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Abstract. During chronic kidney disease (CKD), 
typical alterations in the gut microbiota are ob-
served. The kidney no longer plays the role of the 
main excretory organ as this function is performed 
by the intestine. In CKD patients, an alteration of in-
testinal permeability and a degradation of the pro-
tective mucous layer are observed. These chang-
es in the intestinal barrier allow the passage of 
bacterial material from the intestine to the blood-
stream through the intestinal wall. This phenome-
non contributes to the induction of the chronic in-
flammatory state, typical of CKD. In nephropath-
ic patients, there is an increase in circulation of 
p-cresyl sulfate (p-CS), indoxyl sulphate (IS), in-
dole-3 acetic acid (IAA) and trimethylamine-N-ox-
ide (TMAO), all gut-derived uremic toxins. The 
changes in gut microbiota composition are re-
lated to CKD stage and this phenomenon is ex-
acerbated in hemodialysis (HD) adult and pediat-
ric patients. Interestingly, it is observed a posi-
tive shift in gut microbiota composition after re-
nal transplantation and at the same time a reduc-
tion of circulating gut-derived uremic toxins. Ei-
ther gut dysbiosis or uremic toxins accumulation 
contribute to the CKD onset and progression.
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Abbreviations 

Ach: Acetylcholine; AH: Arterial hypertension; CKD: 
Chronic kidney disease; CRP:  C-reactive protein; CV: Car-
diovascular; DM: Diabetes mellitus; ESRD: End stage re-
nal disease; GABA: γ-aminobutyric acid; GFR: Glomeru-

lar filtration rate; GLP: Glucagon-like peptide; HD: Haemo-
dialysis; HPA: Hypothalamus-pituitary-adrenal; IAA: In-
dole-3 acetic acid; IgAN: IgA nephropathy; IL: Interleukin; 
IMN: Idiopathic membranous nephropathy; INS: Idiopath-
ic nephrotic syndrome; IS: Indoxyl sulphate; KA: Ketoana-
logues; K/DOQI: Kidney Foundation Kidney Disease Out-
come Quality Initiative; LOS: Lipooligosaccharides; LPD: 
Low-protein diet; LPS: Lipopolysaccharide; MD: Mediter-
ranean diet; MYD: Myeloid differentiation; NF-κB: Nuclear 
factor kappa B; NOX2: Nicotinamide adenine dinucleotide 
phosphate oxidase; NRF2: Nuclear factor erythroid-2-relat-
ed factor 2; OS: Oxidative stress; p-CS: p-cresyl sulfate; PD: 
Peritoneal dialysis; RAAS: Renin-angiotensin-aldosterone 
system; ROS: Reactive oxygen species; RPF: renal plasma 
flow; RRT: Renal replacement therapy; SCFAs: Short chain 
fatty acids; TLR4: Toll-like-receptor 4; TMAO: Trimethyl-
amine-N-oxide; TNF: Tumour necrosis factor α; VLPD: Very 
low-protein diet.

Introduction

Chronic kidney disease (CKD) is a global 
health burden, and its prevalence has remarkably 
expanded in the last decades because of the in-
crease in old age of the general population and 
the comorbidity associated with it1, such as arte-
rial hypertension (AH), diabetes mellitus (DM), 
obesity2 and metabolic syndrome3.

The alteration of the gut microbiota is often 
found in CKD patients and it is related to the low-
grade chronic inflammation, the oxidative stress 
(OS) and the AH, commonly present in CKD pa-
tients4-6.

The relationship between gut microbiota and 
CKD has been known for a long time7. With the 
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CKD progression, the kidney loses the ability to 
eliminate catabolites produced by human metab-
olism8-10 and by its symbiote (gut microbiota)11. 
Some of these substances are included in the “ure-
mic toxins” category. Among those of intestinal 
derivation, the main and most studied are p-cre-
syl sulfate (p-CS), indoxyl sulphate (IS), indole 
3 acetic acid (IAA) and trimethylamine N-oxide 
(TMAO)12 (Figure 1). The latter is a derivative of 
the catabolism of products of animal origin con-
taining choline, phosphatidylcholine, carnitine, 
and betaine13,14.

With the progressive loss of kidney function, tox-
ic compounds accumulate in the bloodstream caus-
ing the uremic state. Therefore, it is speculative that 
CKD not only induces a reduction in the elimination 
of uremic toxins but it also favors their production15, 
involving in this process the gut microbiota.

In fact, an alteration in the gut microbiota com-
position might be influenced by many factors in-
cluding smoking, drugs, food patterns and some 

pathological conditions16. Among these, CKD de-
serves a special mention as several studies have 
shown that the gut microbiota composition in 
CKD patients is completely different from those of 
healthy subjects. This imbalance is called “dysbio-
sis” (Figure 2).

CKD causes an expansion of the proteolytic 
bacterial populations (resulting in increased pro-
duction of ammonia and of other uremic toxins 
like phenols and indoles) and a reduction of the 
saccharolytic ones (leading to the decrease of the 
short chain fatty acids-SCFAs formation)17. De-
pending on the substrate that bacteria use to get 
energy, the microbiota can follow two main meta-
bolic pathways: saccharolytic or proteolytic. The 
first one might prevail in a healthy intestine. In 
the case of food imbalances or pathological con-
ditions, the lack of substrate available for fermen-
tation favors the imbalance towards the second 
way, in which bacteria use amino acids for energy 
purposes, rather than for anabolic function, re-

