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Abstract. – OBJECTIVE: Prostate cancer 
is a malignancy with unsatisfactory prognosis. 
Mounting proofs have verified that chromatin 
regulators (CRs) participate in the developmen-
tal process of tumor. Hence, this research in-
tended to reveal the biofunction and prognosis 
significance of CRs in prostate cancer patients.

MATERIALS AND METHODS: CRs were ob-
tained from previously finished topic research. 
The mRNA expression and clinical data were ac-
quired from TCGA and GEO datasets. Molecular 
subtypes were identified by ConsensusCluster-
Plus package. Cox regressive analyses, LASSO 
regressive analyses and stepAIC were utilized to 
screen the prognosis-related genes and estab-
lish the risk model for forecasting outcomes in 
prostate cancer. Genomic variation, immune in-
filtration, drug sensitivity difference and analy-
sis of clinical features were all investigated. 

RESULTS: 462 samples in TCGA cohort study 
were classified into two clusters base on 23 prog-
nosis CRs. Patients in cluster 1 (clust1) present-
ed better overall survival (OS), lower tumor mu-
tation burden (TMB), enhanced immune infiltra-
tion, higher immune escape and hyposensitivity 
to several drugs. Furthermore, our team smooth-
ly established and substantiated a 10 CR-derived 
model for forecasting the prognostic results of 
individuals with prostate cancer, which was an in-
dependent prognosis indicator. Functional anal-
yses revealed that CRs were predominantly en-
riched in tumor-associated signal paths. The 
CR-derived model was related to immunocyte in-
filtration and sensitive to several drugs.

CONCLUSIONS: Holistically, the present re-
search offered fresh enlightenment regarding 
the biofunction of CRs in prostate cancer. Our 
team discovered a dependable prognosis mark-
er for the survival of individuals with prostate 
cancer.

Key Words:
Chromatin regulators, Molecular subtypes, Pros-

tate cancer, The Cancer Genome Atlas, Signature, 
Prognosis.

Introduction

Prostate carcinoma is one of the most common 
diagnosed tumors in males and is particularly 
common in developing nations1. About 15% of 
prostate cancer cases are high-risk and potential-
ly fatal2. Although radical therapies like prostate 
excision and radiation treatment have been suc-
cessful in prostate cancer, there are still problems 
like determination and localization of prostate 
lesions, that remain to be solved3,4. To ameliorate 
the survival and quality of prostate carcinoma 
sufferers, further research is needed to persona-
lize treatment, which depends on the knowledge 
of the developmental process of prostate cancer.

Chromatin regulators (CRs) are indispensable 
regulatory elements in epigenetics5. In healthy 
mammalian cells, chromatin architecture is modu-
lated by epigene events, like heritable DNA CpG 
methylation and histone modifications and chro-
matin remodeling, which ensures normal genetic 
expressions in reaction to different bio-signals6. 
During tumorigenesis, abnormal regulation of epi-
gene mechanisms induces abnormal chromatin 
conformation and aberrant stimulation or silencing 
of genes that control cellular development and 
death, hence facilitating tumorigenesis and deve-
lopmental process7-9. CRs have been shown to be 
aberrantly expressed and correlated to prognosis 
in different tumor types. HMGA1 is on the short 
arm of human chromosome 6 (6p21), a region par-
ticipating in chromosome abnormities related to 
mankind tumors. An elevation of the expressing 
level of HMGA1 is related to high grade can-
cers and advanced prostate cancer, overexpressed 
HMGA1 in prostate cancer lineage cells induced 
chromosomal unsteadiness and structure abnor-
mities10,11. In prostate cancer, histone demethylase 
KDM7A controls androgen receptor activity and 
tumor growth12. EZH2, a histone lysine methyl-
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transferase, participated in different malignancy 
phenotypes like programmed cell death and meta-
stases in prostate cancer13. 

In the present paper, our team highlighted 
the expression profile of CRs in prostate cancer 
and their prognostic value through bioinformatics 
analysis. We intended to construct and demon-
strate a prognosis marker on the basis of CRs 
that can validly forecast the prognosis of indivi-
duals with prostate cancer. Moreover, our team 
explored the association between the prognostic 
features of prostate cancer and the immune mi-
cro-environment, which provides a theory-wise 
foundation for immuno-checkpoint treatment re-
gimens.

