
Abstract. – OBJECTIVES: Obesity and type 2 di-
abetes (T2D) are major risk factors for cardiovascu-
lar disease (CVD), which is often fatal among dia-
betics. There has been a steady rise in obesity and
in associated CVD in the last 2 decades. Despite
improvements in clinical and treatment approach-
es, the prevalence of heart failure (HF) is rising
with only minor extension in survival. Obesity and
diabetes can potentially increase the risk of HF in-
dependent of coronary heart disease and hyper-
tension. Aim of this paper was to systematically re-
view literature in the last 10 years on the associa-
tion of CVD with obesity and diabetes and to ad-
dress the key clinical points relevant for diagnosis
and risk factor assessment.

METHODS: Original research articles address-
ing molecular mechanisms, clinical articles and re-
views published in the last 10 years in the area of
diabetes and heart disease have been collected
from different sources including PubMed, Scopus
and other databases and critically compiled.

RESULTS: Insulin resistance, common to both
T1D and T2D patients, is a major risk factor for
cardiovascular events. Association of hyper-
glycemia with insulin resistance further increas-
es the risk of CVD and heart failure. Even though
obesity is an important risk factor for CVD, the
risk is mediated mostly through insulin resis-
tance but not body-mass index. The total risk of
CVD in T2D patients cannot be explained by tra-
ditional risk factors alone and specific metabolic
changes also significantly contribute to this.

CONCLUSIONS: The risk from the traditional
cardiovascular risk factors for developing heart
disease is further aggravated in diabetes. The
treatment approach for diabetic patients to pre-
vent cardiovascular complications should aim
not only to control insulin resistance but should
include lifestyle changes and early pharmaco-
logical intervention.
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Introduction

Approximately one third of mortalities in dia-
betic patients are due to cardiovascular diseases
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and, thus, making diabetes equivalent to coronary
heart disease1. Incidence of diabetes and obesity
is on steady rise and affects more than 371 mil-
lion people worldwide and this number is expect-
ed to increase to half a billion by 2030. Compli-
cations of diabetes have deleterious effects on
most body tissues leading to organ dysfunction
and culminating in diabetes-related morbidity
and death. There are mainly two kinds of dia-
betes, Type 1 diabetes mellitus (T1D) and Type 2
diabetes mellitus (T2D). T1D is immune-mediat-
ed diabetes and results from autoimmune de-
struction of the pancreatic β-cells and 5-10% of
diabetic patients suffer from T1D. T1D patients
are totally dependent on insulin administration
and, thus, this condition was also in the past
termed insulin dependent diabetes mellitus (ID-
DM). The diabetes epidemic is predominantly at-
tributable to T2D as more than 90% of diabetic
patients suffer from T2D. It is estimated that >
50% of diabetic patients die from a cardiovascu-
lar event – most likely coronary artery disease.
Stroke, diabetic cardiomyopathy and peripheral
vascular disease, atherosclerosis are other major
causes of heart failure in these patients2. Patients
with a combination of T1D and characteristics
associated with T2D, such as adiposity and
marked insulin resistance, are described to have
“double diabetes mellitus”3. Double diabetes
mellitus could have either an additive or syner-
gistic effect on CHD risk.

Diabetes is a major risk factor for heart fail-
ure and according to the Framingham Heart
Study the frequency of heart failure is twice in
diabetic men compared to age-matched controls
whereas this frequency is five times higher in
diabetic women4. Several clinical studies indi-
cated that heart failure among diabetic subjects
can be as high as 19%-26% and that diabetes af-
fects the heart in multiple ways including coro-
nary artery disease (CAD), accelerated athero-
sclerosis and diabetic cardiomyopathy5-7. Dia-
betes impacts heart function in several ways and
the underlying causes include chronic hyper-
glycemia, insulin resistance, disturbed lipid and
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Figure 1. Schematic depicting the possible mechanisms by which hyperglycemia, the common denominator in both type 1
and type 2 diabetes, leads to cardiovascular complications. AGE: Advanced glycation end products; RAS: rennin-angiotensin
system; ROS: reactive oxygen species; NF-κB: nuclear factor-κB.
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glucose metabolism, microvascular disease, al-
tered renin-angiotensin system (RAS), cardiac
autonomic dysfunction and myocardial fibro-
sis2,3,8. Stroke appears to be the primary cardio-
vascular-related cause of death in T2D patients
in China and Japan, whereas coronary artery
disease (CAD) and peripheral vascular disease
is considerably higher in T2D patients of Cau-
casian origin9.

