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Abstract. – OBJECTIVE: Renal cell carcino-
ma (RCC) is the most common type of kidney 
cancer which could be mainly classified as kid-
ney renal clear cell carcinoma (KIRC) and kid-
ney renal papillary cell carcinoma (KIRP). KIRP 
ranks second in terms of morbidity rate which 
comprised 10%-15% of patients. Till now, there 
were few biomarkers could forecast the out-
comes of KIRP. The aim of this study was to 
identify novel prognostic biomarkers to predict 
clinical outcomes for KIRP.

MATERIALS AND METHODS: In this study, 
we firstly downloaded 326 miRNAs (35 controls 
vs. 291 patients), 321 mRNAs (33 controls vs. 
288 patients) data and their corresponding clin-
ical information from The Cancer Genome Atlas 
database. Then, we used DESeq2 analysis, uni-
variate and multivariate Cox regression analy-
sis, pathologic MNT correlation analysis, and 
specific prognostic model analysis to identify 
the potential prognosis biomarkers.

RESULTS: We found 25 differential expression 
miRNAs (DEMs) and 7 differential expression 
genes (DEGs) were associated with the over-
all survival rates of KIRP patients. After multi-
variate Cox regression analysis, we established 
2 prognostic prediction models and calculated 
the area under the 1-, 3-, and 5-year curve (AUC) 
values of DEMs and DEGs respectively. Among 
them, the prognostic index (PI) of DEMs and 
DEGs showed good predictive ability which was 
0.8293/0.7205, 0.8148/0.7301 and 0.7776/0.6810 
respectively.

CONCLUSIONS: In this study, we found that 
3 DEMs and 2 DEGs could be used as prog-
nostic biomarkers to predict the outcome for 
KIRP. Our study was just a primary analysis 
based on high-throughput sequencing and 
clinical information.
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Introduction

Renal cell carcinoma (RCC) is the most com-
mon type of kidney cancer which ranks sixth in 
males and eighth in females among all types of 
tumors1. Kidney is a complex organ which made 
up of various types of cells. Therefore, RCC can 
be classified to kidney renal clear cell carcinoma 
(KIRC), kidney renal papillary cell carcinoma 
(KIRP) and chromophobe renal cell carcinoma 
(KICH) according to the cell types in kidney2. 
Among these different subtypes, KIRC has the 
highest mortality rate, followed by KIRP which 
comprised of 10%-15% of cases2. 70% of RCC 
is localized or locally advanced at diagnosis2. 
Surgery is a very effective manner for localized 
RCC. However, recurrence is very common after 
surgery because of metastasis. More recently, 
researchers3,4 show that 30-35% of localized RCC 
will finally develop to distant metastases which 
indicate that the prognosis of RCC remains poor.

Currently, several biomarkers for KIRC are 
able to forecast the medical effectiveness and out-
comes, such as von Hippel-Lindau, vascular en-
dothelial growth factor, carbonic anhydrase IX, 
and hypoxia-inducible factor 1 alpha/2 alpha5-10. 
However, there are few biomarkers could be used 
efficiently in the prognosis of KIRP. Finding 
suitable prognostic biomarkers for KIRP is very 
urgently in clinical diagnosis.
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MicroRNAs (miRNAs) are short non-coding 
RNAs with 19-24 nt in length. MiRNAs is highly 
conserved in species and regulates the expression 
of target mRNAs by partially or fully comple-
mentary binding degradation. Increasing evidence 
suggest that miRNAs are involve in series of 
fundamental cellular processes, including cell dif-
ferentiation, proliferation, and apoptosis, as well as 
carcinogenesis or cancer progression11. Aberrant 
expression of miRNA plays an important role in 
the pathogenesis of various diseases, including 
cancers12-15. A large number of miRNAs and miR-
NA related mRNAs have also been identified as 
prognostic biomarkers for various cancers.

The Cancer Genome Atlas (TCGA) is an open 
access database collects more than 20,000 sam-
ples covering 33 different cancer types. Most 
samples in TCGA database contain mRNAs ex-
pression data, miRNAs expression data and stan-
dardized clinical data. In the present study, we 
aim to identify prognostic biomarkers for KIRP, 
which associated with aberrant expression of 
miRNAs, through related TCGA data analysis.

