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Introduction

With roughly 14,000 deaths and 22,000 new 
cases estimated annually in women around the 
world, ovarian cancer has the highest mortali-
ty-to-new case ratio among all gynecologic mali-
gnancies1. When it invaded or spread to other par-
ts of the body, symptoms may be vague or not 
apparent, but they become more noticeable as the 
cancer progresses2. Despite standard treatments 
have been performed on primary ovarian cancer 
patients, 70%-90% of them would develop into 
recurrent tumor3. Hence, effective treatments for 
ovarian cancer are on urgent need. 

Recently, due to the accumulation of genetic 
variants in genes may be involved in the process 
of ovarian carcinogenesis4-6, target gene has been 
proposed and developed into an emerging mean 
for tumor treatment. The knowledge of target ge-
ne for ovarian cancer attract more and more atten-
tions from researchers, and several potential bio-
markers are identified, such as CXCR2 and GAD-
D45A7,8. However, the quantity of them is still far 
from the demand. What is more, understanding 
molecular mechanism even investigating poten-
tial biomarkers of ovarian cancer may provide 
further prognostic and therapeutic insights.

High-throughput technologies have brought 
unprecedented opportunities for the large-scale 
analysis of the disease-related genes to ascertain 
the key molecular mechanisms9. And most of all, 
Sakellariou et al proposed a method by combining 
affinity propagation (AP) to control the quality of 
the partition of a known number of clusters, Krza-
nowski and Lai (KL)10 index to evaluate the opti-
mum number of clusters, and maxT function (m) 
to rank the genes in microarray data together, to 
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determine a so-called exemplar which is most re-
presentative sample for this cluster11. This combi-
nation offers a more meaningful way to investiga-
te exemplars or informative genes for disease and 
the relative target treatment.

However, from the biology point of view, genes 
interact with each other in complex disease rather 
than independent entities, which gain the difficul-
ty to explore significant genes as biomarkers. 
Network-based approach is capable of extracting 
informative and significant genes dependent on 
bio-molecular networks, for instance, protein-pro-
tein interaction (PPI) network, co-expression 
network and mutual information network (MIN), 
rather than individual genes12,13. 

Therefore, in this paper, we combined the 
mAP-KL method with MIN to select key genes in 
ovarian cancer. Firstly, the mAP-KL method was 
implemented to investigate clusters and exem-
plars, and then the support vector machines 
(SVM) model was designed to assess classifica-
tion performance of it. Subsequently, the MIN for 
cluster genes were constructed based on the con-
text likelihood of relatedness (CLR) algorithm. 
Finally, key genes of ovarian cancer were explo-
red from exemplars by topological analysis (de-
gree, closeness, betweenness and transitivity) of 
MIN, which might be potential biomarkers for 
treatment and diagnoses of ovarian cancer. 

Materials and Methods

Gene Expression Data 
In the present study, the gene expression data for 

ovarian cancer with accessing number E-GE-
OD-26712 was recruited from ArrayExpress databa-
se. E-GEOD-26712, which presented on A-AFFY-33 
– Affymetrix GeneChip Human Genome HG-U133A 
[HG-U133A] Platform, was consisted of 185 ovarian 
tumor samples and 10 normal samples. We primarily 
divided total samples into two parts including of train 
set and test set according to the proportion of 3:2. In 
other words, we kept 117 samples (111 tumors sam-
ples and 6 normal samples) to build a train set, and 78 
samples (74 tumors samples and 4 normal samples) to 
construct a test set, respectively. The train set was uti-
lized to perform the balance, and the test set was used 
to identify the classification models.

In order to control the quality of data and eli-
minate batch effects caused by experimental pa-
rameters and other factors, we compared four 
kinds of normalized pre-treatment measures, me-
an-centering14, z-score15, quantile16 and cyclic lo-

ess17, and then carried out log2 transformation for 
the normalized data. Among them, we selected 
one with the optimal preprocessing outcome as 
the pre-processed method which was utilized for 
further analysis.

MAP-KL
The mAP-KL method was a data-driven and 

classifier-independent hybrid feature selection 
method to select a small yet informative subset of 
genes18. The method combined maxT multiple 
hypothesis testing19, KL cluster quality index10 as 
well as AP clustering algorithm11. Its theory 
showed that the clusters of genes that shared simi-
lar biological functions related to the investigated 
disease. MaxT function, which computes permu-
tation adjusted p-values for step-down multiple 
testing procedures20, was employed to rank the 
genes of the training set and then we reserved the 
top N genes for further exploitation21. 