Methods

We performed literature search in Pubmed,
Google Scholar and Embase databases for rele-
vant studies on diabetes and cardiovascular dis-
ease and heart failure, published during the last
two decades. We used type 2 diabetes, type 1 dia-
betes, coronary artery disease, cardiovascular
disease, cardiomyopathy and heart failure and
obesity as search terms. Only English language
publications were selected and reviewed.

Effects of Chronic Hyperglycemia on Heart
Elevated oxidative stress by the production of

reactive oxygen species (ROS) from mitochon-
dria is one of the causes of myocardial damage
(Figure 1) and this is aggravated in chronic hy-
perglycemia due to increased glucose metabo-
lism10. Increased levels of superoxide produced
by the mitochondrial respiratory chain reduce
myocardial contractility and lead to myocyte fi-
brosis. Enhanced cellular DNA damage by ROS
eventually leads to cardiomyocyte apoptosis and
also activates poly-ADP ribose polymerase11,
which diverts glucose from glycolysis into alter-
native biochemical pathways that cause the pro-
duction of advanced glycation end products
(AGEs) which cause hyperglycemia induced cel-
lular injury (Figure 1). There is also increased
hexosamine pathway flux and activation of pro-
tein kinase C. The ability of AGEs to covalently
crosslink intra and extracellular proteins is an im-
portant factor in diabetic complications as such
crosslink in collagen and elastin can result in in-
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creased myocardial stiffness and impaired car-
diac relaxation both in animal models and in hu-
mans10,12,13. Besides, interaction of AGEs with
their receptors and galectin-3 on myocardium re-
sults in activation of nuclear factor-kB (NF-kB),
which in turn triggers several pathways that in-
duce production of pro-inflammatory cytokines
such as tumor necrosis factor- and cause my-
ocardial damage14,15. On the other hand, in-
creased diversion of glucose towards hexosamine
pathway causes disruption of normal calcium
flux in cardiomyocyte resulting in reduced my-
ocardial performance and impaired diastolic re-
laxation16. Hyperglycemia and insulin resistance
also increase thrombosis formation, platelet ag-
gregation and plasma plasminogen activator in-
hibitor-1, which probably contributes to impaired
fibrinolysis. Hyperglycemia in diabetic patients
causes protein glycation and the generation of
fibrin clots that are denser and less porous and
resistant to fibrinolysis17.

Hyperglycemia activates renin-angiotensin
system in myocardial cells (Figure 1) and car-
diomyocyte angiotensin-II levels increase sever-
al fold both in T1D and T2D patients18. An-
giotensin-II is a vasoconstrictor molecule and is
a key regulator of mean arterial blood pressure
and vascular tone and, thus, is an important con-
tributor to the development of diabetic vascular
complications. Vascular complications in diabet-
ic patients are two kinds –those affecting the
macro-vasculature (e.g., aorta, femoral and coro-
nary arteries) and those affecting micro-vascula-
ture (e.g., capillaries of the eye, kidney and
nerves). Macro-vascular complications con-
tribute to the accelerated development of cardio-
vascular diseases leading to myocardial infarc-
tion and stroke2. Angiotensin-II signaling events
in cardiomyocyte can lead to cell growth and
cardiac hypertrophy19 and these damaging ef-
fects can be further aggravated by oxidative
stress, inflammation and aldosterone20. Cardiac
dysfunction worsens by hypertension21, which is
seen in 30% T1D patients and almost twice as
many T2D patients22.

Hyperglycemia is directly proportional to
HbA1c level, an important contributor to in-
creased macrovascular risk. However, HbA1c
measurements reflect only the average glycemic
control over the preceding 3 months and not the
cumulative total glucose exposure, which is more
relevant in terms of long-term cardiovascular out-
comes23. However, several clinical studies includ-
ing the Action to Control Cardiovascular Risk in
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Diabetes (ACCORD) trial, Action in Diabetes
and Vascular Disease: Preterax and Diamicron
Modified Release Controlled Evaluation (AD-
VANCE) trial and Veterans Affairs Diabetes Trial
(VADT) that studied over 25,000 patients, have
concluded that obesity, metabolic syndrome and
insulin resistance are more important than
HbA1c for the prediction of cardiovascular risk,
especially for coronary heart disease24-26. These
studies revealed that an aggressive approach to
control HbA1c < 7.0%, had no significant impact
on the incidence of cardiovascular events. In fact,
increased mortality in the intensively treated
group in the ACCORD study was attributed to an
increased frequency of hypoglycemia. Intensive
glycemic control in T2D patients may only lead
to minor improvement in cardiovascular out-
comes, and may even be harmful27.