Materials and Methods

Differentially Expression Screening
All of these data used in the present study were 

obtained from a public database, The Cancer Ge-
nome Atlas database (TCGA) (https://portal.gdc.
cancer.gov/). We used DESeq2 package in R soft-
ware to analyze the mRNAs/miRNAs expression 
profiles by setting the threshold as p-adj < 0.01, 
|logFC| ≥ 1 and basemean > 50. The normalized 
expression data of miRNA and mRNA were out-
put for further survival and correlation analysis. 
All figures were performed by Graphpad Prism 
6.01 (San Diego, CA, USA).

Correlation and Functional 
Enrichment Analysis

In this study, overlap genes between the tar-
get genes of DEMs and DEGs were used for the 
spearman correlation analysis. The threshold for 
correlation analysis was set as p-value < 0.05 and 
r < -0.3. We performed GO and KEGG analysis 
by DAVID 6.816. All figures were performed by 
GraphPad Prism 6.01 (San Diego, CA, USA) and 
Cytoscape_3.7.2 software (Toronto, Canada).

Survival Analysis
KIRP patients were transformed into low ex-

pression group and high expression group depen-

dent on the median value. We used RegParallel 
and survival packages in R to carry out univariate 
Cox regression analysis. We used IBM SPSS 22 
(Armonk, New York, USA) software to carry out 
multivariate Cox regression analysis. The target 
miRNAs/mRNAs were considered to be signifi-
cantly correlated with the survival curve when 
the p-value of miRNAs/mRNAs was less than 
0.05. All figures were performed by GraphPad 
Prism 6.01 (San Diego, CA, USA).

Pathologic MNT Correlation Analysis
Pathologic M was divided into M0 group and 

M1 group dependent on the distant metastasis 
status. Pathologic N was divided into N0 group 
and N1+2 group dependent on the lymph node 
metastasis status. Pathologic T was divided into 
T1+2 group and T3+4 group dependent on the 
tumor size and infiltrating range status. And then, 
we used Kaplan-Meier analysis to exam the cor-
relation of overall survival (OS) with pathologic 
MNT, and then used unpaired two-tail Student’s 
t-test to exam the correlation of target DEGs with 
pathologic MNT. All figures were performed by 
GraphPad Prism 6.01 (San Diego, CA, USA).

Construction of the KIRP-Specific 
Prognostic Model

Based on the multivariate Cox hazards regres-
sion, the DEMs and DEGs signature scores were 
used to construct the prognostic model, and the 
prognostic index (PI) of OS was constructed as 
previous reports17,18. KIRP patients were divided 
into low-risk group and high-risk group with 
median risk score. And then we constructed 
time-dependent receiver operating characteristic 
(ROC) curves within 1-, 3-, and 5- year and esti-
mated the area under the ROC curve (AUC) for 
DEMs and DEGs. All figures were performed by 
GraphPad Prism 6.01(San Diego, CA, USA).

Results

Identification of DEMs and DEGs in KIRP
The miRNAs and mRNAs expression data and 

the clinical information data of KIRP were ob-
tained from open access database TCGA. There 
were 326 (35 controls vs. 291 patients) miRNA 
expression data and 321 (33 controls vs. 288 pa-
tients) mRNA expression data. By using DESeq2 
with the cut-off criteria of p-adj < 0.01, |logFC| 
≥ 1 and basemean > 50, we identified 77 DEMs 
(32 upregulated DEMs and 45 downregulated 
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DEMs) (Figure 1A, Supplementary Table I) and 
4013 DEGs (2327 up-regulated DEGs and 1686 
down-regulated DEGs) (Figure 1B, Supplemen-
tary Table II).

For those 77 DEMs we carried out univariate 
Cox regression analysis and identified 25 DEMs 

were significantly correlated with OS of KIRP 
(Table I). Of which 6 DEMs (hsa-miR-34a-5p, 
hsa-miR-181c-5p, hsa-miR-486-5p, hsa-miR-584-
5p, hsa-miR-144-5p, and hsa-miR-1180-3p) were 
up-regulated and 19 DEMs (hsa-miR-10b-3p, hsa-
miR-126-3p, hsa-miR-127-3p, hsa-miR-127-5p, 

Figure 1. Differentially 
expressed miRNAs and 
mRNA for KIRP. A, Vol-
cano plot of differential-
ly expressed miRNAs for 
KIRP. B, Volcano plot of 
differentially expressed 
mRNAs for KIRP. C, 
Scatter plot of Log2FC 
(miRNA) versus Log2 
FC(mRNA) in KIRP. D, 
Verified negative cor-
relation of 43 pair miR-
NA-mRNA.