In the second step, the KL quality index as inclu-
ded in the ClusterSim package aimed to determine 
the number of clusters which in essence would be 
the number of representative genes solely on the 
ovarian cancer samples of the train set22. The KL 
was calculated as following formula:

Where k was the number of clusters, Wk repre-

sented the within-cluster sum of squared errors. 
The clusters met to the thresholding of gene num-
bers < 50 were regarded as KL clusters. 

In the next, the AP clustering method was en-
gaged to detect clusters and provide a list of the 
most informative genes of each cluster, the so-cal-
led exemplars. Here, the AP clustering method 
involved in AP Cluster package regards each data 
point as a node in a network, and recursively tran-
smits real-valued messages along edges of the 
network until a good set of exemplars and corre-
sponding clusters emerges23. It explored n (n = k, 
the KL index) clusters among the top N genes ac-
cording to the pre-defined number, and obtained a 
list of n exemplars24. These were expected to form 
a classifier that shall discriminate between the 
normal and fibroid classes in a test set which was 
formulated through retaining only those n genes 
to proceed with the classification.
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Classification and Evaluation 
SVM, which has become popular because of its 

effective learning properties25,26, is supervised le-
arning models with associated learning algori-
thms that analyze data and recognize patterns, 
used for classification and regression analysis27. 
For the purpose of evaluating the classification 
performance of the mAP-KL method, we em-
ployed SVM with linear kernel, in which 5-fold 
cross-validation was applied on the train set to 
analyze the potential classification strength of the 
models’ and then estimated its prediction power 
on the separate test set. We determined whether 
the classification results were reasonable accor-
ding to the following parameter values: the area 
under the receiver operating characteristics curve 
(AUC) which is a better measure for assessing the 
predictive ability of machine learners than accu-
racy28; the Matthews coefficient correlation clas-
sification measure (MCC) was a measure of the 
quality of binary classification and considered the 
true and false positive and negatives29; true nega-
tive rate (TNR) or specificity represents the ratio 
of correctly classified negatives to the actual 
number of negatives; as well as true positive rate 
(TPR) or sensitivity is defined to be the ratio of 
positives correctly classified to the actual number 
of positives30.

MIN Construction and Topological 
Analysis

MIN construction
MIN is a subcategory of network inference 

methods, which can infer a link between a couple 
of nodes if it has a high score based on mutual 
information (MI)31. Hence, in this research, we 
constructed the MIN for the cluster related top N 
genes. Firstly, we calculated the mutual informa-
tion matrix (MIM), a square matrix whose i, j-th 
element is the MI between the genes Xi and Xj, q 
was a probability measure.

considering the information I(Xi; Xj) between ge-
nes Xi and Xj, it took into account the edge score:

Secondly, we applied the CLR algorithm which 
is an extension of the relevance network approach 
to compute the network boundary value32. This 
algorithm computes the MI for each pair of genes 
and derives a score related to the empirical distri-
bution of the MI values33. In particular, instead of 

Where μi and σi represented respectively the 
sample mean and standard deviation of the empi-
rical distribution of the values I(Xi; Xj). 

Topological Centrality Analysis
To in-depth understand the biological functions 

of the genes in the MIN, we calculated the indica-
tors including of degree34, closeness35 and betwe-
enness36 by topological analysis. Degree quanti-
fies the local topology of each gene by summing 
up the number of its adjacent genes, and the top 
4% degree distributed genes were defined as hub 
genes. Closeness centrality is a measure of the 
average length of the shortest paths to access all 
other genes in the network. Betweenness centrali-
ty is a shortest path enumeration-based metric in 
graphs for determining how the neighbors of a 
node were interconnected, and was considered 
the ratio of the node in the shortest path between 
two other nodes.

Results

Data 
In this paper, we compared four pre-treatment 

methods (mean-centering, z-score, quantile and 
cyclic loess), and the results were illustrated in Fi-
gure 1. After log2 transformation, quantile nor-
malization had a better performance than the 
others and, hence, we selected it for further 
exploitation. A total of 22283 genes were obtai-
ned in the pre-processed gene expression profile.