Disturbances in Lipid Metabolism
in Diabetes and Their Effects on
Heart Function

Effects on Myocardium
Exhausted and lowered cellular oxidation ca-

pacity in diabetes leads on to ectopic lipid depo-
sition in non-adipose tissues such as skeletal
muscle, liver and heart. Recent studies suggested
that disturbed myocardial lipid metabolism caus-
es cardiac steatosis and diabetic cardiomyopa-
thy28,29. Patients with diabetes, obesity and im-
paired glucose tolerance have elevated plasma
free fatty acids (FFA) with the resultant increase
in cardiac FFA uptake, triglyceride accumulation
and cardiac steatosis28,30,31. Excessive FFA enter-
ing into cardiomyocytes cannot be completely
handled by the mitochondrial oxidative machin-
ery and are channeled into non-oxidative path-
ways, such as ceramide synthesis, thereby, giving
rise to toxic lipid intermediates, which cause
lipotoxic cardiac injury. These lipid intermedi-
ates, when produced in high levels, can cause mi-
tochondrial dysfunction, cellular damage, disrupt
normal cellular signaling, apoptosis and ultimate-
ly to myocardial fibrosis and dysfunction32,33. Im-
paired myocardial energy production leads to
disturbed mitochondrial calcium handling and re-
duced cardiac contractility cardiac dysfunction34.

Abnormal lipid partitioning but not the dis-
turbed insulin signaling is found to be responsi-
ble for the decreased tissue glucose uptake in
T1D patients. Elevated lipolysis, secondary to the
effects of insulinopaenia on adipocytes and hepa-
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tocytes, leads to increased circulating FFA and
intra-myocellular lipid35,36. In the DCCT-EDIC
and EURODIAB studies, triglycerides and LDL
cholesterol levels were positively related to the in-
cidence of coronary events in the T1D patients37.

While majority of T1D patients have normal
levels of HDL cholesterol, a subgroup of T1D pa-
tients who develop premature CHD show a ten-
dency for lower HDL cholesterol levels in associ-
ation with elevated triglycerides and LDL choles-
terol, similar to the atherogenic dyslipidemia,
commonly seen in T2D patients38. Hepatic TG li-
pase is stimulated by insulin, thus, facilitating the
cholesteryl ester transfer protein-mediated ex-
change of triglycerides for LDLs. This leads to
lipoprotein particles with decreased HDL choles-
terol content in individuals with central obesity,
metabolic syndrome and T2D39. However, in T1D
patients as exogenous insulin is delivered subcu-
taneously, portal vein insulin levels are low and
the hepatic TG lipase is less active, which results
in better maintenance of HDL cholesterol content
of lipoprotein particles in these patients. Interest-
ingly, a switch from subcutaneous to intraperi-
toneal route of insulin administration causes acti-
vation of hepatic TG lipase, and leads to lowered
levels of HDL2 cholesterol and increased HDL3
cholesterol40. Thus, it is possible that in T1D, re-
duced hepatic insulin exposure and the subse-
quent beneficial lipid metabolism confers an
atheroprotective phenotype. In line with this idea,
it has been shown in a study of 44 T1D patients,
pancreatic transplantation alters the lipid profile
towards a more atherogenic phenotype with high
levels of total cholesterol, LDL cholesterol and
triglyceride but decreased HDL cholesterol level,
reflecting increased hepatic insulin exposure41. In
lean T1D patients, portal insulinopaenia can po-
tentially exert cardioprotective effects by increas-
ing HDL cholesterol levels and decreasing hepat-
ic steatosis. However, in double diabetes mellitus
patients, chronic hyperglycemia and abnormal
lipid partitioning greatly aggravate atherothrom-
botic pathophysiology3.

