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Abstract. – OBJECTIVE: As we know, gall-
stones are a gallbladder disease with high inci-
dence around the world. As the population has 
aged and living habits have changed, the inci-
dence of the disease is increasing year by year. 
Gallstones are mainly classified into choles-
terol, bile pigment and mixed type gallstones 
based on their chemical composition. Patients 
with different stone components have differ-
ent treatment options. Therefore, it is very im-
portant to know the chemical type of the stone 
before treatment. Imaging examination is the 
main method to identify the components of gall-
stones in the body.

MATERIALS AND METHODS: Deep learning 
technology has an excellent data mining ability, 
and thus the combination of deep learning and 
medical treatment is always a research focus. 
In this work, we introduce a generative model 
to learn the features of the training data, to de-
tect the composition of gallstones and to assist 
medical diagnosis. Furthermore, the theoretical 
analysis is given in detail.

RESULTS: The model could be used to deter-
mine the chemical composition of gallstones.

CONCLUSIONS: The potential of generative 
models in predicting the chemical composition 
of gallstones is shown in this study. In addition, 
theoretical analysis is also presented.

Key Words:
Auxiliary diagnosis, Composition of gallstones, 

Deep learning, Generative models, Generative adver-
sarial network (GAN), Variational auto-encoder (VAE).

Introduction

Recently, generative models have become 
more important and popular because of their 
applicability in deep learning fields. They are 
crucial to many computer vision fields, such 

as treating images1,2, and natural languages3. 
With the development of machine learning for 
big data4-6, neural networks have great potential 
in medical field7-10. Of note, medical images 
denoising problem can be solved using the con-
volutional neural networks11. Recently, genera-
tive models were proposed to solve the medical 
images denoising problem and achieved sig-
nificantly improved performance12. Generative 
models have the capability to represent complex 
data and the potential to solve problems, but the 
combination of the models and medicine have 
more enormous potential for growth because 
of the details, which are hard to guarantee 
to be realistic. Specifically, generative models 
are highly useful for predicting problems. In 
addition, generative models can be utilized to 
tackle various problems in the machine learning 
field, which is called semi-supervised learning13. 
However, their applications in medical fields 
need to be continuously extended.

Generative adversarial network (GAN)14, one 
of the generative models, was proposed to solve 
the disadvantages of other generative models. 
Instead of maximizing the likelihood estimation 
and related strategies, GAN introduces the con-
cept of adversarial learning between the gener-
ator G and the discriminator D. The network G 
and the network D act as adversaries for each 
other. The generator is a continuous, differen-
tiable function mapping an arbitrary distribution  
from the latent space  into the data space , which 
is used to fool the discriminator. The discrimina-
tor distinguishes where its inputs come from, the 
real data distribution or the generator. Generally, 
the network G and the network D are trained 
alternatively.

Gallstones are the most common gastrointes-
tinal-related diseases in the world and have very 
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high socioeconomic costs. According to statistics, 
some adults in developed countries suffer from 
gallstones. Gallstones are mainly classified into 
cholesterol stones, bile pigment stones, and mixed 
stones according to different cholesterol levels15. 
At present, research on the treatment of gallstones 
is gradually increasing. Non-surgical treatments 
such as dissolved stones and gravel have become 
important parts of the treatment of stones. The 
efficacy of non-surgical treatment depends largely 
on the type of calculus, which has led to a greater 
focus on the analysis of gallstone components, 
thereby improving the treatment of stones. The 
best treatment options are different depending on 
the composition of the stones. Cholesterol stones 
can be dissolved by ursodeoxycholic acid, but 
non-cholesterol stones cannot16. Equal-density 
cholesterol stones are extremely sensitive to extra-
corporeal shock wave lithotripsy, but this method 
has a poor effect on bile pigment stones17.

