
2200

Abstract. – OBJECTIVE: Both atrial fibrilla-
tion (AF) and heart failure (HF) are increasing-
ly prevalent and related to high hospitalization 
rate and mortality. AF is a cause as well as a 
consequence of HF, with complicated interac-
tions resulting in impairment of cardiac systol-
ic and diastolic function. Conversely, the com-
plex structural and neurohormonal alterations 
in HF contribute to the occurrence and develop-
ment of AF. However, the molecular mechanism 
remains unclear. This study aims to explore the 
effect of Exchange-protein activated by cAMP 1 
(EPAC1) on AF in isoproterenol (ISO)-induced 
HF and the potential molecular mechanism.

MATERIALS AND METHODS: Mice and cul-
tured isolated adult cardiomyocytes were treat-
ed with ISO and or not EPAC1 inhibitor CE3F4. 
Programmed electrical stimulation (PES) was 
performed to induce AF. EPAC1 expression 
was determined by Reverse Transcriptase-Poly-
merase Chain Reaction (RT-PCR) and Western 
blot. Cellular electrophysiology was examined 
by whole cell patch clamp.

RESULTS: Both mRNA and protein levels of 
EPAC1 were upregulated in HF mice. ISO in-
creased the AF susceptibility, and the negative 
effect was deteriorated by CE3F4. ISO mediated 
high AF susceptibility of HF via prolonging ac-
tion potential and exciting L-type calcium chan-
nel (LTCC). These could also be reversed by 
CE3F4 treatment.

CONCLUSIONS: EPAC1 increased the AF sus-
ceptibility in ISO-induced HF mouse model via 
alternating LTCC.
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Introduction

Atrial fibrillation (AF) is the most encounte-
red cardiac arrhythmia with an increased risk of 

stroke and death1. Heart failure (HF) is common 
in AF patients; meanwhile, AF is also common 
in HF patients. AF is associated with a three-fold 
risk for heart failure (HF)2. Conversely, the com-
plex structural and neurohormonal alterations in 
HF contribute to the occurrence and development 
of AF3. Both AF and HF are gradual prevalent 
and related to high hospitalization rate and mor-
tality4,5. HF and AF share common risk factors 
and pathophysiologic processes, such as smoking, 
diabetes, hypertension, sleep apnoea, and coro-
nary artery disease6. HF patients are in the state of 
neurohormonal imbalance with excitation of the 
renin-angiotensin-aldosterone system (RAAS), 
resulting in pathological changes involving an 
increase of filling pressures and afterload. The-
se changes cause increased stretch and fibrosis in 
atrial, contributing to the development and main-
tenance of AF7-9. However, there are still some 
unsolved mechanisms about why HF patients are 
more susceptible to AF.

Sustained adrenergic overstimulation contri-
butes to the pathogenesis of cardiac remodeling 
in HF. 3’,5’-cyclic adenosine monophospha-
te (cAMP) is a famous secondary messenger in 
β-AR signaling. The cAMP was believed to be 
mediated only by protein kinase A (PKA) befo-
re. However, scientists detected another impor-
tant PKA-independent effector of cAMP – the 
exchange protein directly activated by cAMP 
(EPAC) several years ago10,11. EPAC isoforms are 
very important in various human diseases, espe-
cially in HF. The EPAC protein family consists 
of two members: EPAC1 and EPAC212,13. EPAC1 
expresses nearly ubiquitously in the whole body 
including the cardiovascular system10,11. In the 
heart, EPAC1 is the major isoform. Dysfunction 
of L-type calcium channel (LTCC/ ICa-L) is a 
critical mechanism in different kinds of cardiac 
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arrhythmias. The aim of our study was to investi-
gate whether EPAC1 regulates LTCC and its role 
in AF generation in the mouse model of isoprote-
renol (ISO)-induced HF.