In T2D patients of different age groups, gener-
ally BMI and waist circumference are higher
than T1D patients of similar age group and also
plasma total triglyceride levels are high and HDL
cholesterol levels are low42,43. A recent genome
wide association study on 63,746 coronary heart
disease (CHD) patients and 130,681 healthy con-
trols suggested that lipid metabolism and inflam-
mation are major players involved in the patho-
genesis of CHD44. Atherosclerotic vascular dis-

ease, the major cause of death in diabetic pa-
tients, cannot be accounted for by the traditional
cardiovascular risk factors alone and it has been
proposed that FFA exert inflammatory effects in
macrophages, and these inflammatory changes
contribute to diabetes-accelerated atherosclerosis
and other complications45. Inside the cells, fatty
acids are activated by long-chain acyl-CoA syn-
thetases (ACSLs) to acyl-CoAs, which are either
incorporated into cellular lipids or used for β-ox-
idation. ACSL1 is induced several fold in mono-
cytes and macrophages in type 1 diabetes, with
the resultant increase in inflammatory mediators.
Recently, it has been shown that myeloid-specific
ACSL1 deletion blocks the inflammatory activa-
tion of macrophages and prevents atherosclerosis
induced by diabetes46.

Importance of Hyperinsulinemia and
Insulin Resistance

Hyperinsulinemia and insulin resistance are
hallmark abnormalities of T2DM and prediabetic
states. Insulin is an anabolic hormone and has
metabolic effects on various tissues including the
liver, adipose tissue, and skeletal muscle. Insulin
promotes glycogen synthesis and storage in liver
and muscle, triglyceride synthesis and deposition
in adipose tissue, and protein synthesis in differ-
ent tissues. Insulin also enhances glucose utiliza-
tion and oxidation. The normal cellular action of
insulin is compromised under certain physiologic
(pregnancy, adolescence) and pathologic (obesi-
ty, T2D, acute illness) conditions leading to the
development of condition called insulin resis-
tance. Compensatory mechanisms in the body try
to overcome this by enhancing insulin secretion
from pancreatic b-cells and this results in hyper-
insulinemia. Chronic hyperinsulinemia further
aggravates insulin resistance, and exerts signifi-
cant metabolic stress on pancreatic b-cells ulti-
mately leading to their dysfunction and death.
Thus, hyperinsulinemia and insulin resistance to-
gether exert their detrimental effects on the body
by the feed-forward vicious circle47. Insulin resis-
tance leads to increase in circulating FFA, via ac-
celerated adipocytes lipolysis. High level of plas-
ma FFA further impair insulin action in peripher-
al tissues and insulin secretion by b-cells, the two
main characteristics of T2D.

Hyperinsulinemia contributes to cardiomy-
ocyte hypertrophy by various mechanisms (Fig-
ure 2). It has been shown that brain natriuretic
peptide (BNP), which is released from ventricles
and is a marker of cardiac hypertrophy and my-
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ocardial stretch, is increased in patients with
heart failure. BNP expression is significantly
higher in animal models of hyperinsulinemia and
insulin resistance, which also display left ventric-
ular hypertrophy and increased left ventricular
weight48. Hyperinsulinemia-mediated genetic and
epigenetic alterations result in the activation of
various transcription factors that directly influ-
ence expression of intra- and extra-cellular pro-
teins, which play important roles in cardiomy-
ocyte hypertrophy and focal cardiac fibrosis in
diabetes49,50. In conditions of hyperglycemia and
insulin resistance, ROS and advanced glycation
end products are increasingly produced and these
further aggravate low-grade inflammation and
contribute to an elevated cardiovascular disease
risk (Figure 2).

T1D patients on insulin treatment also display
insulin resistance and peripheral hyperinsuline-
mia and these are exaggerated in patients with
double diabetes mellitus. Interestingly the in-

creased risk of premature coronary disease in
T1D patients is better predicted by markers of in-
sulin resistance than HbA1c levels3,51. Insulin re-
sistance is best measured by euglycemic hyperin-
sulinemic clamp and since this is a specialized
procedure and not practical for routine clinical
use, the whole-body estimated glucose disposal
rate (eGDR) is used to measure insulin resistance
in place of the clamp52. Thus, an elevated eGDR
is an important predictor of both cardiovascular
events and any macrovascular events. A high
eGDR could also predict microvascular events as
supported by the EURODIAB study on the inci-
dence of retinopathy and nephropathy53. Insulin
resistance is recognized as a feature of T1D as
well, even in the absence of obesity and metabol-
ic syndrome, even though the lowered insulin-
mediated glucose uptake in T1D patients is likely
due to abnormal lipid metabolism and elevated
lipolysis, with consequently increased circulating
FFA levels and intramyocellular lipid35. In T1D
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Figure 2. Mechanism of cardiovascular disease development due to type 2 diabetes and obesity associated complications of
disturbed lipid metabolism, hyperinsulinemia and insulin resistance. FFA: Free fatty acids; HDL: high density lipoprotein;
LDL: low density lipoprotein; ROS: reactive oxygen species, CAD: coronary artery disease; CVD: cardiovascular disease.
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patients, there is increased peripheral hyperinsu-
linemia and peripheral insulin resistance because
of the subcutaneous insulin injections, which
lead to the downregulation of insulin receptors
and GLUT-454,55. Besides, high levels of insulin
can cause adverse cardiovascular effects, includ-
ing sodium retention and vascular smooth muscle
hypertrophy, and the associated vascular insulin
resistance can lead to elevated blood pressure
due to blunted insulin-mediated peripheral va-
sodilatation56.