Materials and methods

Raw Data Acquisition
Public prostate cancer RNA-seq data, clinico-

pathological characteristics, and mutation data 
(CNV and SNP) were acquired from TCGA 
database14 and GEO database15 (GSE116918). In 
total, 462 tumor and 52 normal specimens in the 
TCGA-prostate cancer cohort and 248 tumor spe-
cimens in the GSE116918 cohort were utilized for 
analyses. An overall 870 CRs were acquired from 
previously finished topic researches5.

Cluster Analysis
As per the standards of |logFC| >1 and FDR 

< 0.05, CRs with differential expression were 
determined via limma package of R program. 
Next, above differentially expressed CRs were 
studied via univariable Cox analysis through the 
Coxph function of R package survival in TCGA 
dataset, and p < 0.05 was considered the liminal 
value. Then, molecular typing was performed 
separately for TCGA dataset samples via the R 
package Consensus Cluster Plus 1.52.016. Pam 
arithmetic and “Pearson” distance were utilized 
to complete 500 bootstraps with every bootstrap 
having specimens (≥ 80%) of TCGA dataset. 
Cluster number k was between 2 and 10, and 
the optimum k was identified as per cumulative 
distribution function (CDF) and AUC. The clu-
stering was substantiated in GSE116918 dataset. 
Survival curves (KM curves) between molecular 
subtypes were then analyzed for difference. In 
addition, differences in the distribution of clinical 
characteristics between molecular subtypes were 
compared and a Chi-square test was completed; p 
< 0.05 had significance on statistics.

Mutation Analysis
Waterfall plot was generated to explore the de-

tailed single-nucleotide variant (SNV) characteri-
stics between molecular subtypes via “oncoplot” 
function in R software, “maftools” package17.

Cell-type Identification by 
Estimating Relative Subsets of 
RNA Transcripts (CIBERSORT)

CIBERSORT analyses were utilized to com-
pare diversities in different immunocytes in mo-
lecular subtypes. Wilcox.test analyses were com-
pleted to identify the difference of 22 kinds of 
infiltrating immunocyte score between molecular 
subtypes. The “ggplot2” package18 was used to 
realize the visualization of the distributional sta-
tus of the diversities in 22 kinds of infiltration 
immunocytes.

Computation of Immune Score, Stromal 
Score, and Estimate Score

R software ESTIMATE arithmetic19 was uti-
lized to compute overall stroma level (Stromal 
Score), the immunocyte infiltration (Immune 
Score) and the combination (ESTIMATE Score) 
of sufferers in the TCGA-prostate cancer cohort 
using Wilcox.test analysis to determine differen-
ce between molecular subtypes.

Tumor Immune Dysfunction and 
Exclusion (TIDE)

TIDE20,21 is a calculation framework designed 
to assess the potential of cancer immunoescape 
from the genetic expression profiles of tumor spe-
cimens. TIDE was used to predict sample respon-
ses in the TCGA-prostate cancer datasets, and to 
compare the proportion of treatment responses in 
different subtypes, as well as TIDE scores.

Drug Sensitivity Analysis 
pRRophetic22 was used to predict the sensiti-

vity of erlotinib, sunitinib, paclitaxel, VX-680, 
TAE684 and crizotinib to IC50 in molecular 
subtypes.

Establishment and Corroboration of a 
Prognosis Model on the Basis of CRs

Our team completed univariable Cox re-
gressive analyses to identify the prognosis si-
gnificance of CRs. Then lasso-penalized Cox 
regressive analyses were leveraged to establish 
the prognosis risk model via the glmnet R 
package. Risk scoring was computed via the 
equation below:
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where Coefficient is lasso Cox regressive 
model coefficient of the relevant mRNA. Our 
team separated prostate cancer sufferers into 
riskhigh and risklow groups as per the mid-value 
of risk scoring. Survival analyses were comple-
ted via the Kaplan-Meier (K-M) curve to assess 
the prognoses. Time-associated ROC analyses 
were utilized to analyze the prognosis signi-
ficance of our modeling method through the 
survival ROC package. GSE116918 data set was 
deemed as the verified set for further validating 
the prognosis value of the modeling method. 
In addition, diversities in the distributional 
status of clinical characteristics between these 
two groups were compared and a Chi-square 
test was utilized; p < 0.05 had significance on 
statistics.

