, the forecasted scores of immune
therapy biomarkers were computed via the TI-
DE arithmetic. TIDE and IFNG were greater
in clustl group vs. clust2 group (Figure 6D).
Our team assessed the qualities of TIDE T cell
function disorder scores, which were also higher
in clustl group (Figure 6D). T cell exclusion, as
well as two cellular types discovered to suppress
T cell infiltration in cancers [i.g., myeloid-deri-
ved suppressor cells (MDSC) and the M2 sub-
type of tumor-associated macrophages (TAM.
M?2)], were all higher in clustl group (Figure
6D). Those outcomes indicated that sufferers in
clust2 were better candidates for immunothe-
rapy.

To ameliorate the treatment efficacy of sufferer
prostate cancer, our team explored the susceptibi-
lity diversity of commonly seen chemo medicines
amongst the two groups. The outcomes of GDSC
database analyses revealed that the IC50 results
of medicines like Erlotinib, Sunitinib, Paclitaxel,
VX-680, TAE684 and Crizotinib were higher in
patients of cluster2 than those of clusterl, which
unveiled that sufferer in the Cluster2 were re-
markably more susceptible to those medicines
(Figure 6E).

Construction and Corroboration of
CR-Derived Signature

An overall 981 CRs, which involved 81
CRs with downregulation and 901 CRs with

upregulation, were determined as CRs with
differential expression between two clusters in
the TCGA dataset (Figure 7A), of which 778
genes belonged to tumor key genes (Figure 7B).
Based on 778 CR, our team utilized univariable
Cox regressive analyses to investigate the pro-
gnosis merit of CR. The outcome revealed that
245 of them exhibited prognosis significance.

Afterwards, LASSO Cox regressive analyses
and stepAIC were utilized to establish a pro-
gnosis hallmark for prostate cancer sufferers.
A risk model was smoothly developed using 10
genes (FCERIA, ZFP36L2, LAPTM4B, TRIM?2,
SLC2243, SCUBE2, LCN2, PAQR6, NOXAI and
CDC20) (Figure 7C, D). The risk scoring was
computed via the coefficients of 10 CRs ac-
cording to the following equation: risk score =
(0.522*FCERI1A4 expression) + (0.309*ZFP36L2
expression) + (0.365*LAPTM4B expression)
- (0.359*TRIM?2 expression) - (0.143*SLC22A43
expression) + (0.235*SCUBE2 expression) -
(0.347*LCN2 expression) + (396¥*PAQRG6 expres-
sion) + (0.4*NOXA I expression) + (0.449* CDC20
expression).

Patients were classified into risk,  and risk,
groups as per the mid-value of risk scoring.
The mortality rates of riskhigh sufferers were re-
markably greater vs. risk, ~sufferers in TCGA
dataset (p < 0.0001) (Figure 8A) and GSE116918
dataset (p < 0.0001) (Figure 8C). The time-reliant
ROC analyses revealed that the prognosis accura-
teness of the CR-derived hallmark was 0.83, 0.83
and 0.8 at 1-, 3-, 5-year separately in the TCGA
dataset (Figure 8B) and 0.95, 0.79 and 0.79 at 1-,
3-, S5-year separately in the GSE116918 dataset
(Figure 8D).
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Figure 5. Genomic variation between two clusters were analyzed in TCGA cohort study. A, Aneuploidy Score, Nonsilent
Mutation Rate, Fraction Altered, Number of Segments and Homologous Recombination Defects, were higher in cluster2 than
those in clusterl. B, The top 15 mutated genes between two clusters.

Relationship Between the CR-Derived
Signature and Clinical Features

The result (Figure 9A) revealed that remar-
kable diversities existed between risk .~ and
risk, ~ sufferers in Cluster (p=0.0011), gl" sta-
ge (p=0.0109), N stage (p=0), Age (p=0.015),
Event (p=0) and Cancer status (p=0) but no
remarkable diversities existed in M stage (p=1).

In addition, stratified analyses were completed
to explore the prognosis merit of the hallmark
in sub-groups. This study discovered that the
CR-derived hallmark exhibited splendid ability
in forecasting prognoses in clustl vs. clust2, NO
vs. N1, age > 60 vs. age <=60, T1-T4 stage, Ali-
ve vs. Death, Cancer status, except MO vs. M1
(Figure 9B).
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Figure 6. Depiction of TME and immunotherapy between two sub-types in TCGA dataset. A, Enrichment of 22 immunocytes
assessed via CIBERSORT. B, ESTIMATE approach for computing stroma scoring and immunity scoring. C, Differences of 10
oncogenic pathways score between two clusters in TCGA dataset. D, TIDE scoring, IFNG scoring, T cell dysfunction disorder
scoring, T cell exclusion scoring, MDSC and TAM.M2 scoring of C1 and C2 sub-types in TCGA dataset. E, GDSC database
analyses revealed that the IC50 results of medicines like erlotinib, sunitinib, paclitaxel, VX-680, TAE684 and crizotinib were

higher in patients in clust2 than in those in clustl.