Table I. Prognostic DEMs for KIRP by univariate Cox regression analysis.

 miRNA p LogRank HR HRlower HRupper

hsa-miR-10b-3p 0.031  0.027  2.05  1.07  3.94 
hsa-miR-1180-3p 0.024  0.021  0.49  0.27  0.91 
hsa-miR-126-3p 0.007  0.006  2.36  1.26  4.41 
hsa-miR-127-3p 0.005  0.004  2.52  1.32  4.82 
hsa-miR-127-5p 0.006  0.005  2.44  1.29  4.60 
hsa-miR-134-5p 0.007  0.005  2.41  1.28  4.55 
hsa-miR-141-5p 0.004  0.003  2.52  1.33  4.75 
hsa-miR-143-3p 0.017  0.014  2.14  1.15  4.00 
hsa-miR-143-5p 0.022  0.019  2.08  1.11  3.89 
hsa-miR-144-5p 0.013  0.011  0.46  0.25  0.85 
hsa-miR-145-3p 0.008  0.007  2.39  1.25  4.57 
hsa-miR-145-5p 0.002  0.001  2.84  1.46  5.52 
hsa-miR-181c-5p 0.015  0.013  0.47  0.25  0.86 
hsa-miR-199a-3p 0.005  0.004  2.53  1.32  4.84 
hsa-miR-199a-5p 0.009  0.007  2.33  1.24  4.41 
hsa-miR-199b-3p 0.005  0.004  2.53  1.32  4.84 
hsa-miR-199b-5p 0.008  0.006  2.38  1.26  4.49 
hsa-miR-217-5p 0.003  0.002  2.71  1.40  5.27 
hsa-miR-24-1-5p 0.015  0.013  0.45  0.23  0.86 
hsa-miR-3065-3p 0.029  0.026  1.99  1.07  3.67 
hsa-miR-34a-5p 0.000  0.000  0.27  0.13  0.54 
hsa-miR-379-5p 0.001  0.000  3.25  1.64  6.44 
hsa-miR-381-3p 0.001  0.001  2.95  1.52  5.74 
hsa-miR-486-5p 0.014  0.012  0.46  0.25  0.85 
hsa-miR-584-5p 0.014  0.012  2.19  1.17  4.09 

https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Table-II-10123.pdf
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hsa-miR-134-5p, hsa-miR-141-5p, hsa-miR-143-
3p, hsa-miR-143-5p, hsa-miR-145-3p, hsa-miR-
145-5p, hsa-miR-199a-3p, hsa-miR-199a-5p, hsa-
miR-199b-3p, hsa-miR-199b-5p, hsa-miR-217-5p, 
hsa-miR-24-1-5p, hsa-miR-3065-3p, hsa-miR-
379-5p, and hsa-miR-381-3p) were downregulat-
ed. Followed by DEMs survival analysis, we used 
miRDB and TargetScanHuman 7.2 to predict the 
putative target genes of those 25 DEMs. By Venn 
analysis for those 25 DEMs target genes cross to 
the DEGs in KIRP, we identified 551 pairs miR-
NAs-mRNAs correlated with 16 DEMs and 457 
DEGs (Figure 1C). 

The mainly expression and regulation pat-
tern between miRNAs and mRNAs is negative 
correlation. Thus, to further narrow-down the 
target genes, we introduced spearman correlation 
analysis and found there were 43 pairs miR-
NAs-mRNAs involved 38 overlap DEGs which 
were negatively correlated with 12 DEMs (Figure 
1D, Table II).

Functional Enrichment Analyses
The spearman correlation analysis showed there 

were 38 overlap DEGs which correlated with 12 
DEMs. Based on this result, we firstly constructed 
the network relationship between those DEGs and 
DEMs by Cytoscape_3.7.2 (Figure 2). 

To investigate the biological effects, we per-
formed GO and KEGG functional enrichment 

analysis. There were 6 cellular components (CC), 
13 biological processes (BP), and 2 molecular 
functions (MF) were enriched (Figure 3A-C). The 
KEGG functional enrichment analysis showed 9 
pathways were enriched, including tumor-relat-
ed pathways, such as cell adhesion molecules 
(CAMs) (Figure 3D).