A predictive Nomogram was Developed
Univariable cox regressive analyses were com-

pleted to identify the association between age, T 
Stage, N Stage, Cluster and Risk Score. Clinical 
factors which could forecast the prognoses in an 
independent manner were identified via multiva-
riable cox regressive survival analyses as per Ha-
zard ratio (HR), 95% CI and p-value. Clinical va-
riables and the CR-derived hallmark risk scoring 
were utilized to construct a nomograph related to 
the outcomes for assessing the possibility of 1-, 
3-, and 5-year OS for prostate cancer sufferers. 
The concordance index (C-index) and correction 
curve were utilized to analyze the prediction ca-
pability of the nomograph. 

Statistical Analysis
The R program 4.0.3 was utilized for statistic 

assay. K-M curves were utilized for analyzing 
survival status via the Survminer R package 2.43-
3. p < 0.05 had significance on statistics (*p < 0.05; 
**p < 0.01; ***p < 0.001; ****p < 0.0001).

Results

Construction of CRs-Related Subtypes
Limma package was used to analyze DEGs 

between tumor and healthy specimens in TCGA 
cohort study, and 756 up-regulated and 1,199 
down-regulated genes were discovered (Figure 
1A). Among them, 58 genes belonged to CRs 

(Figure 1B). 23 prognosis factors were deter-
mined via univariable cox survival analyses 
(Figure 1C), and they were closely correlated 
(Figure 1D).

Based on 23 prognostic factors, 462 samples 
in TCGA cohort study were classified into two 
clusters using ConsensusClusterPlus package 
(Figure 2A-C). KM survival curve results reve-
aled that sufferers in clust1 had a better survival 
duration compared to clust2 in TCGA cohort 
study and GSE116918 dataset (Figure 2D, E). Of 
the distributional status of two clusters in diver-
se clinical characteristics, remarkable diversity 
in Event in TCGA cohort study were observed 
(Figure 3).

Functional Enrichment Analysis of 
CRs-Related Subtypes

To better reveal the value of our sub-types, 
the function enrichment was analyzed. First, 154 
significance pathways between two clusters we-
re obtained using GSVA package (Figure 4A). 
GSEA analysis in ClusterProfiler package di-
splayed that the majority of pathways were sti-
mulated in clust1: for example, enrich score of 
ALLOGRAFT_REJETION were higher in clust1 
than that in clust2; moreover, this pathway also 
activated in clust1(Figure 4B).

Analysis of Genomic Variation in 
CRs Related Subtypes

Genomic variation between two clusters we-
re analyzed in TCGA cohort study. Firstly, we 
extracted molecular genetic characteristics, in-
cluding Aneuploidy Score, Nonsilent Mutation 
Rate, Fraction Altered, Number of Segments and 
Homologous Recombination Defects, the results 
showed that those characteristics were higher in 
cluster2 than in cluster1 (Figure 5A). Moreover, 
our team identified the top 15 mutation genes 
based on SNV data using maftools software (Fi-
gure 5B). TP53 and SPOP are two top mutation 
genes in which missense variants facilitated the 
majority of SNVs.

Immune Infiltration Level Analysis and 
Drug Sensitivity Analysis in two Clusters

Next, we evaluated the speculated percentage 
of 22 immunocytes in 2 clusters in TCGA data-
set. 8 kinds of immunocytes with significantly 
different distributions between two clusters were 
found (Figure 6A). Surprisingly, clust1 had higher 
score of StromalScore, ImmuneScore and ESTI-
MATEScore (Figure 6B). Our team afterwards 
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Figure 1. Determination of 
chromatin regulators with dif-
ferential expression. A, DEGs 
between prostate carcinoma 
and para-carcinoma tissue in 
TCGA dataset. B, Venn of 
differentially expressed genes 
and chromatin regulators. C, 
Forest map of significant pro-
gnostic chromatin regulators. 
D, Heatmap of significant pro-
gnostic chromatin regulators.