 
Clusters and Exemplars 

Following with the maxT multiple hypothesis 
testing, we reserved the top 200 genes (N = 200), 
and listed the top 100 in Table I. SMPD3, PFN1, 
CALR, C9orf16 and WT1 were the top five genes. 
By performing AP clustering algorithm in conjun-
ction with KL cluster quality for top 200 genes, 
the quantity of clusters with gene amount < 50 
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was 22. The gene compositions of different clu-
sters were various. Among them, Cluster 6 pos-
sessed the most number of genes with 36, while 
Cluster 4 only included 9 genes (Table II). Fur-
thermore, for each cluster, an exemplar was de-
tected on the basis of AP clustering method, whi-
ch might play key roles in the progress of ovarian 
cancer. The exemplars were displayed in Table II, 
for example, exemplar for Cluster 1 and Cluster 2 
was PFN1 and C9orf16, respectively.

Evaluation by SVM Model
In this step, to find an optimal hyper plane that 

separates the test samples by a maximal margin, 

with all positive samples lying on one side and all 
negative samples lying on the other side, we as-
sessed the classification performance for exem-
plars obtained from mAP-KL method with the 
assistance of two classifiers (linear, 5-CV). Based 
on the SVM model, the classified results had the 
highest scores (AUC = 1.00, MCC = 1.00, TNR = 
1.00 and TPR = 1.00), and thus we concluded that 
the classification performance was almost ideal 
during the SVM evaluation, and inferred that the 
mAP-KL methodology which combined ran-
king-filtering and cluster analysis was feasible 
and suitable for identifying clusters of ovarian 
cancer.

Figure 1. Preprocessing for microarray data by mean-centering, z-score, quantile and cyclic loess methods.
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MIN Construction and Topological 
Analysis

The ideal evaluation of classification for mAP-
KL method gave more confidence to the signifi-
cance of 22 exemplars in ovarian cancer, whereas 
those also were expected to form a classifier or 
module that shall distinct between normal con-
trols and ovarian cancer patients. Therefore, we 
constructed a MIN for top 200 genes (Figure 2). It 
had 200 nodes and 1902 interactions, of which the 
yellow ones stood for hub genes. They were 
C9orf16, ACTB, COX5B, IL6ST, TYP23B, FA-
M120A, CLPTM1 and RAPGEF2. When ex-
tracting cluster genes related network, that was to 
say, cluster genes were mapped to MIN preferen-
tially, we obtained Figure 3, there were 177 nodes 
and 1002 edges, and their topological properties 
in the MIN were showed in Table III. Results for 
exemplars were inconsistent due to different 
methods, except for C9orf16, ACTB and COX5B. 
Interestingly, the three genes were right the com-
mon genes between hub genes and exemplars, and 
thus we defined them as the key genes for ovarian 
cancer. The degree, closeness and betweenness 
for C9orf16 were 129, 7.16 and 8495, respectively.

Table I. The top 100 genes based on maxT multiple hypothesis testing.

Number	 Gene	 Number	 Gene	 Number	 Gene	 Number	 Gene	

1	 SMPD3	 26	 PKM	 51	 SLC52A2	 76	 HNRNPA3
2	 PFN1	 27	 COX5B	 52	 DCUN1D4	 77	 TRAK2
3	 CALR	 28	 NA	 53	 SNRPF	 78	 KRR1
4	 C9orf16	 29	 VPS54	 54	 PRMT1	 79	 MTO1
5	 WT1	 30	 MED14	 55	 UBE2S	 80	 TNFRSF10B
6	 RPS7	 31	 PREPL	 56	 BRD2	 81	 TIMM17B
7	 RBM25	 32	 ARPC4	 57	 ATP5H	 82	 ACTN4
8	 TCEAL2	 33	 SMARCB1	 58	 CALR	 83	 SNX7
9	 SEC61B	 34	 ARL8B	 59	 RPL22	 84	 GPBP1L1
10	 PPDPF	 35	 APPBP2	 60	 ATXN1	 85	 IL6ST
11	 CORO1B	 36	 NAP1L2	 61	 N4BP2L2	 86	 SMARCA2
12	 C9orf16	 37	 S100A1	 62	 SEH1L	 87	 TCEB2
13	 MET	 38	 UQCRQ	 63	 PTK7	 88	 ZDHHC17
14	 CRABP2	 39	 TVP23B	 64	 ALDH3A2	 89	 AGPAT2
15	 ITM2B	 40	 KLK8	 65	 NUCB1	 90	 FAM13B
16	 S100PBP	 41	 MIOS	 66	 DKFZP586I1420	 91	 JMJD4
17	 IK	 42	 HNRNPL	 67	 ATP2A2	 92	 MAZ
18	 PPP2R5C	 43	 CLPTM1	 68	 AKAP17A	 93	 ARPC4
19	 GANAB	 44	 SEC23B	 69	 GRINA	 94	 TSC22D4
20	 CAST	 45	 PEA15	 70	 DFNA5	 95	 CCSER2
21	 KIAA0368	 46	 FEZ2	 71	 PGRMC2	 96	 SYPL1
22	 C9orf16	 47	 ZKSCAN7	 72	 HECA	 97	 MRPL4
23	 GSTP1	 48	 FKBP8	 73	 RYR2	 98	 PLSCR4
24	 PEA15	 49	 ATP8A1	 74	 TACC1	 99	 MDFIC
25	 FAM120A	 50	 ALDH9A1	 75	 AMPD3	 100	 CAPNS1

Table II. Clusters identified by mAP-KL method for ovarian 
cancer.