The imaging methods for the diagnosis of gall-
stones are important. At present, the imaging 
methods used to analyse gallstone components 
include ultrasonic images, computed tomography 
(CT) and magnetic resonance imaging (MRI). To 
determine the chemical composition of gallstones, 
some researchers proposed a general convolution 
model to learn the characteristics of the collect-
ed imaging data18. Yao et al19 presented a deep 
learning model for predicting chemical composi-
tion of gallstones and described the back-propaga-
tion strategy for training the convolutional neural 
network. Sawada et al20 presented deep genera-
tive models for inorganic chemical compositions, 
namely, they generated chemical compositions 
without using crystal information by using deep 
learning methods and underlined the effectiveness 
of the Metropolis-Hasting-based (MH) atomic va-
lency modification and the extrapolation perfor-
mance, important for the arterial discovery. They 
constructed four types of generative models and 
proved that a conditional GAN (CondGAN) per-
forms the best. Inspired by these papers, we used a 
deep generative model, which has a thread learn-
ing capacity, to learn the features of the training 
data to help predict gallstone components in this 
paper. 

Related Work

Generative Methods
Formally, a generative model learns to model 

a real data probability distribution  where the da-

ta  exists in the d-dimensional real space . Most 
generative models are based on the maximum 
likelihood principle with a model parametrized 
by parameter . With independent and identically 
distributed (i.i.d.) training samples  where , the 
likelihood is defined as the product of the prob-
abilities that the model gives to each training 
data:  where  is the probability that the model 
assigns to . The maximum likelihood principle 
trains the model to maximize the likelihood 
that the model follows the real data distribution. 
From this point of view, we need to assume a 
certain form of  explicitly to estimate the likeli-
hood of the given data and retrieve the samples 
from the learned model after training. However, 
while the explicitly defined probability density 
function results in computational tractability, it 
may fail to represent the complexity of the real 
data distribution and learn the high-dimensional 
data distributions. 

Nonlinear Processing
Convolutional neural network is essentially 

a linear function. The learning ability of neural 
networks would be weak if the entire network 
used only convolution operations. Therefore, it 
is necessary to increase the nonlinearity of the 
neural network by adding an activation function. 
Common activation functions include sigmoid 
function21, tanh function22, ReLU function23, and 
the Leaky ReLU function24, which is a variant 
of the ReLU function. The sigmoid function is 
also called the logistic function (threshold func-
tion). Its gradient is close to zero at  and (Table 
I). Actually, the convolutional neural network 
updates the parameters through the chain rule 
during back-propagation and the network cannot 
be back-propagated, because of the vanishing 
gradient when the gradient approaches zero on 
the chain.

Models

Variational Auto-encoder
An autoencoder, one type of neural networks, 

is trained to copy the input to the output . Internal-
ly, it has a hidden layer  that describes a code used 
to represent the input. The network includes two 
parts: an encoder function  and a decoder func-
tion . They are used to produce a reconstruction 
signal . The architecture is presented in Figure 
1. The autoencoder is not only utilized to simply 
learn to set  everywhere. Generally, it is restricted 
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in ways that allow it to copy only approximately, 
and to copy only input that resembles the train-
ing data. The model is forced to prioritize which 
aspects of the input should be copied, so it often 
learns useful properties of the data. Traditionally, 
autoencoders have been used for dimensionality 
reduction or feature learning. Recently, theoreti-
cal connections between autoencoders and latent 
variable models have brought autoencoders to the 
forefront of generative modeling.

The variational autoencoder (VAE) is a direct-
ed model that can be trained purely with gradi-
ent-based methods. To generate a sample from 
the model, the VAE first draws a sample  from 
the code distribution  . The sample then runs with 
a differentiable generator network . Finally,  is 
sampled from a distribution as follows:

pmodel (x, g (z)) = pmodel (x│z)

However, during training, the approximate in-
ference network (or encoder)  is used to obtain , 
and  is then viewed as a decoder network.

The key insight behind variational autoencod-
ers is that they may be trained by maximizing 
the variational lower bound  associated with data 
point25:
L(q)	= E(z~(z│x) log pmodel (z, x) + H ((q(z│x))
	 = E(z~(z│x) log pmodel (x|z) + DKL (q (z|x)|| pmodel

 (z))
	 ≤ log pmodel (x)

Generative Adversarial Network
GAN is a framework that applies adversarial 

learning to make realistic data. We simultaneous-
ly trained two models: the generator G and the 
discriminator D. G captures the data distribution 
of real-like fake samples from the latent variable 
, and D estimates the probability that its input 
comes from G or real data space. G and D com-
pete with each other to achieve their individual 
goals, which is the called adversarial process26. 
This adversarial learning situation can be formu-
lated as equation (1) with parameterized networks 
G and D.  and  in Equation (1) denote the real data 
probability distribution over data space X and the 
probability distribution of  on the latent space Z, 
respectively.