Figure 2. Identification of chromatin regulators associated molecular subtypes. A, CDF curve of patients in TCGA dataset 
when K=2-10. B, CDF delta area when K=2-10. C, ConsensusClusterPlus identifies two chromatin regulators associated 
molecule sub-types. D, K-M curve between C1 and C2 sub-types in TCGA cohorts. Log-rank test was utilized. E, K-M curve 
between C1 and C2 sub-types in GSE116918 dataset. Log-rank test was utilized.
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evaluated the 10 enriched oncogenesis pathways 
and discovered that 8 of 10 oncogenesis pathways 
were enriched in a differential manner between 
two clusters (Figure 6C). 

Moreover, the forecasted scores of immune 
therapy biomarkers were computed via the TI-
DE arithmetic. TIDE and IFNG were greater 
in clust1 group vs. clust2 group (Figure 6D). 
Our team assessed the qualities of TIDE T cell 
function disorder scores, which were also higher 
in clust1 group (Figure 6D). T cell exclusion, as 
well as two cellular types discovered to suppress 
T cell infiltration in cancers [i.g., myeloid-deri-
ved suppressor cells (MDSC) and the M2 sub-
type of tumor-associated macrophages (TAM.
M2)], were all higher in clust1 group (Figure 
6D). Those outcomes indicated that sufferers in 
clust2 were better candidates for immunothe-
rapy.

To ameliorate the treatment efficacy of sufferer 
prostate cancer, our team explored the susceptibi-
lity diversity of commonly seen chemo medicines 
amongst the two groups. The outcomes of GDSC 
database analyses revealed that the IC50 results 
of medicines like Erlotinib, Sunitinib, Paclitaxel, 
VX-680, TAE684 and Crizotinib were higher in 
patients of cluster2 than those of cluster1, which 
unveiled that sufferer in the Cluster2 were re-
markably more susceptible to those medicines 
(Figure 6E).

Construction and Corroboration of 
CR-Derived Signature

An overall 981 CRs, which involved 81 
CRs with downregulation and 901 CRs with 

upregulation, were determined as CRs with 
differential expression between two clusters in 
the TCGA dataset (Figure 7A), of which 778 
genes belonged to tumor key genes (Figure 7B). 
Based on 778 CR, our team utilized univariable 
Cox regressive analyses to investigate the pro-
gnosis merit of CR. The outcome revealed that 
245 of them exhibited prognosis significance.

Afterwards, LASSO Cox regressive analyses 
and stepAIC were utilized to establish a pro-
gnosis hallmark for prostate cancer sufferers. 
A risk model was smoothly developed using 10 
genes (FCER1A, ZFP36L2, LAPTM4B, TRIM2, 
SLC22A3, SCUBE2, LCN2, PAQR6, NOXA1 and 
CDC20) (Figure 7C, D). The risk scoring was 
computed via the coefficients of 10 CRs ac-
cording to the following equation: risk score = 
(0.522*FCER1A expression) + (0.309*ZFP36L2 
expression) + (0.365*LAPTM4B expression) 
- (0.359*TRIM2 expression) - (0.143*SLC22A3 
expression) + (0.235*SCUBE2 expression) - 
(0.347*LCN2 expression) + (396*PAQR6 expres-
sion) + (0.4*NOXA1 expression) + (0.449* CDC20 
expression).

Patients were classified into riskhigh and risklow 
groups as per the mid-value of risk scoring. 
The mortality rates of riskhigh sufferers were re-
markably greater vs. risklow sufferers in TCGA 
dataset (p < 0.0001) (Figure 8A) and GSE116918 
dataset (p < 0.0001) (Figure 8C). The time-reliant 
ROC analyses revealed that the prognosis accura-
teness of the CR-derived hallmark was 0.83, 0.83 
and 0.8 at 1-, 3-, 5-year separately in the TCGA 
dataset (Figure 8B) and 0.95, 0.79 and 0.79 at 1-, 
3-, 5-year separately in the GSE116918 dataset 
(Figure 8D).