Figure 1. Gut-derived uremic toxins. A) Metabolic pathways for TMAO generation from dietary L-carnitine and choline; B) 
Metabolic pathways for p-cresyl-sulfate and p-cresyl-glucuronide generation from dietary tyrosine; C) Metabolic pathways for 
indoxyl sulfate and indole-3-aldehyde generation from dietary tryptophan. Ones generated, these uremic toxins are excreted 
by the kidneys in healthy subjects while they accumulate in chronic kidney disease. 
Abbreviations: CyP, Cytochrome P450; PST, Phenol sulfotransferase; SULT, Sulfotransferase; TMA, Trimethylamine; TMAO, 
Trimethylamine-N-oxide.
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sulting in the toxins production. The balance be-
tween saccharolytic fermentation and proteolytic 
decay might be in favor of the former, due to the 
different physiological effects of the metabolites 
downstream of the two pathways. With saccharo-
lytic fermentation, there is the production of SC-
FAs which, in addition to inhibiting the growth of 
pathobionts, are endowed with a trophic action for 
the colon epithelium and with a local and systemic 
endocrine action (Figure 3). They are also charac-
terized by an anti-inflammatory activity, exercised 
directly through signalling on some immune cells 
including neutrophils. This is due to the induction, 
through epigenetic mechanisms, of the differen-
tiation of Treg lymphocytes, and activation of a 
tolerogenic phenotype. The anti-inflammatory ac-
tion is also indirect through the upregulation of 
tight junctions, a phenomenon that improves the 
functionality of the intestinal barrier with subse-
quent systemic anti-inflammatory action. In CKD 
patients, a vicious circle is established in which 
proteolytic-derived metabolites (such as p-CS and 
IS) symbolize the principal circulating uremic 
toxins. Moreover, their accumulation worsens 
dysbiosis and it induces CKD progression18.

Among the possible causes of dysbiosis in CKD 
patients, there is the long-term and at high dosage 
assumption of a polypharmacy (like phosphate and 

potassium-binders, iron-based compounds, etc.)19. 
Phosphorus-binders are taken by CKD patients for 
the management of hyperphosphatemia and it has 
been shown that their long-term intake induces an 
alteration of the intestinal lumen15.

In a vitro model of the human colon it was 
demonstrated that iron therapy decreases the lev-
els of Bifidobacteriaceae and Lactobacillaceae 
and enhances the concentrations of Roseburia and 
Prevotella20,21. From the metagenomic analysis 
of this study, it is clear that the gut metabolism 
undergoes changes passing from a saccharolytic 
to a proteolytic profile. The only iron-based com-
pound that would seem to positively modulate the 
composition of the intestinal microbiota is iron 
citrate, whose intake, in a rat model, induces the 
expansion of beneficial species such as Akker-
mansia muciniphila, which plays a key role in 
maintenance of the intestinal integrity and in the 
degradation of mucin22.

The dysbiosis induced by uraemia is attribut-
able also to another series of causes both local (in-
testinal) and systemic. In fact, with the reduction 
of renal function, the colon assumes the role of 
the main excretory organ and the elimination of 
urea from the intestine impairs the gut chemical 
microenvironment. The resulting increase in the 
pH levels in the colon exerts a selective pressure 
in favor of urease-positive species responsible for 
the conversion of urea into ammonia. This causes 
a degradation of the protective mucus layer and 
an alteration of intestinal permeability due to the 
destruction of tight junctions23. The consequences 
are the passage of bacterial material through the 
mucosa in the bloodstream and the activation of a 
local and systemic inflammatory mechanism.

Several scientific studies24,25 attributed the in-
flammatory state to the translocation of intestinal 
bacterial fragments in the systemic circulation, as 
demonstrated by the presence of DNA from intes-
tinal bacterial species in the blood. This, in turn, 
contributes to the onset of endotoxemia and to the 
systemic inflammation, as proved by Vaziri et al26. 
Therefore, the gut microbiota seems to be a medi-
ator of systemic inflammation in CKD.

In CKD patients, an increase of Bacteroide-
tes and Proteobacteria and a decrease of Lacto-
bacillus have been observed27,28. In particular, 
Proteobacteria are involved in inflammatory re-
sponse, inducing the impairment of gut mucosal 
permeability and the enhancement of intestinal 
T helper 17 cell to T regulatory cell ratio, and 
promoting the lipopolysaccharide (LPS) trans-
location29-31.

Figure 2. The bidirectional relationship between gut dys-
biosis and chronic kidney disease. 
Abbreviations: CKD, Chronic kidney disease.
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The aims of this literature review are to ana-
lyze the impact of CKD on gut microbiota com-
position both in CKD patients under conservative 
therapy and in renal replacement therapy (RRT) 
and to define the possible role of gut dysbiosis on 
CKD onset and progression.

Materials and Methods

An extensive search of the papers published 
on the 20th of October 2021 was conducted on 
PubMed and Scopus online database. Terms in-
cluded in the search items were: “alteration of gut 
microbiota” [Title/Abstract] in combination with 
“chronic kidney disease” [Title/Abstract] and/or 
“gut microbiota in CKD conservative patients” 
[Title/Abstract] and/or “gut microbiota in renal 
replacement therapy” [Title/Abstract].

All the articles were written in English and se-
lected manually by the authors.

Gut Microbiota in CKD Patients Under 
Conservative Therapy

In CKD patients under conservative therapy, 
two fundamental factors play a key role in the mod-

ulation of the gut microbiota: (1) the accumulation 
of uremic toxins inversely correlate with the reduc-
tion of the glomerular filtration rate (GFR) and (2) 
the nutritional therapy characterized mainly by a 
normalized/reduced protein intake32,33.