A recent meta-analysis indicated that insulin
resistance as evaluated by HOMA index, could
better predict CVD events in adults without dia-
betes57. The extent of coronary calcification in
T1D patients could be predicted by insulin resis-
tance independently of glycemia51. Insulin resis-
tance is a central mechanism that connects differ-
ent components of the metabolic syndrome, viz.,
hyperglycemia, obesity, low HDL cholesterol,
high total triglyceride level and increased blood
pressure58. Atherogenesis and plaque progression
can be accelerated by insulin resistance via
changes in classic CVD risk factors and down-
regulation of insulin signaling pathways59. There
are ethnic differences in the susceptibility and in-
cidence of insulin resistance and thus Asian
American individuals with T2D are highly resis-
tant to insulin even if they are not overtly obese
as compared to Caucasians60. Also, T2D patients
from southern Asian countries have greater ab-
dominal fat mass as compared to white individu-
als despite similar total fat mass and are thus at
much higher risk of CVD61. Insulin resistance in
the liver and adipose tissue promotes the devel-
opment of atherogenic dyslipidemia, generates a
low-grade inflammatory state and enhances the
release of inflammatory markers and it also af-
fects blood pressure, endothelial cells and
macrophages. Macrophage insulin resistance has
modest effects on overall atherosclerotic lesion
size62. Therefore, a combination of both hyper-
glycemia and insulin resistance mediate the detri-
mental effects that promote CVD risk in patients
with T2D. Longer the duration of T2D, higher
the risk for CAD-related adverse events by hy-
perglycemia.

Altered Cardiac Gene Expression in
Diabetes Associated Heart Disease

It is widely accepted that several changes in
gene expression pattern occur in CHD and relat-
ed heart diseases associated with diabetes. De-
spite several large scale Genome Wide Associa-

tion Studies (GWAS), genotyping based predic-
tions for personal risk are not very successful,
mostly because only a small proportion of risk
can be accounted for by the known risk loci. Sev-
eral GWAS studies have revealed that even
though there can be a high number of significant
loci, they account for about 6-10% risk. GWAS
showed one important locus on chromosome
9p21, near CDKN2A and CDKN2B for coronary
artery disease, HDAC9, an intergenic region at
chromosome 6p21.1 for large vessel disease and
PITX2 and ZFHX3 for cardioembolic stroke and
atrial fibrillation63. Variants in five genes, viz.,
glucokinase, glucosese β and adrenoceptor 2A
that lead to elevated glucose levels, identified by
GWAS, were also found to be associated with
CAD and myocardial infarction64. ROS and ox-
idative stress that result from hyperglycemia can
lead to altered gene expression in myocardium.
Thus ROS may lead to induction of pro-inflam-
matory gene expression and promote a proin-
flammatory state by elevating adhesion molecule
expression65. Hyperglycaemia as such can cause
epigenetic changes in the NFthway, responsible
for the inflammatory changes66. Oxidative stress
in diabetic subjects is also known to increase the
AGEs, which induce myocardial damage by in-
teracting and up-regulating AGE receptors and
galectin-3, leading to the activation of NF-kB
transcription factor, in turn triggering several
pathways that induce production of pro-inflam-
matory cytokines67. It has been found that gene
expression of brain natriuretic peptide (BNP),
which is released from the ventricles in response
to myocardial stretch and which is increased in
patients with heart failure, to be significantly
higher among animal models of hyperinsuline-
mia and insulin resistance. Because of this, BNP
is now considered as a biomarker for subclinical
ventricular diastolic dysfunction in patients with
uncontrolled diabetes67.