Pathologic MNT Correlation Analysis
Previous reports indicated that pathologic 

MNT were closely related to OS. We firstly in-

Table II. The spearman correlation analysis for miRNAs-mRNAs.

 miRNA Gene p R miRNA Gene p R

hsa-miR-10b-3p BRSK1 0.00 -0.40 hsa-miR-145-5p FMNL2 0.00 -0.33
hsa-miR-10b-3p HLA-B 0.00 -0.31 hsa-miR-145-5p ITGB8 0.00 -0.49
hsa-miR-10b-3p HLA-G 0.00 -0.36 hsa-miR-145-5p ONECUT2 0.00 -0.34
hsa-miR-10b-3p PRAME 0.00 -0.41 hsa-miR-145-5p SEL1L3 0.00 -0.33
hsa-miR-10b-3p RAP2B 0.00 -0.33 hsa-miR-145-5p SEMA6A 0.00 -0.32
hsa-miR-10b-3p SATB2 0.00 -0.47 hsa-miR-181c-5p FLT1 0.00 -0.42
hsa-miR-1180-3p NRN1 0.00 -0.61 hsa-miR-181c-5p KAT2B 0.00 -0.33
hsa-miR-127-5p ITGB8 0.00 -0.31 hsa-miR-181c-5p PLCL2 0.00 -0.32
hsa-miR-127-5p RPGRIP1L 0.00 -0.34 hsa-miR-199a-3p ITGB8 0.00 -0.40
hsa-miR-134-5p NSUN5 0.00 -0.33 hsa-miR-199a-3p NUTF2 0.00 -0.31
hsa-miR-134-5p RIMS2 0.00 -0.30 hsa-miR-199a-3p PHYHIPL 0.00 -0.37
hsa-miR-143-3p ITGB8 0.00 -0.44 hsa-miR-199a-3p SERPINE2 0.00 -0.46
hsa-miR-143-3p TAPBP 0.00 -0.34 hsa-miR-199a-3p TNIK 0.00 -0.38
hsa-miR-145-3p ARMC3 0.00 -0.40 hsa-miR-34a-5p NOS1AP 0.00 -0.36
hsa-miR-145-3p CCDC40 0.00 -0.41 hsa-miR-34a-5p SYT9 0.00 -0.32
hsa-miR-145-3p CREB5 0.00 -0.55 hsa-miR-34a-5p WSCD2 0.00 -0.37
hsa-miR-145-3p DGKH 0.00 -0.38 hsa-miR-381-3p DGKH 0.00 -0.31
hsa-miR-145-3p KLF8 0.00 -0.44 hsa-miR-381-3p DMTF1 0.00 -0.30
hsa-miR-145-3p PTGFRN 0.00 -0.35 hsa-miR-381-3p WNT5A 0.00 -0.33
hsa-miR-145-3p ZNF385B 0.00 -0.40 hsa-miR-584-5p CALB1 0.00 -0.34
hsa-miR-145-5p ARL6IP5 0.00 -0.41 hsa-miR-584-5p FREM1 0.00 -0.30
hsa-miR-145-5p CREB5 0.00 -0.58    

Figure 2. Network of miRNA and related mRNA. Con-
structed network of miRNA and related mRNA for KIRP. 
The rectangles and the ellipses represent mRNA and miR-
NA respectively. Orange and green represent upregulated 
and downregulated expression respectively.
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vestigated the correlations of pathologic MNT 
with OS. These results showed that patholog-
ic MNT were closely associated with the OS 
for KIRP (Figure 4A-C). Then, we investigat-
ed the correlations of 38 overlap DEGs with 
pathologic MNT. These results indicated that 
there were 6 overlap DEGs (ZNF385B, AR-
L6IP5, NUTF2, RIMS2, SATB2, and PRAME) 
correlated with pathologic M (Figure 4D), 7 
overlap DEGs (ITGB8, NOS1AP, ONECUT2, 
PHYHIPL, RIMS2, SATB2, and ZNF385B) 
correlated with pathologic N (Figure 4E) and 
18 overlap DEGs (ARL6IP5, BRSK1, CALB1, 
CCDC40, CREB5, DGKH, DMTF1, ITGB8, 
KLF8, NOS1AP, NRN1, NUTF2, PHYHIPL, 
RIMS2, SATB2, SEL1L3, WNT5A, and ZN-
F385B) correlated with pathologic T (Figure 
4F). There were only 3 overlap DEGs (RIMS2, 
SATB2, and ZNF385B) associated with both 
pathologic MNT. 