Among the uremic toxins deriving from gut 
metabolism, as above-mentioned, there are IS 
and p-CS which tend to accumulate progressively 
with the worsening of renal function, and they are 
characterized by a high ability to bind albumin. 
This latter feature makes them difficult to remove 
also during haemodialysis (HD) session34. These 
compounds are produced in the intestine by pro-
teolytic microbes and they are eliminated through 
the urine. Their clearance is linked to the excreto-
ry capacity of the kidney, so in CKD patients their 
accumulation is observed34.

In CKD patients under conservative therapy, 
the ideal nutritional treatment is represented by 
the dietetic control of proteins and the reduction 
of salt intake. The specialist dietician is responsi-
ble for customizing this diet according to the clin-
ical and nutritional characteristics of each patient.

In general, this type of dietary-nutritional treat-
ment has several potential benefits confirmed by 
scientific literature32,35-38: it contrasts the intestinal 
dysbiosis39, it increases the production of SCFAs 

Figure 3. Impact of dietary patterns and pathological conditions on proteolytic and saccharolytic pathways for gut-derived 
uremic toxins generation. 
Abbreviations: CKD, Chronic kidney disease; CV, Cardiovascular; RAAS, Renin-angiotensin-aldosterone system; ROS, Re-
active oxygen species; SCFAs, Short-chain fatty acids.
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in the colon40, it reduces the intestinal permeabili-
ty41, it has greater alkalizing power42, it decreases 
the production of uremic toxins43, it improves the 
intestinal transit and has also beneficial effects on 
azotaemia levels41,44 (Table I).

The important impact on the composition of 
the gut microbiota, induced by the different di-
etary-nutritional patterns in CKD patients under 
conservative therapy, was examined by a study 
conducted by Di Iorio et al45, called “Medika 

Study”. This study highlighted that a very low 
-protein diet (VLPD), after six months, decreases 
inflammatory Proteobacteria and enhances Actino-
bacteria phyla45. Specifically, the authors carried out 
a prospective crossover-controlled trial on 60 CKD 
patients (stages III-IV) in which they investigated 
the effect of free diet, VLPD and Mediterranean diet 
(MD) on gut microbiota. According to several stud-
ies, the MD is useful in the clinical management of 
the early stages of CKD46-48 but with its progression, 

Type of  
the study Reference Year Methods Main findings Conclusions

Human 
study

Black
et al43

2018 Treatment of CKD patients, 
for six months, with LPD 
(0.6 g protein/ kg IBW/ 
day)

Reduction of p-cresyl sulfate 
serum and changes in the gut 
microbiota profile after diet 
treatment

LPD appears to reduce 
gut-derived uremic 
toxins in CKD patients.

Human 
study

Lai
et al64

2019 Treatment of CKD patients, 
for six months, with (i) 
LPD (0.6 g protein/ kg 
IBW/ day) and (ii) LPD 
with inulin (19 g/day) 
compared to untreated 
control group.

Significant variation of gut 
microbiota composition in CKD 
patients under LPD. Reduction of 
chronic inflammatory state and 
oxidative stress of CKD patients 
in LPD with inulin.

LPD associated with 
inulin positively changes 
the gut microbiota and 
reduces inflammatory 
and oxidative stress 
parameters in CKD 
patients.

Human 
study

Di Iorio,
et  al45

2019 Gut-microbiota metabolites 
analysis of CKD patients 
in free diet, Mediterranean 
diet and VLPD (0.3 g 
protein/ kg IBW/ day).

Reduction of inflammatory 
Proteobacteria and increase 
of potential anti-inflammatory 
bacteria in VLPD group.

VLPD presents 
beneficial effects on gut 
microbiota modulation 
in CKD patients.

Animal  
study

Li
et al39

2019 Comparison of gut 
microbiota composition in 
mice undergoing different 
dietary and exercise 
interventions.

Greater abundance of the phylum 
Bacteroidetes and of the genus 
Akkermansia after high protein-
low carbohydrate diet and greater 
abundance of Oscillospira and 
Oscillibacter after obesigenic 
chronic high-fat diet.

The high protein-low 
carbohydrate diet 
improves the gut 
microbiota and appears 
to improve the overall 
health of the mice

Human 
study

Wu
et al149

2020 16S rRNA Gene 
Sequencing of fecal 
samples from (i) CKD 
patient in LPD (<0.8 g 
protein/kg IBW, (ii) CKD 
patient in ND and (iii) 
healthy subjects.

LPD induces significant changes 
in the β-diversity of the gut 
microbiota respect to ND.

The gut microbiota is 
profoundly influenced 
by dietary restrictions.

Human 
study

Hu
et al81

2020 Characterization of the gut 
microbiota by analyzing 
fecal samples from CKD 
patients and healthy 
subjects.

Lower levels of butyrate-
producing bacteria and higher 
levels of potentially pathogenic 
bacteria in CKD patients.

The alteration of gut 
microbiota is correlated 
with CKD severity.

Human 
study

Rocchetti 
et al56

2021 Treatment of CKD patients, 
for six months, with 
MD supplemented with 
ketoanalogs.

Decrease of Clostridiaceae, 
Methanobacteriaceae, 
Prevotellaceae, and 
Lactobacillaceae, and increase 
of Bacteroidaceae and 
Lachnospiraceae, after diet 
treatment.

The MD supplemented 
with ketoanalogues 
positively modulates the 
gut microbiota.

Table I. Changes in gut microbiota observed in CKD patients under conservative therapy.