Materials and Methods

Mice
Mice used in the investigation were at the age 

of 8 weeks. All studies were approved by the 
Animal Ethics Committee of Wenzhou Medical 
University Animal Center. To induce HF models, 
8-week C57BL6 male mice were treated with 
ISO (30 mg/kg/day) for continuous 3 weeks with 
subcutaneous osmotic minipumps (Alzet, 1004, 
Cupertino, CA, USA) as previously described14. 
Controls were treated with saline using the same 
protocols.

Echocardiography
Cardiac function was examined by transthora-

cic echocardiography in both groups at baseline 
and post 3 weeks of ISO/saline treatment. Mice 
were anesthetized by inhaling 2% isoflurane, and 
then, echocardiography was carried out with an 
ultrasound machine (Vevo 3100, Fujifilm Visual-
Sonics, Toronto, ON, USA).

Langendorff Perfused Heart and 
Programmed Electrical Stimulation

Mice were heparinized (30000 IU/ml) and then 
anesthetized by intraperitoneal injection with 
pentobarbital sodium (80 mg/kg). Hearts were 
perfused on the Langendorff system retrogradely 
with a Tyrode solution [(in mM): CaCl2 1.8; NaCl 
126; Na2HPO4 0.3; KCl 5.4; MgCl2 1; glucose 10; 
HEPES 10; pH adjusted to 7.35 with NaOH)] at 
37°C and bubbled with 5% CO2. The system was 
delivered under a constant flow at a rate of 3 mL/
min via a peristaltic pump. 

Unipolar electrocardiogram (ECG) was moni-
tored using two electrodes: negative one was abo-
ve the aorta and the positive one was at the apex 
of the heart; another electrode was placed at right 
atrium to carry out epicardial pacing. Hearts were 
perfused with a Tyrode solution containing (or 
not) CE3F4 (1 mM) for 30 min at first. Then, pro-
grammed electrical stimulation (PES) was per-
formed to induce AF and ECG was achieved. In-
ducibility of AF was tested by utilizing 5s bursts 
through electrodes with an automated stimulator 
(GY6328B; HeNan HuaNan Medical Science and 
Technology, Ltd. Zhengzhou, China) as previou-

sly described11. Each heart was stimulated for five 
times, and the number of PES-induced AF was 
recorded.

Quantitative Real Time-Polymerase Chain 
Reaction (qRT-PCR) and Western Blot

Quantitative mRNA expression in mouse atrial 
samples was performed with protocols described 
previously15. We used primer sequences supplied on 
the PrimerBank (https://pga.mgh.harvard.edu/pri-
merbank/) as following: EPAC1 forward: TCTTAC-
CAGCTAGTGTTCGAGC; EPAC1 reverse: AAT-
GCCGATATAGTCGCAGATG; GAPDH forward: 
AGGTCGGTGTGAACGGATTTG; GAPDH re-
verse: TGTAGACCATGTAGTTGAGGTCA. 

Quantitative normalization was performed on 
EPAC1 and glyceraldehyde 3-phosphate dehy-
drogenase (GAPDH) mRNA detection. The rela-
tive expression of EPAC1 was determined using 
the 2−∆∆CT method.

Protein extraction and immunoblots were 
performed as the previous approaches16. Briefly, 
mouse atria were homogenized, and then, proteins 
were separated by polyacrylamide gel electropho-
resis, transferred to a polyvinylidene difluoride 
(PVDF) membrane, and afterwards immunoblot-
ted against the antibodies: anti-EPAC1 (1:1000; 
Abcam, Cambridge, MA, USA) and anti-GAPDH 
(1:1000; Abcam, Cambridge, MA, USA) antibo-
dies. After that, blots were exposed to secondary 
antibodies. The band intensity was quantified and 
is expressed as a percentage of GAPDH.