Cluster	 Amount	 Exemplar
	
1	 24	 PFN1
2	 28	 C9orf16
3	 15	 HNRNPA1
4	 9	 HNRNPA1P10
5	 14	 CRABP2
6	 36	 COX5B
7	 21	 VPS54
8	 25	 HIST2H2AA3
9	 21	 HIST2H2AA4
10	 29	 MIOS
11	 15	 PEA15
12	 10	 FEZ2
13	 13	 TCEB2
14	 21	 RAD23A
15	 19	 ZNF45
16	 18	 PPP4C
17	 24	 ACTB
18	 27	 ISG15
19	 11	 FOLR1
20	 16	 FAM69A
21	 30	 SNORD21
22	 17	 RPL5
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Discussion

In order to investigate the key genes of ovarian 
cancer, we combined the mAP-KL algorithm and 
MIN related analysis. The results showed that a total 
of 22 clusters and exemplars were obtained based on 
mAP-KL. Additionally, we validated that the classi-
fied performance of the mAP-KL method was reaso-
nable and feasible based on SVM parameters. Subse-
quently, the MIN for top 200 genes and cluster genes 
were constructed by CLR algorithm, and topological 
centrality analyses were conducted on them. Among 
the hub genes and exemplars, we discovered 3 com-
mon genes (C9orf16, COX5B and ACTB), and ter-

med key genes. Besides, key genes in cluster MIN 
had a higher degree, closeness and betweenness cen-
trality than the others, which indicated that they were 
more significant to ovarian cancer progression.

Taking COX5B and ACTB for examples, 
COX5B (cytochrome c oxidase subunit 5B) is a 
peripheral subunit of the cytochrome c oxidase 
complex (COX). COX is a multi-subunit enzyme 
complex that couples the transfer of electrons 
from cytochrome c to molecular oxygen and con-
tributes to a proton electrochemical gradient 
across the inner mitochondrial membrane to drive 
ATP synthesis37. A previous study38 demonstrated 
that COX5A (COX subunit 5A) and COX5B in-

Figure 2. Mutual information network (MIN) for top 200 ranked genes in the microarray data. There were 200 nodes and 
1902 interactions, where nodes represented genes, and edges were the interactions between two genes. The yellow nodes were 
hub genes with top 4% degree distribution of the MIN.
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volved in the regulation of cancer cell metaboli-
sm. For instance, down-regulation of COX5B in 
breast cancer cell lines could suppress cell proli-
feration and induced cell senescence39. What was 
more, Taylor et al40 had revealed that COX5B was 
associated with ovarian cancer that might be tran-
slated into diagnostic and prognostic biomarkers 
of the disease. Therefore, COX5B was correlated 
to ovarian cancer closely.

ACTB (actin, beta), one of six different actin iso-
forms, has been widely used as a reference gene in 
quantifying expression levels in tumors41. Actions 
are highly conserved proteins that are involved in 
cell motility, structure and integrity42. Accumula-

ting evidence indicated that ACTB was closely asso-
ciated with a variety of cancers43-46, such as breast 
cancer and lung cancer. Furthermore, it had also be-
en reported that ACTB played significant roles in 
ovarian cancer47. In this work, ACTB was dug out 
from numerous genes dependent on mAP-KL 
method and MIN related analysis, which suggested 
its potential association with ovarian cancer.

Conclusions

We have identified three key genes (C9orf16, 
COX5B and ACTB) related to ovarian cancer ba-

Figure 3. Mutual information network (MIN) for clusters related genes of ovarian cancer. There were 177 nodes and edges, 
where nodes represented genes, and edges were the interactions between two genes. The yellow and red nodes both stood for 
22 exemplars identified by mAP-KL method, what was more, the red nodes also indicated the key genes.
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sed on mAP-KL algorithm and MIN. These genes 
might be potential biomarkers for early detection 
and therapy of ovarian cancer. 
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