Pathways Characteristics of
CR-based Signature

In order to better study the potential regu-
latory pathways of signature, enrichment sco-
ring of every pathway was computed via the
GSVA package of R language, and the correlation
between risk scoring and enrichment scores of
pathways was analyzed by Rcorr function of
Hmisc package. The outcome revealed that 9
pathways were remarkably related to signature
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(Figure 10A). Among them, 3 pathways were
positively correlated with risk score, while 6 pa-
thways were negatively correlated (Figure 10B).

CR-Derived Signature Was an
Independent Index of the Prognostic
Results of Prostate Cancer

Univariate and multivariate Cox analyses were
executed to corroborate if such hallmark could
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independently serve as a prognosis index. Uni-
variable analyses revealed that T stage, N stage,
Cluster and Risk type were evidently linked to
the survival of prostate cancer sufferers (Figure
11A). Multivariable analyses revealed that T sta-

ge, Cluster and Risk type were evidently linked
to prognoses (Figure 11B). Those outcomes un-
veiled that the CR-derived hallmark could inde-
pendently serve as a prognosis index for prostate
cancer sufferers.

A Names p-value Hazard Ratio(95% CI)
Age 0.115 1.025(0.994,1.057)
T.Stage —— 0.000 3.054(2.007,4.648)
N.Stage i 0.002 2.153(1.318,3.516)
Cluster —a— 0.000 2.529(1.611,3.971)
Risk Type [ 0.000 4.799(2.918,7.892)

0.‘71 1‘.0 l.l4l 2..0
HR
B Names p-value Hazard Ratio(95% CI)
I
Age [ ] 0.401 1.013(0.982,1.045)
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N.Stage - 0.413 1.236(0.744,2.052)
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Risk Type i 0.000 4.423(2.499,7.828)
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Figure 11. The hallmark could independently serve as a prognosis indicator. Univariable (A) and multivariable (B) Cox
regressive analyses of risk scoring and clinical characteristics. C, Calibration for nomograph based on OS. DCA for assessing
the ability of risk scoring, clusters, M staging and nomograph in forecasting prognoses. A nomograph on the basis of risk

scoring and T staging for staging 1-, 3- and 5-year OS.
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For the sake of predicting the survival of Immune Infiltration Level Analysis and
prostate cancer sufferers, our team developed a Drug Sensitivity Analysis in CR-Based
nomograph comprising T stage, cluster and risk Signature

scoring. Nomography predicted the 1-, 3-, 5-year We also evaluated the speculated percentage
OS of sufferers with prostate cancer (Figure 11C). of 22 immunocytes in risk,, - and risk, sufferers
The correction curve revealed that the actual OS in the TCGA data set. 8 kinds of immunocytes
of sufferers coincided with the forecasted results with significantly different distributions between
(Figure 11C). The nomogram had the favorable risk,. and risksufferers (Figure 12A). Surpri-
prediction ability (Figure 11C). s1ng1y, r1sk , sufferers had higher score of Stro-
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Figure 12. Characterization of tumor microenvironment and immunotherapy between risk,, . and risk _sufferers in TCGA
dataset. A, Enrichment of 22 immunocytes assessed via CIBERSORT. B, ESTIMATE approacgh for computing stroma scoring
and immunity scoring. C, Differences of 10 oncogenic pathways score between two clusters in TCGA dataset. D, TIDE
scoring, IFNG scoring, T cell function disorder scoring, T cell exclusion scoring, MDSC and TAM.M2 scoring of risk,

and risk  sufferers in TCGA data set. E, GDSC database analyses revealed that the IC50 results of medicines like erlotlnlﬁ

sun1t1n1b paclltaxel VX-680, TAE684 and crizotinib were greater in risk, high sufferers in contrast to risk,  sufferers.
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malScore, ImmuneScore and ESTIMATEScore
(Figure 12B). Our team then evaluated the 10
enriched oncogenesis pathways and discovered
that 7 of 10 oncogenesis pathways were enriched
in a differential manner between 2 clusters (Fi-
gure 12C).

Moreover, the forecasted scoring of immune
therapy biomarkers was computed via the TIDE
arithmetic. TIDE and IFNG were greater in ri-
sk,. . sufferers vs. risk, sufferers (Figure 12D).
We evaluated the quahty of TIDE T cell function
disorder scoring, which also higher in risk, . suf-
ferers (Figure 12D). T cell exclusion and l\/fDSC
except for TAM.M2, were all higher in risk,.
sufferers (Figure 12D) Those outcomes unvelled
that risk, ~sufferers were better candidates for
immunotherapy.