Figure 3. The distributional status of diverse clinical characteristics in C1 and C2 sub-types, which involved T stage, N stage, 
M stage, and Age, Event and cancer status. Chi-square test was utilized.
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Relationship Between the CR-Derived 
Signature and Clinical Features 

The result (Figure 9A) revealed that remar-
kable diversities existed between riskhigh and 
risklow sufferers in Cluster (p=0.0011), T sta-
ge (p=0.0109), N stage (p=0), Age (p=0.015), 
Event (p=0) and Cancer status (p=0) but no 
remarkable diversities existed in M stage (p=1). 

In addition, stratified analyses were completed 
to explore the prognosis merit of the hallmark 
in sub-groups. This study discovered that the 
CR-derived hallmark exhibited splendid ability 
in forecasting prognoses in clust1 vs. clust2, N0 
vs. N1, age > 60 vs. age <=60, T1-T4 stage, Ali-
ve vs. Death, Cancer status, except M0 vs. M1 
(Figure 9B).

Figure 5. Genomic variation between two clusters were analyzed in TCGA cohort study. A, Aneuploidy Score, Nonsilent 
Mutation Rate, Fraction Altered, Number of Segments and Homologous Recombination Defects, were higher in cluster2 than 
those in cluster1. B, The top 15 mutated genes between two clusters.
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Pathways Characteristics of 
CR-based Signature

In order to better study the potential regu-
latory pathways of signature, enrichment sco-
ring of every pathway was computed via the 
GSVA package of R language, and the correlation 
between risk scoring and enrichment scores of 
pathways was analyzed by Rcorr function of 
Hmisc package. The outcome revealed that 9 
pathways were remarkably related to signature 

(Figure 10A). Among them, 3 pathways were 
positively correlated with risk score, while 6 pa-
thways were negatively correlated (Figure 10B).

CR-Derived Signature Was an 
Independent Index of the Prognostic 
Results of Prostate Cancer 

Univariate and multivariate Cox analyses were 
executed to corroborate if such hallmark could 

Figure 6. Depiction of TME and immunotherapy between two sub-types in TCGA dataset. A, Enrichment of 22 immunocytes 
assessed via CIBERSORT. B, ESTIMATE approach for computing stroma scoring and immunity scoring. C, Differences of 10 
oncogenic pathways score between two clusters in TCGA dataset. D, TIDE scoring, IFNG scoring, T cell dysfunction disorder 
scoring, T cell exclusion scoring, MDSC and TAM.M2 scoring of C1 and C2 sub-types in TCGA dataset. E, GDSC database 
analyses revealed that the IC50 results of medicines like erlotinib, sunitinib, paclitaxel, VX-680, TAE684 and crizotinib were 
higher in patients in clust2 than in those in clust1.
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Figure 7. Establishment of signature. 
A, DEGs between 2 clusters in TCGA 
data set. B, Venn of differentially 
expressed genes and Tumorigenesis 
gene. C, LASSO coefficients profiles of 
245 genes. D, LASSO regressive analy-
sis with 10-fold cross-verification ac-
quired 12 prognosis genes based on the 
minimal lambda value.

Figure 8. Prognostic analysis 
of signature. A-B, TCGA veri-
fies the K-M and ROC curves of 
the data set.  C-D, K-M and ROC 
curves of GSE116918 dataset.
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Figure 9. The distributional status of diverse clinical characteristics of riskhigh and risklow sufferers A, which involved Clusters, 
T staging, N staging, M staging, and Age, Event and cancer status (B). Chi-square test was conducted.

Figure 10. Functional enrichment analyses of riskhigh and risklow sufferers. A, Heatmap of significant pathway associated with 
risk scoring. B, Correlative analyses of pathways with risk scoring.
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independently serve as a prognosis index. Uni-
variable analyses revealed that T stage, N stage, 
Cluster and Risk type were evidently linked to 
the survival of prostate cancer sufferers (Figure ​
11A). Multivariable analyses revealed that T sta-

ge, Cluster and Risk type were evidently linked 
to prognoses (Figure 11B). Those outcomes un-
veiled that the CR-derived hallmark could inde-
pendently serve as a prognosis index for prostate 
cancer sufferers. 

