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les in development and progression of myocardial 
fibrosis (MF). Angiotensin-converting enzyme 
(ACE) and Ang II play important roles in the car-
diovascular system, for example, cardiomyocyte 
hypertrophy, vascular smooth muscle cell hyper-
trophy and increase of extracellular matrix2. Ang 
II could up-regulate NF-kB level, increase the 
expression of myofibrillogenesis regulator-1 (MR-
1), and induce the secretion of the cytokines (for 
example, TGF-β or TNF-a); consequently, it pro-
motes fibrosis3,4. 

TGF-β, contributing to cardiac fibrosis, is con-
sidered to stimulate cell growth, apoptosis and 
differentiation, increase collagen and matrix pro-
tein production, maintain fibroblast viability, and 
inhibit production of metalloproteinase which fa-
cilitates collagen degredation5,6. TGF-β signaling 
activation in cardiomyocyte serves as a bridge in 
cardiac fibrosis7, which is influenced by pathoge-
nic factors like RAAS activation or inflammation. 
Therefore, blocking RAAS activation, especially 
to inhibit TGF-β activity, is the key point to rever-
se cardiac fibrosis.

Phosphocreatine (PCr), an energy-rich pho-
sphate compound, not only provides energy 
when cardiomyocytes suffer from ischemia and 
hypoxia8, but also protects cardiomyocytes from 
being attacked by harmful substances like free ra-
dicals9. Additionally, Wei et al10 in 2015 suggested 
that PCr might play important roles in cardiac 
fibrosis. However, exact mechanism involved in 
PCr and CF is still unclear. 

Our study used the Ang II-induced fibrosis mo-
del in rat cardiomyocytes, to identify the mecha-
nisms involved in PCr and TGF-β pathway in car-
diomyocytes, and further investigate on its asso-
ciated downstream signaling related with TGF-β 
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Introduction

Cardiac fibrosis (CF), one of the leading rea-
sons of death in cardiac disease, results in cardiac 
dysfunction and arrhythmias1. Renin-angioten-
sin-aldosterone system (RAAS) plays critical ro-
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pathway. Our results identified PCr as potential 
therapeutic bio-target for the treatment of CF.

Materials and Methods

Cells and Reagents
Rat cardiomyocyte H9C2 was obtained from 

the Chinese Academy of Sciences (Institute of 
Shanghai Cell Biology and Chinese Type Culture 
Collection, China), which was cultured in DMEM 
containing 10% fetal bovine serum (FBS). Ang 
II was obtained from Sigma. Phosphocreatine 
sodium was bought from Sangon Biotech, Shan-
ghai, China. Small molecular inhibitors U0126, 
SP600125 and PD98059 were bought from Sig-
ma-Aldrich (St. Louis, Co, USA).

siRNA Transfection
ERK siRNA and NF-κB siRNA were genera-

ted by Ribobio in Guangzhou, China. H9C2 was 
cultured till 70% confluence and treated with 
Lipofectamine 2000 (Invitrogen, Carlsbad, CA, 
USA) and siRNA mixture. Followings are the se-
quences of siRNAs used in this study:
ERK1-siRNA  (S): 5’-GGACCAGCUCAACCA-
CAUU dTdT-3’
(AS): 5’-AAUGUGGUUGAGCUGGUCC dTdT-3’
ERK2 siRNA  (S): 5’-GCUCUUGAAGACACA-
GCAC dTdT-3’
(AS): 5’-GUGCUGUGUCUUCAAGACC dTdT-3
NF-κB siRNA  (S): 5’- AAGCUGCUGAAACU-
CUGAG dTdT-3’
(AS): 5’-CUCAGAGUUUCAGCAGCUU dTdT-3’

Western Blot Assay
After cell culture, cells were collected for to-

tal protein extraction. The samples were loaded 
in 12% polyacrylamide gel and kept running for 
2 h under a pressure of 80-120 V in Tris-Glycine 
buffer (25 mM Tris, 250 mM Glycine, 0.1% SDS). 
Then the proteins were transferred from the gel to 
cellulose nitrate membranes by semi-dry transfer-
ring method. The membranes were shaked for 1h 
at room temperature in 5% BSA buffer (20 mM 
Tris-HCl, pH 7.4, 150 mM NaCl, 0.1% Tween-20) 
on a shaker and incubated with specific primary 
antibodies, including anti-collagen I (Abcam, 
Cambridge, UK), anti-CTGF (Abcam), anti-Fi-
bronectin (Abcam), anti-TGF-β (Cell Signaling), 
anti-JNK (Abcam), anti-phospho-JNK (Cell Si-
gnaling, Danvers, MA, USA), anti-ERK (Cell 
Signaling), anti-phospho-ERK (Cell Signaling), 
anti-p38 (Cell Signaling), anti-phospho-p38 (Cell 