Isolation of Atrial Cardiomyocytes
Hypertensive and control mice were hepari-

nized 15 min before anesthesia using sodium 
pentobarbital (80 mg/kg). Hearts were quickly 
removed, and the aortas were rapidly attached 
to a Langendorff device. The apparatus was 
retrogradely perfused with a flow at a rate of 
3 mL/min at constant 37°C. Hearts were first-
ly perfused with a Tyrode solution for 2 min 
to pump out the blood [(in mM): CaCl2 1.8; 
NaCl 126; Na2HPO4 0.3; KCl 5.4; MgCl2 1; glu-
cose 10; HEPES 10; pH adjusted to 7.35 with 
NaOH)]10. Then, the hearts were cleared with 
Ca2+-free Tyrode solution. Afterwards, hearts 
were further digested with the same Ca2+-free 
solution containing collagenase type II (0.6 mg/
mL, 296 u/mg, Worthington) and 0.1% bovine 
serum albumin for another 8 to 12 min. The 
atrium was blew into atrial cardiomyocytes and 
placed in Krebs-Henseleit (KH) buffer solution 
(in mM) (KOH 85; KCl 30; MgCl2 1; glutamate 
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50; HEPES 10; EGTA 0.5; taurine 20; gluco-
se 10; pH adjusted to 7.35 with KOH) at 4°C 
for at least 1 h and prepared for patch clamp. 
Cells cultured were reintroduced to Ca2+step by 
step (Ca2+ concentration (in mM): 0.1, 0.3, 0.6, 
0.9, and 1.2) and then added to M199 medium 
(Hyclone, USA) with or without EPAC1 inhibi-
tor CE3F4 (10 μM). Cardiomyocytes were pla-
ted and maintained at 37°C in 5% CO2-enriched 
atmosphere. After 24 h of exposure to different 
treatments, cells were washed with a Tyrode so-
lution before patch clamp.

Patch Clamp
The digested myocytes were utilized to re-

cord action potentials (APs) at 37°C and ICa-L at 
room temperature (21-25°C) using the whole cell 
patch-clamp technique by a patch clamp ampli-
fier (Axopatch 200B). Pipettes were filled with 
the following internal solution (in mm): aspartic 
acid 100, CsOH 70, CsCl 40, MgATP 4, MgCl2 
2, EGTA 10, HEPES 10 (pH adjusted to 7.3 with 
CsOH). Pipettes were tested before used to en-
sure a resistance of 2-4 MΩ. The bath was per-
fused with the external solution (in mm) when 
recording IL-Ca: TEA-Cl 145, CsCl 10, 2 CaCl2, 
MgCl2 0.5, HEPES 5, glucose 5.5 (pH adjusted 
to 7.4 with CsOH). Atrial myocytes were held at 
−60 mV, and IL-Ca was recorded by voltage steps 
from −60 to +60 mV, with 250 ms and 0.1 Hz. 
The bath was perfused with a Tyrode solution 
when recording APs. APs were elicited at 1 Hz 
by 4-ms current pulses at 120% threshold level.

Statistical Analysis
All data were analyzed using GraphPad Prism 

5 (La Jolla, CA, USA). Data were presented as 
means ± SD (standard deviation) and analyzed 
using a paired Student’s t-test. p<0.05 was consi-
dered significant.

Results

Inducible AF was Increased 
in ISO-Infused HF

To investigate whether the HF model is suc-
cessful, echocardiography was performed in 
each mouse. Table I showed that after 3-week 
ISO admission, hearts were enlarged and ejection 
fraction was significantly reduced. This sugge-
sted the HF model was feasible. To detect whether 
AF inducibility was increased in HF model, PES 
was performed in Langendorff perfused hearts. 
After 3-week ISO admission, PES-induced AF 
was significantly increased (Figure 1 A, 1B). The 
mean rate of AF inducibility was 80% after ISO 
infusion while the rate was only 12.5% in the con-
trol group. 