Establishment of mRNAs/miRNAs 
Prognostic Models

After pathologic MNT correlation analysis, 
we evaluated the relationships between those 3 
overlap DEGs (RIMS2, SATB2, and ZNF385B) 
and the OS of KIRP patients. We found SATB2 

and ZNF385B were significantly correlated with 
the OS of KIRP patients (Figure 5A-B). Subse-
quently, we performed a multivariate regression 
analysis for those 2 overlap DEGs (SATB2 and 
ZNF385B) and found those 2 DEGs were still 
correlated with the OS of KIRP patients. Fol-
lowed by multivariate regression analysis, we 
constructed a prognostic model by using those 
2 DEGs. As shown in Figure 5C, the patients 
with low risk actually exhibited a good OS. 
Subsequently, we predicted 1-, 3-, and 5-year 
survival rate accurately for KIRP patients. The 
time-dependent receiver operating characteristic 
(ROC) curves for those 2 DEGs signature have 
area under curve (AUC) values higher than 0.5, 
which were 0.7205, 0.7301, and 0.6810 respective-
ly (Figure 5D-F).

By retrospective examination, we found 3 (hsa-
miR-24-1-5p, hsa-miR-34a-5p, and hsa-miR-181c-
5p) out of 25 DEMs were correlated with the OS 
of KIRP patients as measured by the multivariate 
Cox regression analysis. We also constructed a 
prognostic model by using those 3 DEMs. As 
shown in Figure 6A, the patients with low risk 
actually exhibited a good OS. The time-depen-
dent ROC curves for the 3 DEMs signature have 
AUC values higher than 0.5, which were 0.8293, 
0.8148, and 0.7776 respectively (Figure 6B-D).

Figure 3. Functional Enrichment Analyses. A-C, The enriched CC, BP and MF term analyzed by David 6.8. D, The enriched 
KEGG term analyzed by David 6.8. CC, Cellular Component. BP, Biological Processes. MF, Molecular Functions. KEGG, 
Kyoto Encyclopedia of Genes and Genomes.
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Discussions

RCC is the most common malignant tumor 
which ranks the top 10 most prevalence cancer in 
humans. There are approximately 400,000 new 
cases and 175,000 deaths around the world in 
20182. KIRC is the most prevalence subtype of 
RCC which followed by KIRP. Several models, 
such as the University of California, Los Angeles, 
Integrated Staging System, have been developed 
to predict the outcomes of KIRC after surgery19. 
The 5-year survival rate of KIRC has shown 
improvement recently20. However, as far as we 
known, there were few studies to predict the prog-
nosis of KIRP. And more ever, no reliable specific 
biomarkers have been identified as prognostic bio-
markers for KIRP detection and risk stratification. 

SATB2 is a transcription factor and chromatin 
modulator. Previous study indicated that overex-
pression of SATB2 could lead to tumorigenesis21. 

Another study also indicated SATB2 is high-
ly expressed in pancreatic cancer which could 
drive pancreatic cancer growth and metastasis22. 
Conner et al (2013)23 also found skeletal osteo-
sarcomas, osteoblastomas, and osteoid osteomas 
showed nuclear immunoreactivity for SATB2. 
Those researches indicated that SATB2 is a hall 
marker of cancer cells differentiation in benign 
and malignant tumors which could be used as 
a diagnostic biomarker. The same with previ-
ous researches, our results also supported that 
SATB2 could be used as diagnostic biomarker in 
KIRP. Another prognostic biomarker ZNF385B, 
also called ZNF533, is supposed to be a protein 
that possesses zinc-finger domains. Elgaaen et al 
(2012)24 found that ZNF385B is downregulated 
and correlated with OS in serous ovarian carci-
nomas (SOC). But in the present study, we found 
that ZNF385B was up-regulated and also cor-
related with OS in KIRP. Differences in the ex-

Figure 4. Pathologic MNT correlation analyses. A-C, Survival curves of pathologic MNT for KIRP (a,M; b, N; c, T). D-E, 
Associated analyses of overlap DEGs with pathologic M, N, and T stage for KIRP. A repeated-measure ANOVA followed by 
unpaired two-tail Student’s t test was used as indicated. All results are expressed as Mean ± SEM.
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pression of ZNF385B may be caused by different 
types of cancer. ZNF385B was associated with 
OS of SOC and KIRP, suggesting that ZNF385B 
may play an important role in cancers. 