Abbreviations: MD, Mediterranean diet; ND, Normal diet, LPD, Low protein-diet; VD, Vegan diet; VLPD, Very low-protein diet; 
IBW, Ideal body weight.
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it is necessary to reduce the protein intake in order 
to counteract the CKD signs and symptoms and 
to delay the RRT beginning, using the vegan diet, 
the low-protein diet (LPD) and the VLPD supple-
mented with ketoanalogues (KA)7,11,38,46,49-53. The 
“Medika Study” demonstrated that the MD and, 
especially, the VLPD increase butyrate-forming 
species like Roseburia spa and Faecalibacterium 
prausnitzii45. Among Firmicutes, Faecalibacteri-
um prausnitzii plays a pivotal role as it induces an 
increase in the butyrate production, it deactivates 
the transcription factor nuclear factor kappa B 
(NF-κB) and it reduces the production of interleu-
kin (IL)-8 namely macrophage chemotactic fac-
tor54. Moreover, MD and VLPD, through a con-
trolled protein intake, induce significantly lower 
urea levels with simultaneous reduction of IS and 
p-CS promoting intestinal integrity45.

The reduction of IS induced by a VLPD sup-
plemented with KA had already been demonstrat-
ed by a previous study conducted on 32 CKD 
patients under conservative therapy. In fact, after 
just one week of this dietary-nutritional treatment, 
a significant reduction of uremic toxins, produced 
by gut metabolism, was observed55.

In “Medika2 Study”, the authors evaluated the 
impact of the MD supplemented with KA on the 
gut microbiota composition and on the concen-
tration of uremic toxins in CKD patients, show-
ing that six months of a MD supplemented with 
KA are more effective, compared to MD alone, 
in reducing Clostridiaceae, Methanobacteriace-
ae, Prevotellaceae and Lactobacillaceae and in 
increasing Lachnospiraceae and Bacteroidaceae. 
Moreover, this dietary-nutritional treatment in-
duces a greater decrease of the IS and p-CS lev-
els compared to the free diet and the MD alone, 
but it is not as effective as the VLPD. This study 
has highlighted how the reduction in azotemia in-
duced by VLPD supplemented with KA is greater 
than that obtained by the MD supplemented with 
KA and consequently the beneficial modifications 
induced on the gut microbiota by VLPD supple-
mented with KA are also greater. Therefore, these 
beneficial effects seem to be caused by the reduced 
protein intake rather than the KA themselves56.

Regarding to protein intake, it must be consid-
ered that proteins, after digestion and absorption 
in the small intestine, undergo fermentation pro-
cess, at the level of the colon, by proteolytic bac-
teria with the formation of both beneficial (such 
as SFCAs) and toxic (such as indoles, ammonia, 
phenols etc.) substances57-59. It is very important to 
evaluate the protein source. In fact, red meats are 

rich in sulphur-containing amino acids (such as 
methionine and cysteine) while inorganic sulphur 
is often used as food additive. The intake of com-
pounds containing sulphur induces an increase 
in sulphur-reducing bacteria, for example Esch-
erichia coli and Clostridium spp with increased 
production of hydrogen sulphide60,61.

A recent study conducted by Lobel et al62 on an-
imals showed how dietary modifications can cause 
post-translational changes in the microbiota pro-
teins. Specifically, the authors observed that a dietary 
regimen characterized by a high content of sulphur 
amino acids leads to post-translational reactions of 
S-sulfhydration of the tryptophanase enzyme.

Therefore, the reduction of protein intake plays 
a key role in view of the beneficial modulation of 
gut microbiota in CKD patients, in which the re-
nal pathology induces in itself negative changes, 
both in the composition of the microbiota and in 
the intestinal permeability. In fact, the promising 
data obtained with the VLPD are also confirmed 
by the studies about the effects of LDP.

A study by Jiang et al63 examined the possi-
ble changes observed in the composition of the 
gut microbiota in patients with stage V of CKD 
in LPD, highlighting how this dietary-nutritional 
treatment induces an increase of rumen bacteria 
and faecalis bacteria which can help the host to 
digest and to absorb energy so providing an in-
testinal protection. Moreover, these changes in 
the gut microbiota composition present in stage V 
CKD patients in LPD can be transferred from hu-
mans to rats by fecal microbiota transplantation.

Lai et al64 evaluated the effects of LPD and in-
ulin assumption on some clinical parameters and 
on gut microbiota composition in a group of CKD 
patients under conservative therapy. LPD seems to 
significantly increase the presence of species such 
as Akkermansiaceae and Bacteroidaceae and reduce 
the presence of Christensellenaceae, Clostridiace-
ae, Lactobacillaceae and Pasteurellaceae, while the 
assumption of inulin in association with LPD seems 
to enhance Bifidobacteriaceae. The inulin treatment 
seems to reduce the chronic inflammatory state and 
OS in CKD patients, inducing a decrease of the 
C-reactive protein (CRP), the tumour necrosis factor 
α (TNF-α) and the nicotinamide adenine dinucleo-
tide phosphate oxidase-2 (NOX2).

The only study that does not agree with the 
others previously described was conducted by 
Wu et al65. These authors demonstrated how LPD, 
in CKD patients, is responsible for a significant 
change in β-diversity, that represents the intra-in-
dividual difference in the bacterial community66. 
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In particular, the authors observed a significant 
reduction in the abundance of bacterial species 
butyrate-producing (family Lachnospiraceae and 
Bacteroidaceae) with a consequent reduction of 
SCFAs serum levels. Moreover, serum concentra-
tions of p-CS and IS were not different between 
subjects following LPD and normal protein diet. 
While in LPD patients, it was observed a signif-
icant enhancement of glyco λ-muricholic acid 
(secondary bile acid).