Signaling), anti-Smad2/3 (Cell Signaling), an-
ti-phospho-Smad2/3 (Abcam), anti-p65 (Abcam), 
anti-phospho-p65 (Abcam), anti-phospho-p38 (Cell 
Signaling), anti-p38 (Cell Signaling), and anti-Hi-
stone H3 (Abcam) in 4°C overnight. The next day, 
the membranes were incubated in HRP-labeled se-
condary antibodies (Beyotime, Nanjing, China) at 
room temperature for 1 h, colored with Fluorescent 
substrates and developed on films (Kodak, Roche-
ster, NY, USA).

Real-Time PCR
Total RNA was extracted with RNA simple total 

RNA kit (Qiagen, Shanghai, China) following the 
instruction. Extracted total RNA was dissolved in 
0.1% DEPC-treated deionized water. After dissolu-
tion, determine the purity and content of RNA with 
an ultraviolet spectrophotometer. CTGF copy num-
bers were determined with SYBR-Green and ∆∆CT 
relative quantitative measurement.

CTGF PCR primers are listed as follow:
CTGF (S) 5’- TAGCCTCAAACTCCAAACACC -3’ 
CTGF (As) 5’-CCTCGTGGAAATCTGACCAGT -3’
GAPDH PCR primers are listed as follow:
GAPDH (S): 5’-GGT ATC GTG GAA GGA CTC 
ATG AC-3’
GAPDH (As): 5’-ATG CCA GTG AGC TTC CCG 
TTC AGC-3’

Electrophoretic mobility shift assay (EMSA)
Nuclear proteins were extracted with Nucleo-

protein Extraction Kit (Sangon, Shanghai, Chi-
na) following the instruction. 2 ul nuclear ex-
tracts combined with biotin-labeled NF-κB pro-
be (5’-TCAACTCCCCTGAAAGGGTCCG-3’). 
Conjugates were loaded in 4% polyacrylamide gel 
in 0.5 X TBE running buffer under the pressure of 
10 V/cm. Dry the polyacrylamide gel in the drier 
and determined by X-ray film.

Statistical Analysis
One-way analysis of variance (ANOVA) was car-

ried out by SPSS 13.0 (SPSS Inc, Chicago, IL, USA). 
p < 0.05 was considered as statistical differences.

Results

Ang II-Induced Cardiac Fibrosis 
Cultured rat cardiomyocytes were treated with 

Ang II (1 nM, 10 nM, 100 nM) for 48 h. As shown 
in Figure 1A, expressions of collagen I, CTGF 
and Fn protein increased significantly when the 
cells were treated with 10 nM Ang II, which was 
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supported by CTGF mRNA expression tested wi-
th Real-time PCR (Figure 1B).

Specific Small Molecular Inhibitors 
Blocked Ang II-Induced Cardiac Fibrosis 
and TGF-β Pathway Activation

Rat cardiomyocytes were pre-treated with 
MAPK pathway specific inhibitors (ERK inhibi-

tor U0126, JNK inhibitor SP600125, P38 inhibitor 
PD98059) for 1h, followed by cell culture in the 
presence or absence of Ang II (10 nM) for 48 h. 
As results shown in Figure 2A, U0126, SP600125 
and PD98059 could significantly down-regulate 
expressions of collagen, CTGF, Fn and TGF-β, 
which suggested that Ang II-induced CF was 
mediated by MAPK pathway. MAPK associated 

Figure 1. Ang II induced CF. (A) Expression of CF associated proteins were identified in H9C2 treated with Ang II (1nM, 
10nM, 100nM) for 48h. (B) real-time PCR was performed to determine CTGF mRNA levels. *p < 0.05, **p < 0.01 (compared 
with control group) was presented as significant difference.

Figure 2. U0126, Sp600125, PD98059 treatment regulated Ang II-induced CF. (A) Expression of collagen I, CTGF, Fn, 
TGF-β, JNK, ERk, p38, Smad2/3 tested by Western blot. (B) NF- κB in nuclear extraction was determined. (C) CTGF mRNA 
levels was analyzed by real-time PCR. *p < 0.05 and **p < 0.01 (compared with control group) were presented as significant 
difference; #p < 0.05 and ##p < 0.01 (compared with Ang II group) were presented as significant difference.
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protein levels also showed that Ang II could acti-
vate MAPK pathway, which could be inhibited 
by U0126, SP600125 and PD98059. Nuclear ex-
traction determination showed that Ang II acti-
vated NF-κB. However, this could be blocked by 
U0126, SP600125 and PD98059.