Figure 11. The hallmark could independently serve as a prognosis indicator. Univariable (A) and multivariable (B) Cox 
regressive analyses of risk scoring and clinical characteristics. C, Calibration for nomograph based on OS. DCA for assessing 
the ability of risk scoring, clusters, M staging and nomograph in forecasting prognoses. A nomograph on the basis of risk 
scoring and T staging for staging 1-, 3- and 5-year OS.
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For the sake of predicting the survival of 
prostate cancer sufferers, our team developed a 
nomograph comprising T stage, cluster and risk 
scoring. Nomography predicted the 1-, 3-, 5-year 
OS of sufferers with prostate cancer (Figure 11C). 
The correction curve revealed that the actual OS 
of sufferers coincided with the forecasted results 
(Figure 11C). The nomogram had the favorable 
prediction ability (Figure 11C).

Immune Infiltration Level Analysis and 
Drug Sensitivity Analysis in CR-Based 
Signature

We also evaluated the speculated percentage 
of 22 immunocytes in riskhigh and risklow sufferers 
in the TCGA data set. 8 kinds of immunocytes 
with significantly different distributions between 
riskhigh and risklow sufferers (Figure 12A). Surpri-
singly, riskhigh sufferers had higher score of Stro-

Figure 12. Characterization of tumor microenvironment and immunotherapy between riskhigh and risklow sufferers in TCGA 
dataset. A, Enrichment of 22 immunocytes assessed via CIBERSORT. B, ESTIMATE approach for computing stroma scoring 
and immunity scoring. C, Differences of 10 oncogenic pathways score between two clusters in TCGA dataset. D, TIDE 
scoring, IFNG scoring, T cell function disorder scoring, T cell exclusion scoring, MDSC and TAM.M2 scoring of riskhigh 
and risklow sufferers in TCGA data set. E, GDSC database analyses revealed that the IC50 results of medicines like erlotinib, 
sunitinib, paclitaxel, VX-680, TAE684 and crizotinib were greater in riskhigh sufferers in contrast to risklow sufferers.
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malScore, ImmuneScore and ESTIMATEScore 
(Figure 12B). Our team then evaluated the 10 
enriched oncogenesis pathways and discovered 
that 7 of 10 oncogenesis pathways were enriched 
in a differential manner between 2 clusters (Fi-
gure 12C). 

Moreover, the forecasted scoring of immune 
therapy biomarkers was computed via the TIDE 
arithmetic. TIDE and IFNG were greater in ri-
skhigh sufferers vs. risklow sufferers (Figure 12D). 
We evaluated the quality of TIDE T cell function 
disorder scoring, which also higher in riskhigh suf-
ferers (Figure 12D). T cell exclusion and MDSC, 
except for TAM.M2, were all higher in riskhigh 
sufferers (Figure 12D). Those outcomes unveiled 
that risklow sufferers were better candidates for 
immunotherapy.

We also explored the susceptible diversity of 
commonly seen chemo medicines amongst these 
2 groups. The outcomes revealed that the IC50 
results of medicines like erlotinib, sunitinib, VX-
680, TAE684 and crizotinib were greater in riskhi-

gh sufferers vs. risklow sufferers, which unveiled 
that vs. risklow sufferers were remarkably more 
susceptible to those medicines (Figure 12E).

Discussion

In this study, 23 CRs with differential expres-
sion between prostate cancer tissues and normal 
tissues and associated with prognosis of prostate 
cancer were firstly screened from TCGA data-
base. Based on 23 CRs, two molecular subtypes 
with significant prognostic differences, muta-
tional status, and immune characteristics were 
identified. We then identified 10 CRs associated 
with prostate cancer prognosis by univariable 
and lasso Cox regressive analyses. Based on 
those 10 CRs, our team developed and corrobo-
rated a risk model related to prognoses. Survival 
analysis and ROC analysis show that the model 
has satisfactory prediction merit. Eventually, 
univariable and multivariable Cox analyses re-
vealed that the risk scoring on the basis of 10 
CRs independently serve as a prognosis index of 
prostate cancer. In addition, our team discovered 
that this marker was tightly associated with im-
munocyte infiltration and sensitive to a variety 
of chemotherapy drugs.