MiRNAs were first identified in 1990s25. 
During the past few decades’ research, miR-
NAs have firmly established the characteristics as 
key molecular components of normal and patho-
logical cellular states. Due to the stability and 
universality, miRNAs were considered to be a 
novel group of disease biomarkers, including can-
cers26,27. In the present study, we comprehensively 
analyzed the miRNAs expression profile and 
found 77 DEMs, of which 25 DEMs was correlat-

ed with OS of KIRP patients. By cross analysis of 
DEMs predicted target genes and DEGs followed 
by spearman correlation analysis, we found 38 
DEGs which were associated with 12 DEMs.

Previous studies28 indicated that cancer stage 
(MNT) was recognized as one of the strongest 
prognostic factors in the clinical outcome of 
patients with cancers. Therefore, we introduced 
pathologic MNT stage correlation analysis to 
narrow down the potential prognostic biomark-
ers. Out of those 38 DEGs, we found that 6 DEGs 
were correlated with pathologic M, 7 DEGs were 
correlated with pathologic N, and 18 DEGs were 
correlated with pathologic T. Based on the mul-

Figure 5. Construction of survival risk score system based on mRNAs signature. A, B, Survival curves of target genes 
(SATB2 and ZNF385B) in KIRP. C, The survival curve of patients with high risk and low risk. D, F, The ROC curve in 1-year 
(D), 3-year (E), and 5-year (F) with AUC value.
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tivariate Cox regression analysis, we constructed 
miRNA prognostic model dependent on hsa-miR-
24-1-5p, hsa-miR-34a-5p, and hsa-miR-181c-5p; 
mRNA prognostic model dependent on SATB2 
and ZNF385B. The patients with low risk score of 
those 3 DEMs and 2 DEGs prognostic model ex-
hibited good survival rate and higher AUC values 
which suggested that both miRNAs and mRNAs 
prognostic model could be a good predictor for 
KIRP. Chang et al29 indicated that hsa-miR-34a-
5p is down-regulated in human cancers. Chen 
et al (2018)30 found that hsa-miR-34a-5p is one 
of top three downregulated miRNAs, and also 
found that hsa-miR-34a-5p could inhibit brain-
stem gliomas cell invasion. Haghi et al (2019)31 
also found that miR-34a and miR-16 could collab-
orate in breast tumor suppression. In the present 
study, we also found hsa-miR-34a-5p was sig-
nificantly decreased in KIRP. For the studies on 
hsa-miR-34a-5p, Gallelli et al (2019)32 found that 
hsa-miR-34a-5p and hsa-miR-375 could be rec-
ognized as biomarkers for monitoring the effects 
of drug treatment for migraine pain in children 
and adolescents. In addition, previous studies al-
so indicated that hsa-miR-181c-5p is upregulated 

in cemento-ossifying fibroma33. This expression 
trend of hsa-miR-181c-5p was the same as what 
we found in KIRP. 

Consistent with previous researches, our re-
sults indicated that 3 DEMs and 2 DEGs were 
correlated with the OS in KIRP. The time-depen-
dent ROC curve for those 3 DEMs and 2 DEGs 
had area under curve value higher than 0.5, which 
suggests that the prognostic model may be good 
predictors for KIRP. Further analysis including 
methylation and mutations in related genes could 
be considered as another dimensional factor to 
improve the accuracy of our prediction results.

Conclusions

In summary, we identified several prognostic 
biomarkers for KIRP based on miRNAs-mR-
NAs network and Cox regression analysis, and 
constructed 2 models by using 3 miRNAs and 
2 mRNAs to predict the prognosis for KIRP pa-
tients. Our research reinforced understanding for 
pathogenesis of KIRP and laid the foundation for 
future clinical research.

Figure 6. Construction of survival risk score system based on miRNAs signature. A, The survival curve of patients with high 
risk and low risk. B-D, The ROC curve in 1-year (B), 3-year (C), and 5-year (D) with AUC value.
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