In CKD patients, the reduction of the intake 
of salt to less than 3 g/day becomes fundamental. 
Numerous studies have shown that gut dysbiosis 
represents the link between the high salt intake, 
typical of the Western diet, and the presence of re-
nal damage or AH. The salt may be able to induce 
dysbiosis by increasing intestinal osmotic pres-
sure, resulting in the suppression of the growth of 
Firmicutes and the increasing growth of Bacteroi-
detes21,35,67.

Gut Microbiota in Renal 
Replacement Therapy Patients

It has been widely demonstrated that also 
CKD patients undergoing RRT show chronic 
low-grade inflammation. The latter can induce 
bacterial translocation, starting from the gastro-
intestinal tract, representing an additional risk 
factor for cardiovascular (CV) mortality and 
morbidity68. In fact, the serum concentration 
of endotoxins represents a biomarker of bacte-
rial translocation and an independent predictor 
of mortality in HD patients69,70. In particular, a 
study evaluated the presence of bacterial DNA 
in the blood of three groups of subjects: HD 
patients, pre-dialysis CKD patients and healthy 
subjects. It showed bacterial DNA presence in 
27% of HD patients and in 20% of pre-dialysis 
CKD patients. Most of the bacteria isolated in 
the blood were also present in the patient’s fecal 
samples, while they were not present in the dial-
ysate31. The dialytic treatment itself worsens the 
gut damage induced by the uremic state. Further-
more, the episodes of intra-dialytic and post-di-
alytic hypotension can cause ischemic intestinal 
injury, while intradialytic fluid retention can in-
duce intestinal edema31,71-73.

Numerous studies have shown that end stage 
renal disease (ESRD) patients exhibit numerous 
changes in gut microbiota composition character-
ized overall by the reduction of the α-diversity, 
the β-diversity and the richness19,74 (Table II).

The first systematic study, investigating alter-
ations of the gut microbiota in patients undergo-
ing RRT, was conducted on 24 ESRD patients15. 
The authors highlighted some differences in the 
composition of the gut microbiota between ure-
mic patients and healthy subjects (control group). 
In particular, the Brachybacterium, Catenibac-
terium, Enterobacteriaceae, Halomonadaceaea, 
Moraxellaceaea, Nesterenkonia, Polyangiaceae, 
Pseudomonadaceae and Thiothrix families were 
more abundant in ESRD patients compared to the 
control group. Subsequently, the same authors 
studied the composition of the gut microbiota in 
rats, eight weeks after nephrectomy 5/6, in order 
to understand how uraemia itself induced changes 
in the gut microbiota and to limit the possible bias 
induced by intra-individual variations, eating hab-
its and comorbidities. In uremic rats compared to 
healthy animals, a reduction of the Lactobacilla-
ceae and Prevollaceae families was observed, al-
lowing speculation that the uremic state is the pri-
mary cause of gut dysbiosis in ESRD patients15.

In support of these data, further investigations 
confirm that ESRD patients show enhanced ure-
ase, uricase, and p-CS-producing bacterial fami-
lies. On the contrary, the butyrate-producing fam-
ilies are fewer71.

Therefore, advanced kidney disease induces 
changes in the gut microbiota due to a series of 
factors: a) the increased concentration of urea in 
the intra and extracellular fluids is able to cause a 
rise in its inflow into the gastro-intestinal tract by 
passive diffusion. The hydrolysis of urea by the 
urease enzyme, present in some species of the 
gut microbiota, leads to the formation of ammo-
nia with consequent pH alteration of the intesti-
nal lumen and development of uremic enteroco-
litis75,76; b) under physiological conditions, uric 
acid, which is the final product of purine metab-
olism, is excreted in the urine. In ESRD patients, 
the colon becomes the primary site of uric acid 
elimination77,78; c) as it is observed for uric acid, 
also for oxalates, in CKD patients, the colon be-
comes the main site of their elimination79; d) the 
polypharmacotherapy impacts on dysbiosis, as 
previously described; e) in the more advanced 
stages, the dietary-nutritional treatment is char-
acterized by a tight restriction of the fibres and a 
further imbalance of the microbial metabolism in 
the proteolytic direction. In fact, to prevent hy-
perkalemia in RRT patients, the diet is based on a 
low intake of fruit and vegetables. The reduction 
of the fibres decreases the substrate for sacchar-
olytic fermentation15,80.
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Type of 
the study Reference Year Methods Main findings Conclusions

Human 
study

Bossola et al72 2009 Research of bacterial 
DNA in bloodstream and 
analysis of CRP and IL-6 
level in HD patients and 
control group.

Presence of bacterial DNA and 
elevated levels of CRP and 
IL-6 in the bloodstream of HD 
patients compared to the control 
group.

The presence of 
bacterial DNA in 
the bloodstream 
is associated 
with high levels 
of inflammatory 
parameters.

Human 
study

Vaziri et al15 2013 Isolation of microbial DNA 
from fecal samples of 
ESRD patients and healthy 
subjects.

Alterations of gut 
microbiota mainly increase 
the Brachybacterium, 
Catenibacterium, 
Enterobacteriaceae, 
Halomonadaceae, Moraxellaceae, 
Nesterenkonia, Polyangiaceae, 
Pseudomonadaceae, and 
Thiothrix families.

The uremic state 
represents one of the 
main factors causing 
intestinal dysbiosis.

Human 
study

Wong et al71 2014 Microbiota composition 
analysis of ESRD patients 
and healthy subjects.

Increased presence of microbial 
families that produce urease, 
uricase, indole and p-cresyl 
sulfate and reduced presence of 
butyrate-producing families in 
ESRD patients.

The condition 
of ESRD alters 
the microbiota 
composition.

Human 
study

Fricke et al83 2014 Analysis of gut microbiota 
changes before and after 
1 and 6 months of kidney 
transplantation.