As a core part of the epigenetic mechanism, 
CRs regulate the transcriptional process of sub-
stantial cell genes, like oncogenes. Hence, their 
changed activity can greatly affect global genetic 

expression patterns and healthy cell signal tran-
smission networks, facilitating the proliferative 
ability of oncogenes and eventual oncogenesis23. 
Largescale sequence identification research of 
mankind tumors’ points to epigenetic modulators 
as hotspots for gene variants in gastric24, liver25, 
ovarian26, prostate cancer27, osteosarcoma28, whi-
ch highlights the significance of gene and epige-
netic gatekeepers in the developmental process of 
tumor. Frequent mutations in genes encoding hi-
stones themselves in brain tumors further support 
the critical role of chromatin structure in tumori-
genesis29,30. In this work, our team first identified 
2 molecular subtypes of prostate cancer based on 
CRs and established a 10 CRs-signature.

FCER1A is capable of encoding an IgE accep-
tor, which is primarily expressed on the surfaces 
of mastocytes31. FCER1A has been discovered to 
participate in mammary carcinoma32, glioma33, 
ZFP36L2, zinc finger protein 36, C3H type-like 
2 (called as Brf2, Erf2 and Tis11D, as well); 
it also has anti-cancer biofunction in multiple 
tumor types34. Overexpressed ZFP36L2/TIS11D 
WT gene suppressed the development of HeLa 
cells35. Consecutively, studies36,37 have confirmed 
that Lysosomal protein transmembrane 4 beta 
(LAPTM4B) is aberrantly expressed in diverse 
malignancies and exerts an effect on tumor de-
velopment. LAPTM4B is related to prostate can-
cer38. Evidence have suggested that the Tripartite 
motif-containing 2 (TRIM2) protein is related 
to oncogenesis effects in multiple malignant tu-
mors, like lung adenocarcinoma39, colonic and 
rectal carcinoma40, and pancreatic cancer41, via 
modulating cellular proliferative, metastatic, and 
transcriptional activities, as well as the ubiquiti-
nation route. 

The expression of SLC22A3 is significantly 
higher in colorectal cancer, and affects prolife-
ration, migration, invasion, cell cycle and apop-
tosis42. SCUBE2 increase suppressed the deve-
lopmental process of cellular cycle, repressed 
cellular proliferative, metastatic, and invasive 
abilities, and it facilitates programmed cell death 
in breast cancer cells43. In prostate cancer cells, 
lipocalin-2 (LCN2) depletion induces attenuated 
proliferative ability, decreases expressing levels 
of proinflammation cell factors, lower adherence, 
and abnormal distributional status of F-actin44. 
Upregulated PAQR6 is related to androgen recep-
tor signal transmission and unsatisfactory pro-
gnoses in prostate carcinoma45,46. CDC20 with its 
gene mutations are remarkably related to inferior 
survival of prostate cancer47,48.
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Limitations
Despite the fact that we used bio-informatics 

methods on a large sample to identify two gene-
tic subgroups of prostate cancer with significant 
prognostic differences, as well as a 10 CRs-si-
gnature, we are required to note the limitations of 
our work. In the future, we plan to place a greater 
emphasis on research that is both fundamentally 
experimental and functionally in-depth. Other 
considerations were not taken into account on our 
end because the samples lacked essential clinical 
follow-up information, most notably diagnostic 
specifics, such as whether or not the patients had 
other health conditions, when differentiating the 
molecular sub-types.

Conclusions

In conclusion, we generated two subgroups 
and a 10 CRs signature based on CRs in order to 
guide tailored therapy for prostate cancer patien-
ts. CRs are vital for forecasting the prognostic 
results of prostate cancer sufferers and targeting 
CRs might be a valid strategy to treat prostate 
carcinoma. This research ought to be corrobora-
ted by more studies. 
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