Preventive and Therapeutic Strategies
Primary approaches to prevent CVD risk in di-

abetics include changes in lifestyle, improving
diabetic control, therapy to decrease lipid burden
and management of coexistent hypertension, and
management of heart failure. Regular exercise
and healthy eating habits are important for the
management of obesity and diabetes. It is well
documented that exercise is associated with sig-
nificant reduction in CVD in diabetic patients68.
There is some evidence to show that tight
glycemic control can improve stress-induced
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ventricular dysfunction without CAD in diabetic
patients69. Metformin, which improves peripheral
insulin sensitivity and controls hyperglycemia
upregulates cardiomyocyte autophagy that plays
a role in the prevention of diabetic cardiomyopa-
thy70. Statin treatment to patients with diabetes
lowers lipid burden and vascular risk factors and
has been shown to reduce cardiovascular events
and mortality71.

The ACCORD study showed that an aggres-
sive approach for controlling glycemia intensive-
ly in T2D patients actually increased the mortali-
ty, even though the reason for this unexpected
finding is not known24. A high percentage of in-
tensively treated patients in this study were on in-
sulin (77%) and/or thiazolidinedione (TZD)
(91%) therapy and this group also had higher
weight gain (3.5 kg vs 0.4 kg) as compared to pa-
tients who were received normal treatment. Con-
sidering that insulin sensitivity regulation is an
integral component of normal metabolic physiol-
ogy, the dogma that insulin resistance is “bad” as
it is at the root of T2D, needs to be re-visited.
The possibility that the insulin resistance in obe-
sity-related T2D is more a defense mechanism
than an unwanted detrimental effect, and overrid-
ing it by intensive therapeutic approach can po-
tentially cause harm needs to be considered. For
example, in response to even short term over-
feeding, skeletal and cardiac muscle develop in-
sulin resistance, which diverts the excess nutri-
ents to adipose tissue for safe storage72. There-
fore, induction of insulin resistance likely pro-
tects important tissues like heart from nutrient-
induced dysfunction73. Thus, overriding insulin
resistance in over-nourished T2D patients, by ei-
ther intensive insulin therapy or other approach-
es, to enhance insulin sensitivity or both, may
bypass a natural defense mechanism. Under
these conditions, critical insulin-responsive tis-
sues such as heart may no longer be protected
from fuel surfeit toxicity as these intensive treat-
ments promote excessive glucose entry in to tis-
sue, thereby causing glucolipotoxicity in these
hyperglycemic, dyslipidemic subjects, due to ac-
cumulation of intracellular nutrients (e.g. steato-
sis) and toxicity to mitochondria74. The compli-
cation of weight gain due to intensive glycemic
control is also recognized in subsequent analyses
of DCCT–EDIC subgroups as some patients in
the trial who gained weight exhibited features of
increased cardiovascular risk75. It is observed in
this analysis that patients, whose BMI increased
from 24 kg/m2 to 31 kg/m2, had much higher

blood pressure, LDL cholesterol levels and a
more atherogenic lipid profile than those with
lesser weight gain. Thus the value of aggressive
glycemic control in T1D patients is questionable,
particularly if it is accompanied by marked
weight gain and by accumulation of central fat
stores3.

Conclusions

Besides obesity and diabetes, several patho-
genetic mechanisms appear to be operative in
CVD, including increases in hemodynamic over-
load, apoptosis, ischemia-related dysfunction,
ventricular remodeling, abnormal myocyte calci-
um cycling, abnormal extracellular matrix prolif-
eration and genetic mutations. Biomarkers re-
leased from myocardium during the course of
myocardial stretch are helpful in identifying the
causative factors of CVD and in its prognosis and
in choosing subsequent therapeutic measures,
thereby improving the care of patients with heart
failure. However, we still need vigorous, multi-
faceted preventive approaches for achieving sig-
nificant reductions in the prevalence of heart fail-
ure and CVD. The main approach for reducing
the risk of premature cardiovascular disease in
diabetic patients should involve early identifica-
tion of the potential risk factors, and choosing the
necessary therapeutic regimen for their manage-
ment. These treatment approaches include target-
ed lifestyle advice, advice to increased physical
activity, healthy dietary regimen and early use of
statins and antihypertensive drugs as primary
prevention drugs. In high cardiovascular risk pa-
tients, particularly in those who show the compli-
cation of substantial weight gain due to intensive
insulin treatment, relaxation of glycemic targets
is necessary to facilitate management of their
macrovascular risk.
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