Kidney transplantation and the 
use of associated drugs bring 
important changes to the gut-
microbiota

The analysis of the 
gut microbiota of 
transplanted patients 
could represent a valid 
strategy to evaluate 
the general health 
status of the patient.

Human 
study

Shi et al31 2014 Analysis of gut microbiota, 
search for bacteria in the 
bloodstream and evaluation 
of inflammatory cytokine 
levels, in ESRD patients.

Increase of IL-6 and CRP and 
presence of intestinal bacteria 
in the bloodstream, in ESRD 
patients with gut microbiota 
alteration.

ESRD involves an 
increase in chronic 
inflammation, 
partially due to the 
alteration of the gut 
microbiota

Human 
study

Crespo-Salgado 
et al84

2016 Analysis and comparison 
of the gut microbiota of 
patients (i) in PD, (ii) 
in HD, (iii) after kidney 
transplantation and (iv) in 
healthy controls.

Reduction of Firmicutes and 
Actinobacteria in PD patients, 
increase of Bacteroidetes in 
HD patients, reduction of 
Bifidobacteria and α-diversity 
in PD and transplant patients, 
compared to controls.

RRT alters the 
composition of the 
gut microbiota.

Human 
study

Stadlbauer  
et al82

2017 Analysis of faecal 
microbiome composition 
in HD and PD patients 
compared to healthy 
controls.

Increase in potentially pathogenic 
species and decrease in beneficial 
species in RRT patients, 
compared to controls.

The RRT seems to be 
an important driver of 
dysbiosis in ESRD.

Human 
study

Pan et al86 2020 Probiotic treatment of 
CKD patients for two 
months compared with 
a control group that did 
not receive any probiotic 
treatment.

Decrease of CRP and IL-6 level 
after two months of probiotic 
treatment.

Treatment with 
probiotics improves 
the inflammatory 
state, quality of life 
and malnutrition in 
CKD patients.

Table II. Changes in gut microbiota observed in RRT patients.

Abbreviations: ESRD, End-stage renal disease; CKD, Chronic kidney disease; CRP, C-reactive protein; HD, Hemodialysis;
IL, Interleukin; PD, Peritoneal dialysis; RRT, Renal replacement therapy. 
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Furthermore, it has been shown that “uremic 
dysbiosis” varies in relation to the CKD stage81 
and to the type of RRT82-84.

Hu et al85 demonstrated the lower levels of 
butyrate-producing bacteria and higher levels of 
potentially pathogenic bacteria in CKD patients 
compared to healthy subjects, it is more evident 
in stage V of CKD. Therefore, the alterations of 
composition of the gut microbiota are related also 
to the severity of the renal dysfunction and they 
could represent a new valid marker both in CKD 
early diagnosis and in its monitoring.

A recent study investigated82 the impact of 
different dialysis techniques on gut microbio-
ta composition in adult RRT patients, showing 
that the enhancement in potentially pathogen-
ic microbial species and the reduction in those 
with beneficial effects is more evident in HD 
patients compared to those undergoing perito-
neal dialysis (PD). The authors explain this data 
above all with the different state of systemic 
inflammation detected in the two subgroups of 
patients rather than with the different dialysis 
vintage present in the two subgroups of patients 
examined (HD vs. PD).

A longitudinal study examined the possible 
changes in blood, in urine, in oral and gut mi-
crobiota of a group of adult renal transplanted 
patients before, at one and at six months after 
transplantation, demonstrating a shift in gut mi-
crobiota composition induced by transplantation 
and immunosuppressive therapy which tends to 
persist over time83. Moreover, in this study some 
alterations in gut microbiota before transplanta-
tion were related to adverse events occurring after 
transplantation (like rejection and infectious com-
plications). Specifically, a reduction of diversity 
in gut microbiota seems to be related to a worse 
outcome, highlighting the possible predictive val-
ue of this parameter83.

The same results were highlighted in RRT pe-
diatric patients84. In fact, ESRD children present 
an altered gut microbiota composition. In partic-
ular, it was observed that in PD pediatric patients 
there was a reduction of Firmicutes and Actino-
bacteria compared to healthy children, while in 
HD patients there was a greater presence of Bac-
teroidetes than in the control group. Therefore, the 
gut microbiota composition is different according 
to the dialysis technique. RRT pediatric patients 
showed enhanced serum concentrations of gut-de-
rived uremic toxins. This phenomenon is evident 
in both HD and PD patients, but the serum con-
centration of uremic toxins tends to normalize af-

ter renal transplantation84.
The altered composition of the gut microbiota 

in RRT patients seems to be related also to chronic 
inflammation. Therefore, it has been hypothesized 
that the assumption of probiotics could represent a 
valid therapeutic tool in the clinical management 
of RRT patients. This hypothesis was confirmed 
by Pan et al86 that evaluated the effect induced 
by probiotics assumption for two months on the 
inflammatory state. The study also analyzed the 
quality of life in a group of patients undergoing 
PD. The authors demonstrated that probiotics sig-
nificantly reduce the level of inflammatory bio-
markers (such as high sensitivity-CRP and IL-6) 
and they improve the quality of life and the mal-
nutrition state.

Gut Microbiota Dysbiosis is Caused by 
CKD or it Represents a Risk Factor for its 
Onset and Progression 
and its Related-Complications?

Gut dysbiosis may be associated with onset 
and progression of CKD and with the comparison 
of its related-complications19, especially the CV 
ones. At the same time, however, as previously de-
scribed, CKD causes changes in the composition 
and in the function of gut microbiota. Therefore, 
there would be a bidirectional link between CKD 
and the gut microbiota. The mechanisms that are 
hypothesized to underlie this relationship are me-
diated by: i) microbiota-derived toxins (like p-CS, 
IS and TMAO), ii) immune cells, and iii) neuro-
toxic metabolites27,87,88.