EPAC1 Expression was Upregulated 
in HF

Next, we tested the mRNA level of EPAC1. The 
expression of EPAC 1 was increased in atrial tis-
sues from HF mice compared with control (Figu-
re 1C). Also, the EPAC1 protein was upregulated 
in atrial tissues from HF compared with control 
(Figure 1D, 1E).

Effect of ISO on AP Duration and ICa-L  
in Atrial Myocytes

We next examined the cellular electrophysiolo-
gy in atrial myocytes of HF mice. Representative 
recordings (Figure 2A) and summary data illu-
strated that ISO increased APD at 50% (APD50, 
Figure 2B), 70% (APD70, Figure 2C), and 90% 
(APD90, Figure 2D) repolarization. APD 50 was 
increased by 32.77% (10.62 ± 0.5328 ms and 14.10 
± 0.5118 ms, p<0.05). APD70 was increased by 
36.36% (21.37 ± 0.7492 ms and 29.14 ±1.291 ms, 
p<0.05). Also, APD 90 was increased by 30.43% 
(47.88 ± 1.704 ms and 62.45±2.195 ms, p<0.05). 

Table I. Echocardiography of hearts in mice after ISO admission and control groups.

	 Control	 HF	 p 	

LV ID; d (mm)	 9.40 ± 0.28	 11.15 ± 0.23	 < 0.001
LV ID; s (mm)	 5.99 ± 0.51	 8.48 ± 0.22	 < 0.001
LV PW; d (mm)	 1.69 ± 0.04	 2.06 ± 0.06	 0.0036
EF (%)	 61.35 ± 1.01	 42.54 ± 1.28	 < 0.001
FS (%)	 36.59 ± 1.58	 25.15 ± 0.53	 < 0.001
LV Vol; d (μL)	 497.1 ± 32.06	 719.0 ± 32.88	 < 0.001
LV Vol; s (μL)	 187.2 ± 14.79	 406.4 ± 23.92	 < 0.001
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We then measured the effects of ISO on ICa-L 
in atrial myocytes. In this experiment, we found 
that ISO had an active effect on atrial ICa-L den-
sity in basal conditions, as showed in represen-
tative recordings (Figure 3A) and summary cur-
rent-voltage relationship data (Figure 3B).

Inhibition of EPAC1 Reduced AF in HF
To access whether EPAC1 regulated AF for-

mation, HF hearts were perfused by EPAC1 inhi-
bitor-CE3F4 via the Langendorff system. The 
inducibility of AF was markedly decreased in 
CE3F4-treated HF mice compared with no CE3F4 
infusion group (47.5% vs. 80%) (Figure 1B).

Inhibition of EPAC1 Reversed APD and 
ICa-L after ISO Treatment

In the next part, we determined whether inhi-
bition of EPAC1 affects APD and ICa-L with 
ISO treatment. Adult cardiomyocytes were 
cultured and dealt with vehicle, ISO or ISO + 
CE3F4 for 24 h and prepared for whole cell pa-
tch clamp. In vitro, APD was similarly increa-
sed after ISO treatment. APD50, APD70, and 

APD 90 were respectively prolonged by 39.94%, 
37.54%, and 35.07% (Figure 4 A, 4B). Admini-
stration of CE3F4 reversed the APD compared 
with ISO perfusion only. APD50, APD70, and 
APD 90 were reduced in ISO + CE3F4 group by 
13.22%, 14.39%, and 14.22% compared to ISO 
group (Figure 4A, 4B).

Consistent with the effect on APD, CE3F4 
also reversed the ICa-L excitation after ISO tre-
atment. Representative recordings (Figure 5A) 
and summary current-voltage relationship data 
(Figure 5B) illustrated that, in isolated atrial cel-
ls, 24h-activation by ISO could increase ICa-L 
density, and this effect was weakened by CE3F4. 

Discussion

In the present work, we used an EPAC1 inhi-
bitor to show that EPAC1 suppression inhibited 
AF in ISO-induced HF. Mechanistically, ISO in-
fusion increased EPAC1 expression to promote 
L-type calcium channel opening, which prolongs 
AP. Thus, EPAC1 is essential for AF in HF.