V (G, D) is a cross entropy function that is 
commonly used in deep learning problems as 
the objective function. Note that G maps  from Z 
into the element of X, and D takes an input  and 
distinguishes whether x is a real sample or a fake 
sample generated by G14.

The discriminator D wants to classify real or 
fake samples, V (G, D) is a common sigmoid 
cross entropy loss function in the binary classifi-
cation problem. From G’s perspective, G wants to 
deceive D as much as possible, so it tries to max-
imize the output when fake data that comes from 

Table I. Three kinds of activate function.

	 Sigmoid	 Tanh	 ReLU

Function Expressions

Function Curves

Derivative Curves
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the generator are presented to D. Consequently, 
D tries to maximize V (G, D) while G tries to 
minimize V (G, D), namely, the generator and 
discriminator are alternately trained. Figure 1 is 
an illustration of the GAN14.

Ideally, the two functions G and D both have 
sufficient learning capacities, the relationship be-
tween G and D occurs when pdata (x) = pg (x) and 
D always equals ½ where pg (x) is the probability 
distribution of the fake data generated by the 
generator14. For the fixed G, the optimal discrim-
inator is D*.

             pg (x)
D*  = ––––––––––––––––––– 
                 pg (x) + pdata (x)

Discussion

Ultrasound Image
The automatic segmentation of ultrasound im-

ages is an important part of many applications, 
especially in the medical field27,28. Because ul-
trasound imaging has several advantages such as 
good real-time performance, relatively inexpen-
sive costs, fast speed and convenience, it plays 
a vital role in the diagnosis of gallstones. Ultra-
sound imaging has been the accepted gold stan-
dard. The study found that ultrasound not only 
accurately determined the location, size, number, 
and echo intensity of stones, but also analyzed the 
composition of the stones. Cholesterol stones are 
a common type of stone of gallstones, and most of 
their typical sonograms are semicircular, crescent 
or round echoes. The cholesteric stones in the ra-
dial structure are characterized by strong echoes 
on the surface, gradually weakening towards the 
deep echoes, and finally becoming acoustic shad-
ow, and also deepening the trailing edge of the 
stones. In addition, a “comet tail” appears. The 
sonogram of pigmented gallstones is character-
ized by a narrow and strong echogenic band, and 
the posterior attenuation is an acoustic shadow. 

The boundary is clear, or the whole stone is com-
pletely displayed, and the sound and shadow are 
weak. The contents of sterols and bile pigments 
in mixed stones are similar, and sometimes it is 
difficult to distinguish them from pure cholester-
ol stones or pure bile pigment stones. Ultrasound 
predicts cholesterol stones with a sensitivity up 
to 72.9%, and a specificity of 100%. The positive 
predictive value is 100%, and the negative predic-
tive value is 93.4%29. The diagnostic accuracy of 
transabdominal ultrasound for common bile duct 
stones was 76.9%, the sensitivity was 76.2%, and 
the specificity was 81.3%30. Endoscopic ultraso-
nography (EUS) has important diagnostic value 
in patients with suspected choledocholithiasis and 
negative CT findings. The accuracy of EUS de-
tection of common bile duct stones is 94.0% (sen-
sitivity, 97.5%, specificity, 79.5%, positive predic-
tive value, 95.2%, and negative predictive value, 
88.6%)31. Therefore, using ultrasound images as 
the training data can improve the accuracy of 
predicting the chemical composition of gallstones 
and the diagnostic objectivity.