In CKD patients, p-CS and IS reach levels even 
a hundred times higher than in healthy subjects 
and they derive from the degradation of aromatic 
amino acids, such as tryptophan, phenylalanine, 
and tyrosine89.

The microbiota-derived toxins are related to 
CV morbidity and mortality as well as they are 
involved in the progression of the CKD88,90-92. 
Some animal studies12,93 demonstrated that p-CS 
and IS induced an enhancement production of 
reactive oxygen species (ROS), a stimulation of 
intrarenal renin-angiotensin-aldosterone system 
(RAAS) and tubulointerstitial fibrosis, acceler-
ating and favoring the progression of CKD. In 
particular, IS seems to be a predictor of the loss 
of renal function, as an animal study has demon-
strated that it influences the renal expression of 
genes involved in tubulointerstitial fibrosis (like 
transforming growth factor β 1 and the tissue in-



A. Noce, M. Marchetti, G. Marrone, L. Di Renzo, M. Di Lauro, F. Di Daniele, M. Albanese, et al

2066

hibitor of metalloproteases)94. Moreover, IS ap-
pears to be a new CV risk factor and its concen-
tration is related to developing peripheral vascular 
disease and thrombosis of the vascular access95.

Regarding p-CS, a study demonstrated that 
in a rat model of nephropathy, it was able to rise 
the ROS production, through the activation of 
nicotinamide adenine dinucleotide phosphatase 
oxidase, and to increase of caspase-3 activity 
with consequent enhancement of cardiomyocytes 
apoptosis. Therefore, this study demonstrated that 
p-CS represents a further CV risk factor in CKD, 
having a cardiotoxic action90.

As for the other microbiota-derived toxins also 
for TMAO, scientific studies have highlighted 
its relevant role in the CKD progression and in 
the development of CV complications related to 
CKD96,97 (Figure 4).

Specifically, in CKD patients, the TMAO 
higher plasma concentration is related to an in-
creased risk of mortality for all-causes. This data 
is confirmed also after adjustment for traditional 
risk factors. Moreover, in CKD animal models 
increased dietary intake of choline (its precur-
sor) or of TMAO is associated with a greater de-
gree of renal tubulointerstitial fibrosis and renal 
dysfunction96. The TMAO serum concentrations 
are inversely related to GFR and it was observed 
a reduction of its levels after kidney transplanta-
tion. In CKD patients, enhanced TMAO levels 
are associated with coronary atherosclerosis and 
long-term mortality97,98.

All scientific evidence suggests that microbi-
ota-derived toxins represent a risk factor for the 
CKD progression and for the development of CV 
complications related to CKD, therefore therapeu-
tic strategies aimed at reducing the concentration 
of these toxins could be a valid tool in the clinical 
management of CKD patients.

The gut dysbiosis that is observed in CKD 
patients is able to induce immunological effects 
as the gut microbiota can form bacterial products 
with immunostimulating action19,99. In fact, the 
alterations of the intestinal wall, present in CKD 
patients, allow more easily the bacterial translo-
cation, through the intestinal wall, into the blood-
stream. Among these, LPS plays a key role in 
inducing a state of systemic inflammation, which 
mainly involves one of its components, called 
lipid A100-102. Lipid A represents the glycolipid 
portion of LPS and it is the endotoxin that carries 
out the toxic action in the organism103. The lipid 
A interacting with the toll-like-receptor 4 (TLR4) 
and with myeloid differentiation (MYD) factor 2, 

leads to the formation of the TLR4-MYD2-LPS 
complex which is able to activate the pathway 
responsible for the expression of the genes of in-
flammation, resulting in an increased production 
of pro-inflammatory cytokines (like IL-1β, IL- 6, 
TNF-α)100-102. TLR4 is a specific receptor of bac-
terial endotoxins, and in particular, it recognizes 
LPS or its fragments, such as lipooligosaccharides 
(LOS) and lipid A. TLR4 has a protective role for 
the body, as it triggers immune and inflammatory 
responses in relation to the presence of pathogens. 
However, if the TLR4 activation is too powerful 
or too prolonged, as in the case of the formation 
of the TLR4-MYD2-LPS complex, it induces 
an excessive release of pro-inflammatory cyto-
kines104,105.

A study conducted by McIntyre has shown 
that the circulating levels of bacterial endotox-
ins are increased in all CKD stages and in par-
ticular in RRT patients, highlighting how the 
inflammatory state related to gut dysbiosis rep-
resents an independent predictor of mortality in 
renal patients101.

A further mechanism involved in the CKD 
progression is the nuclear factor erythroid-2-relat-
ed factor 2 (NRF2) pathway which its expression 
appears to be reduced in CKD and inversely re-
lated to the inflammation106. The chronic inflam-
matory status and OS, typical of CKD, cause an 
activation of NF-kβ signalling with a consequent 
induction of immune response and production of 
pro-inflammatory cytokines107. The inflammation 
itself could virtually affect all organs through an 
organ-interaction108. Moreover, NRF2 is able to 
neutralize NF-kβ signalling. In addition to the 
above-mentioned actions, NRF2 is able to upreg-
ulate several antioxidant and anti-inflammatory 
genes that promote the reduction of OS and in-
flammatory status109.