Figure 1. AF inducibility and EPAC1 expression in ISO-induced HF. A, representative recordings of PES induced arrhyth-
mia, the upper one represents no arrhythmia after PES, the below one means irregular atrial arrhythmia (AF) after PES. B, 
PES- induced AF in Langendorff perfused hearts of control, HF and HF+CE3F4 groups (n=10 in each group). C, mRNA and 
(D) (E) protein expression of atrial tissues (n=6 in each group). HF: heart failure; *p<0.05 vs. control; #p<0.05 vs. HF.
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Previous researches have showed diverse ef-
fects of EPAC signaling on various cardiovascu-
lar functions such as proliferation and migra-
tion of vascular smooth muscle cells, vascular 
endothelial barrier function, regulation of va-
scular inflammation, cardiac hypertrophy, car-
diomyocyte apoptosis, and electric remodeling17. 
Evidence indicates that EPAC is related to Ca2+ 
cycling, K+ and Na+ channel capability17,18. EPAC 
activation promotes sarcoplasmic reticulum (SR) 
Ca2+ leak through Ca2+/calmodulin kinase-II 
(CaMKII), enhancing susceptibility to delayed 
after depolarizations18. In another study19, EPAC 
affects SR Ca2+ handling by inhibition of hyper-
phosphorylation of ryanodine receptor (RyR) on 

serine 2814/2815 and phospholamban on serine16. 
EPAC is also reported to increase the expression 
of transient receptor potential canonical 3 and 4 
channels in isolated ventricular cardiomyocytes. 
Ca2+ influx via these two transient receptor po-
tential canonical channels may lead to the de-
velopment of arrhythmias20. The increase of late 
Na+-current by CAMKII is important as well in 
the proarrhythmic effect of EPAC21. In addition, 
EPAC 1 activation decreases IKs and prolongs 
APD, which then increases susceptibility to early 
after depolarizations22. Our work is the first in-
sight into the negative effect of EPAC1 on ICa-L 
on the cellular membrane. Due to the importan-
ce of ICa-L in calcium-induced calcium release, 

Figure 2. Prolonged AP in atrial myocytes of ISO-induced HF. A, Representative recordings of AP in atrial myocytes; APD 
50 (B), APD 70 (C) and APD 90 (D) in adult isolated myocytes from control and HF mice. APD: action potential duration; HF: 
heart failure; *p<0.05 vs. control.
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Figure 3. Enhanced ICa-L in HF atrial cells. A, Representative recordings of AP in atrial myocytes; B, Atrial ICa,L I-V 
relationships in control and HF hearts (n=8 in each group). *p<0.05 vs. control. 

Figure 4. Revered AP in atrial myocytes after CE3F4 treatment. A, Representative recordings of AP in atrial myocytes; APD 
50 (B), APD 70 (C) and APD 90 (D) in adult isolated myocytes from control, ISO, ISO+CE3F4 groups (n=8 in each group). 
APD: action potential duration; ISO: isoproterenol; *p<0.05 vs. control. #p<0.05 vs. ISO.



M.-X. Zhang, J.-K. Zheng, W.-W. Wang, F.-Q. Kong, X.-X. Wu, J.-K. Jiang, J.-X. Pan

2206

we observed clear effects of EPAC1 inhibition on 
reducing inducible AF in HF mouse hearts.

Conclusions

In summary, we identified that EPAC1 could 
inhibit AF occurrence in ISO-induced HF. The 
molecular mechanism involved in the anti-ar-
rhythmia effect of EPAC1 was associated with 
the inhibition of ICa-L. Our results suggest that 
EPAC1 inhibitor CE3F4 can be applied as a po-
tential treatment strategy for the inhibition of 
AF in HF by shortening atrial APD and decrea-
sing ICa-L.
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