We also explored the susceptible diversity of
commonly seen chemo medicines amongst these
2 groups. The outcomes revealed that the IC50
results of medicines like erlotinib, sunitinib, VX-
680, TAE684 and crizotinib were greater in risk
o sufferers vs. risk, =~ sufferers, which unveiled
that vs. risk  sufferers were remarkably more
susceptible to those medicines (Figure 12E).

Discussion

In this study, 23 CRs with differential expres-
sion between prostate cancer tissues and normal
tissues and associated with prognosis of prostate
cancer were firstly screened from TCGA data-
base. Based on 23 CRs, two molecular subtypes
with significant prognostic differences, muta-
tional status, and immune characteristics were
identified. We then identified 10 CRs associated
with prostate cancer prognosis by univariable
and lasso Cox regressive analyses. Based on
those 10 CRs, our team developed and corrobo-
rated a risk model related to prognoses. Survival
analysis and ROC analysis show that the model
has satisfactory prediction merit. Eventually,
univariable and multivariable Cox analyses re-
vealed that the risk scoring on the basis of 10
CRs independently serve as a prognosis index of
prostate cancer. In addition, our team discovered
that this marker was tightly associated with im-
munocyte infiltration and sensitive to a variety
of chemotherapy drugs.

As a core part of the epigenetic mechanism,
CRs regulate the transcriptional process of sub-
stantial cell genes, like oncogenes. Hence, their
changed activity can greatly affect global genetic

expression patterns and healthy cell signal tran-
smission networks, facilitating the proliferative
ability of oncogenes and eventual oncogenesis®.
Largescale sequence identification research of
mankind tumors’ points to epigenetic modulators
as hotspots for gene variants in gastric**, liver®,
ovarian?®, prostate cancer®’, osteosarcoma?®®, whi-
ch highlights the significance of gene and epige-
netic gatekeepers in the developmental process of
tumor. Frequent mutations in genes encoding hi-
stones themselves in brain tumors further support
the critical role of chromatin structure in tumori-
genesis?®*, In this work, our team first identified
2 molecular subtypes of prostate cancer based on
CRs and established a 10 CRs-signature.

FCERIA is capable of encoding an IgE accep-
tor, which is primarily expressed on the surfaces
of mastocytes®. FCERIA has been discovered to
participate in mammary carcinoma®, glioma®,
ZFP36L2, zinc finger protein 36, C3H type-like
2 (called as Brf2, Erf2 and TislID, as well);
it also has anti-cancer biofunction in multiple
tumor types*. Overexpressed ZFP36L2/TIS11D
WT gene suppressed the development of Hela
cells®. Consecutively, studies**” have confirmed
that Lysosomal protein transmembrane 4 beta
(LAPTM4B) is aberrantly expressed in diverse
malignancies and exerts an effect on tumor de-
velopment. LAPTM4B is related to prostate can-
cer’®. Evidence have suggested that the Tripartite
motif-containing 2 (TRIM2) protein is related
to oncogenesis effects in multiple malignant tu-
mors, like lung adenocarcinoma®, colonic and
rectal carcinoma®, and pancreatic cancer', via
modulating cellular proliferative, metastatic, and
transcriptional activities, as well as the ubiquiti-
nation route.

The expression of SLC2243 is significantly
higher in colorectal cancer, and affects prolife-
ration, migration, invasion, cell cycle and apop-
tosis*?. SCUBE?2 increase suppressed the deve-
lopmental process of cellular cycle, repressed
cellular proliferative, metastatic, and invasive
abilities, and it facilitates programmed cell death
in breast cancer cells®. In prostate cancer cells,
lipocalin-2 (LCN2) depletion induces attenuated
proliferative ability, decreases expressing levels
of proinflammation cell factors, lower adherence,
and abnormal distributional status of F-actin*.
Upregulated PAQRG is related to androgen recep-
tor signal transmission and unsatisfactory pro-
gnoses in prostate carcinoma**#, CDC20 with its
gene mutations are remarkably related to inferior
survival of prostate cancer*”*.
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Limitations

Despite the fact that we used bio-informatics
methods on a large sample to identify two gene-
tic subgroups of prostate cancer with significant
prognostic differences, as well as a 10 CRs-si-
gnature, we are required to note the limitations of
our work. In the future, we plan to place a greater
emphasis on research that is both fundamentally
experimental and functionally in-depth. Other
considerations were not taken into account on our
end because the samples lacked essential clinical
follow-up information, most notably diagnostic
specifics, such as whether or not the patients had
other health conditions, when differentiating the
molecular sub-types.

Conclusions

In conclusion, we generated two subgroups
and a 10 CRs signature based on CRs in order to
guide tailored therapy for prostate cancer patien-
ts. CRs are vital for forecasting the prognostic
results of prostate cancer sufferers and targeting
CRs might be a valid strategy to treat prostate
carcinoma. This research ought to be corrobora-
ted by more studies.
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