PCr Could Block Ang II-Induced NF-κB 
Activation

Cardiomyocytes were pre-treated with pho-
sphocreatine sodium (10 nM, 20 mM), followed 
by cell culture in the presence or absence of Ang 
II for 48 h. In Figure 3A, results showed that PCr 
could inhibit Ang II-induced expressions of colla-
gen I, CTGF and Fn protein, thus inhibited rat CF, 
which was further confirmed by CTGF mRNA 
levels (Figure 3B). Interestingly, Ang II-induced 
TGFβ decreased significantly when treated with 
PCr (10 mM and 20 mM). CF is closely associa-

ted with TGF-β pathway activation. To identify 
how PCr regulates TGF-β pathway and then inhi-
bits CF, we tested the PCr’s effects on MAPK pa-
thway. Results showed that PCr could inhibit Ang 
II-induced activation of ERK and p38. Meanwhi-
le, PCr could also block NF-κB activation induced 
by Ang II by checking with nuclear extraction.

MAPK Pathway Was Involved in the 
Inhibition of Ang II-Induced CF by PCr

Rat cardiomyocytes were transfected with 
ERK-siRNA and pre-treated with PCr for 1 h, fol-
lowed by cell culture in the presence or absence 
of Ang II (10 nM) for 48 h. In Figure 4A, results 
showed that ERK knockdown could inhibit col-
lagen I, CTGF and Fn protein expressions indu-
ced by Ang II, and then prevent rat CF. Howe-
ver, when ERK-siRNA was transfected, Ang 
II-induced expressions of collagen I, CTGF and 

Figure 3. PCr regulated Ang II-induced CF, which was confirmed by (A) the expression of collagen I, CTGF, Fn, TGF-β, 
ERK, p38 and NF-κB was analyzed by Western blot. (B) NF-κB in nuclear extraction was analyzed. (C) CTGF mRNA levels 
were determined by real-time PCR. *p < 0.05 and **p < 0.01 (compared with control group) were presented as significant diffe-
rence; #p < 0.05 and ##p < 0.01 (compared with Ang II group) were presented as significant difference.
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Fn protein could not be significantly reverted 
by phosphocreatine, which suggested that ERK 
served as important regulators during reversal 
of CF by PCr. CTGF mRNA levels tested by re-
al-time PCR further confirmed this observation 
(Figure 4B). Meanwhile, after ERK-siRNA was 
transfected, Ang II-induced TGF-β was signifi-
cantly decreased, activities of p38 and Smad2/3 
were also significantly down-regulated. NF-κB 
activity became lower as well when investigating 
nuclear extraction. After ERK knockdown, the 
activity of PCr to reverse Ang II-induced TGF-β 
expression and the activations of p38, Smad2/3, 
NF-κB also decreased. DNA binding activity of 
nuclear transcription factor NF-κB was checked 
by electrophoretic mobility shift assay (EMSA), 
in Figure 4C. When ERK-siRNA was transfected, 

DNA binding activity of NF-κB was weaker. The 
capacity of PCr to reverse increased DNA binding 
activity of NF-κB induced by Ang II also became 
weaker.

NF-κB Knockdown by siRNA Confirmed 
its Roles in the Mechanism of 
Anti-Cardiac Fibrosis by PCr

Rat cardiomyocytes were transfected with 
NF-κB siRNA, pre-treated with phosphocreati-
ne sodium (20 mM) for 1 h and, then, followed 
by cell culture in the presence or absence of Ang 
II (10 nM) for 48 h. In Figure 5A, results showed 
that NF-κB knockdown could inhibit the expres-
sions of collagen I, CTGF and Fn protein induced 
by Ang II. However, PCr could not reverse Ang 
II-induced CTGF expression significantly. CTGF 

Figure 4. MAPK was involved in the mechanism of PCr and Ang II-induced CF. (A) the expressions of collagen I, CTGF, Fn, 
TGF-β, ERK, p38, Smad2/3 and NF-κB were detected by western blot upon siRNA transfection with PCr or Ang II treatment. 
(B) NF-κB in nuclear extraction was detected. (C) CTGF mRNA levels were determined by real-time PCR. *p < 0.05 and **p 
< 0.01 (compared with control group) were presented as significant difference; #p < 0.05 and ##p < 0.01 (compared with Ang II 
group) were presented as significant difference; ^p < 0.05 and ^^p < 0.01 (compared with ERK-siRNA group) were presented 
as significant difference. (D) DNA binding activity of NF-κB was determined by EMSA.
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mRNA levels checked with real-time PCR also 
confirmed it (Figure 5B). Meanwhile, after NF-
κB was transfected, TGF-β level induced by Ang 
II was down-regulated, activities of ERK, p38 and 
Smad2/3 became significantly lower. The capacity 
of phosphocreatine to reverse TGF-β pathway acti-
vated by Ang II reduced upon ERK knockdown.