Computed Tomography
Computed tomography (CT) is extremely sen-

sitive to the amounts of calcium within gall-
stones. The CT value of a stone is negative-
ly correlated with the cholesterol content, and 
positively correlated with the calcium content 
of the stone. Moreover, a CT value < 140HU 
is regarded as a pure cholesterol stone32. In CT 
diagnosis, gallbladder stones are directly ex-
pressed as high- density or low-density stones. 
According to the different densities, gallbladder 
stones can be divided into the following class-
es: (1) high-density stones; (2) equal-density 
stones; or (3) low-density stones. The CT value 
is a unified unit that reflects the tissue density. 
The CT of water value is set to 0 HU, and the 
CT of bile value is set to 0-20 HU. Stones with 
the same density as bile cannot be visualized, so 
traditional CT scans cannot determine the pres-
ence of such stones. A CT value > 0 means that 
stones are low density stones, which are mostly 
high cholesterol stones.  CT values in the range 
of 0-20 HU are constant density stones, which 
are mostly cholesterol stones. Stones with a CT 
value < 20 HU are high-density stones, most 
of which are gallstones33. Scholars have shown 
that cholesterol stones are amenable to adjuvant 
litholytic therapy34,35. The accurate classification 
of stones can guide the treatment of dissolved 
stones. Based on the characteristics of CT im-

Figure 1. Generative Adversarial Network
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ages, we use CT data to distinguish water-based 
bile and fat-containing gallstones, which helps 
to determine the stone composition.

Magnetic Resonance Image
Magnetic resonance imaging is extremely sen-

sitive to changes in tissue composition. It can 
display more detailed gallstone structures, which 
may help to effectively determine the non-sur-
gical treatment of gallstones, such as chemical 
dissolution and extracorporeal shock wave litho-
tripsy (ESWL)36. Depending on the composition, 
stones may experience soft tissue attenuation, 
near water attenuation, or surrounding calcified 
fat attenuation. Stones appear as signal voids in 
T2-weighted imaging. In T1-weighted imaging, 
cholesterol stones are usually iso- or hypointense, 
while pigment stones are hyperintense due to the 
presence of metal ions37,38. However, due to the 
high price of MR examinations, they are rarely 
used in the diagnosis of gallstones, and it is wide-
ly used in academic research.

Medical image big data analysis uses the orig-
inal pixels of the medical image to capture the 
features of the image. In our methods, we can 
set the imaging features and the pathology of the 
diseased tissue as a priori information to train a 
generative adversarial network, with the mini-
mum loss of function as the goal. In addition, the 
image feature information is statistically learned 
by the deep learning networks and the optimal 
model will be saved. New medical images, as 

the input of the optimal model, can more ac-
curately predict the composition of gallstones, 
thus giving patients more precise treatment. In 
addition to imaging examinations, before making 
an imaging diagnosis using big data, we can first 
pre-treat the patients’ corresponding symptoms 
and signs, as well as the risk factors associated 
with gallstones. This will further improve the 
prediction accuracy of gallstone compositions. 
The combination of human experts and machine 
assistance, such as in the presented deep learning 
model can obviously exceed the achievements of 
any single system.

Advantages and Disadvantages
For the GAN, there is no explicit represen-

tation of , and D must be synchronized well 
with G during training. The advantages are that 
only backpropagation, and not Markov chains, 
is used to obtain the gradients rather than, no 
inference is needed during learning processing, 
and a wide variety of functions can be incorpo-
rated into the model15. An adversarial process 
may also gain some statistical advantage from 
the generator network not being updated direct-
ly with data examples, and only with gradients 
obtained through the discriminator. Namely, the 
components of the input are not copied directly 
into the space of the generators’ parameters. 
Another advantage is that the very sharp, even 
degenerate distributions can be represented by 
adversarial networks.

Algorithm 1. Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to 
the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our experiments. An example for format 
for & While Loop in Algorithm.

  1: for number of training iterations do
  2: for k steps do
  3: Sample minibatch of m noise samples z(1), …, z(m) from noise prior pg(z).
  4: Sample minibatch of m examples x(1), …, x(m) from data generating distribution pdata (x).
  5: Update the discriminator by ascending its stochastic gradient:

  6: end for 
  7: Sample minibatch of m noise samples z(1), …, z(m from noise prior pg(z).
  8: Update the generator by descending its stochastic gradient:

  9: end for
10: The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our 
experiments.
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Conclusions

In this paper, a generative model, including 
VAE and GAN, is proposed to potentially learn 
features for the training of imaging data. Spe-
cially, the features learned from big medical data 
can potentially be used to analyses the chemi-
cal composition of gallstones to determine the 
treatment options. Furthermore, the theoretical 
analysis is given in detail. Finally, we analyses 
how the model helps to determine the chemical 
composition of gallstones. In the future, we plan 
to insert more effective generative models into 
the neural network framework to further enhance 
its predictive ability.
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