Discussion

CF is the key indicator in cardiac remodeling. 
This progression developed including that (i) CF 
overgrew, (ii) collagen synthesis increased, (iii) 
ratio imbalanced and (iv) disorders occurred un-
der pathological conditions. Finally, MF is deve-
loped. MF is the risk factor in development and 
progression of cardiovascular events11,12. It is rela-
ted to cardiac insufficiency, arrhythmias and sud-
den cardiac death. It is reported that RASS and 

several cytokines (e.g. TGF-β1) play roles in MF 
development through activation of intracellular 
signal transduction13,14.

Ang II upregulation is the main cause of CF. It 
is considered that Ang II promotes cardiac fibro-
sis through receptor-mediated activation of extra-
cellular signal-regulated kinases (ERK) in a tyro-
sine kinase-dependent way15, which promotes CF 
proliferation, stimulates expressions of collagens, 
fibronectins and integrins. Recently, connections 
between TGF-β1 and Ang II were determined.

PCr is the native active substance that contri-
butes to cellular energy metabolism16,17. PCr, a 
myocardial protective agent, is clinically used in 
the treatment of CF, myocardial infarction and 
some cardiac surgeries. It serves protective roles 
in myocardial ischemia and reperfusion injury18,19. 
PCr is widely used in the treatment of clinical he-
art failure. However, whether it is involved in CF 
is still not investigated well.

Figure 5. NF-κB was involved in the mechanism of PCr and Ang II-induced CF. (A) the expressions of collagen I, CTGF, Fn, 
TGF-β, ERK, p38, Smad2/3 and NF-κB were detected by western blot upon siRNA transfection with PCr or Ang II treatment. 
(B) NF-κB signaling in nuclear extraction was detected. (C) CTGF mRNA levels were determined by real-time PCR. *p < 0.05 
and **p < 0.01 (compared with control group) were presented as significant difference; #p < 0.05 and ##p < 0.01 (compared with 
Ang II group) were presented as significant difference; ^p < 0.05 and ^^p < 0.01 (compared with ERK-siRNA group) were 
presented as significant difference.
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In this study, we found that Ang II-induced 
indicators of CF (collagen I, CTGF, Fn) were si-
gnificantly reduced after the treatment of PCr in 
Ang II-induced rat cardiomyocytes. At the sa-
me time, TGF-β protein level significantly de-
creased. TGF-β is considered to promote CTGF 
synthesis in fibroblasts, vascular smooth cells 
and endothelial cells, activate NF-κB, increa-
se secretions of adherence factors and inflam-
matory factors, upregulate extracellular matrix 
proteinosis as well as expressions of collagen I 
gene and fibronectins, and finally result in CF4,20. 
Overexpression of TGF-β1 gene was induced by 
Ang II during MF development. Therefore, sup-
pression of TGF-β1 might delay cardiac fibrosis. 
We make conclusions that PCr contributes to 
activation and regulation of TGF-βin myocardial 
tissue, thereby inhibiting cardiac fibrosis and 
protecting heart.

In the following study, we further investigate 
how PCr regulates TGF-β signaling pathway and 
prevent CF. MAPK pathway is an important si-
gnal transduction pathway, which participates in 
TGF-β-induced fibrosis. It could regulate cellular 
growth, transformation, differentiation, prolifera-
tion, as well as cell survival, cell death and so on. 
MAPK pathway consists of three main enzymes: 
extracellular signal regulated kinase (ERK), p38 
and stress activated protein kinase (JNK)21. We 
found that PCr could inhibit activation of ERK 
and p38 induced by Ang II, suggesting that PCr 
reversed Ang II-induced CF through inhibition of 
MAPK pathway.

NF-κB is the key player in fibroblast growth 
and collagen expression mediated by Ang II and 
TNF-a22. In the previous study, PCr suppressed 
Ang II-induced NF-κB activation. The capacity 
of PCr to reverse cardiac fibrosis and Ang II-in-
duced activation of TGF-β associated pathway be-
came weaker upon NF-κB-siRNA transfection10, 
suggesting that NF-κB played critical roles in an-
ti-cardiac fibrosis activity of PCr.

Conclusions

This study found out that myocardial protecti-
ve agent PCr suppressed CF through regulation 
of TGF-β activity in the myocardial tissue, whi-
ch involved in inhibition of MAPK pathway and 
NF-κB pathway. This study identified the poten-
tial clinical application of PCr in the anti-cardiac 
fibrosis and prevention of cardiomyocyte remo-
deling.
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