There is a close communication between the 
intestinal microbiota and the nervous system guar-
anteed through the production of many hormones 
and neurotransmitters110. Several studies showed 
that gut microbiota is able to modulate the hypo-
thalamus-pituitary-adrenal (HPA) axis, controlling 
the secretion of serotonin and other neurotransmit-
ters111,112. Therefore, a bidirectional communication 
between the HPA axis and gut microbiota is ob-
served. In fact, gut dysbiosis is related to an altered 
activity of the HPA axis and vice versa.

Bifidobacteriaceae, Lactobacillaceae and 
Prevotellaceae species secrete some neurotrans-
mitters such as γ-aminobutyric acid (GABA), 
acetylcholine (ACh) and can produce gut incre-



CKD and gut microbiota

2067

tins (like glucagon-like peptide-GLP 1 and 2) and 
intestinal hormone peptide YY113.

An animal study demonstrated that GABA in-
teracts with the cholinergic pathway to regulate 
urinary excretion of sodium and potassium114. In 
particular, GABA is able to stimulate natriuresis 
and to inhibit activation of the renal sympathetic 
nervous system113. While ACh and GLP-1 would 
seem to induce renal vasodilation and reduce the 
production of angiotensin II, with a consequent 
increase in renal plasma flow (RPF)110. In an ani-
mal model, the infusion of ACh in the renal artery 
at a dose of 40 micrograms/min is able to enhance 
RPF and natriuresis115.

Therefore, uremic dysbiosis by reducing the 
presence of beneficial bacterial species, such as 
Bifidobacteriaceae and Lactobacillaceae, acti-
vates the RAAS, contributing to the development 
of AH and consequently to the CKD progression.

Finally, an altered production of incretins and 
peptide YY is capable of impacting on energy ex-
penditure, reducing it, on insulin sensitivity and 
on the lipolysis process, becoming a risk factor 
in the development of dyslipidemia and DM and 
predisposing to obesity. Therefore, indirectly it 
has an impact on a more sudden progression of 
CKD, as those previously listed are all CKD risk 
factors113,116.

Another mechanism by which intestinal dysbi-
osis influences and accelerates the CKD progres-
sion is proteinuria. In fact, it is well known that 
proteinuria represents a risk factor for the CKD 
onset and progression27,117,118. There would seem 
to be a correlation with gut dysbiosis either for 
IgA nephropathy (IgAN) or for lupus nephritis, 
glomerulonephritis characterized also by the pres-
ence of proteinuria15,119,120.

Zhang et al121 examined the impact of nephrot-
ic syndrome on the composition of the gut micro-
biota. The authors enrolled 158 subjects divided 
into three subgroups: patients with CKD without 
the nephrotic syndrome, patients with idiopath-
ic membranous nephropathy (IMN) and healthy 
subjects (control group), highlighting that subject 
with IMN had a different α and β-diversity com-
pared to the other groups and a reduction in SC-
FAs production121.

The possible correlation between idiopath-
ic nephrotic syndrome (INS) and gut microbiota 
would seem to occur via control of Treg. A recent 
study by Tsuji et al122, conducted in pediatric pa-
tients with INS, evaluated if there was a possible 
association between Treg cells, monitored at the 
time of the INS diagnosis, and the subsequent and 
more frequent occurrence of relapses. A lower in-
crement of Tregs, following a steroid treatment, 

Figure 4. Development mechanisms of uremic enterocolitis and its systemic consequences.
Abbreviations: CKD, Chronic kidney disease; CV, Cardiovascular; IS, Indoxyl sulphate; LPS, Lipopolysaccharide; p-CS, 
p-cresyl sulfate; TMA, Trimethylamine; TMAO, Trimethylamine-N-oxide.
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was related to a higher frequency of relapses and 
to the presence of gut dysbiosis. Specifically, 
these patients exhibited a less abundance of bu-
tyrate-producing bacterial species.

These promising results were confirmed also 
in adult patients with INS123. In particular, they 
showed a decrease of α- and β-diversity, char-
acterized by a reduction of Acidobacteria, Neg-
ativicutes, Selenomonadales, Veillonellaceae, 
Clostridiaceae, Dialister, Rombousia, Rumini-
clostridium, Lachnospira, Alloprevotella, Clos-
tridium, Megamonas, and Phascolarctobacterium 
compared to healthy subjects.

Therefore, the assumption of prebiotics and/or 
probiotics could represent a new adjuvant thera-
py, in association with immunosuppressive drugs, 
in the treatment of INS patients. Such treatment 
could amplify the therapeutic effect of immuno-
suppressive therapy alone. Furthermore, the eval-
uation of the gut microbiota composition could 
symbolize a useful parameter for assessing the 
patient’s therapeutic response and the severity of 
glomerular disease.

IgAN, the most frequent primary glomeru-
lonephritis in the world, is characterized by an 
impaired production and defective glycosylation 
of IgA1124. In this disease, it is observed a me-
sangial IgA deposition that causes mesangial 
proliferation, glomerular fibrosis, and after-
wards a progressive reduction of renal function. 
A recent study demonstrated that IgAN patients 
present an increased gut bacterial translocation 
in the blood compared to healthy subjects but 
at the same time, the authors showed significant 
taxonomic differences between faecal and blood 
samples either in IgAN patients or in the control 
group125. It is hypothesized that in the pathogene-
sis of IgAN, the intestinal bacterial translocation 
into the blood plays a key role, in particular this 
link between the IgAN onset and the gut micro-
biota would seem to be guaranteed by the LPS. 
In fact, the presence of LPS would appear to be 
related to the increased production and hypo-ga-
lactosylation of IgA1126.

Finally, a study compared the gut microbi-
ota composition of IgAN and membranous ne-
phropathy patients with that of healthy subjects. 
It demonstrated that the immune-dysregulation 
that characterizes the two forms of glomeru-
lonephritis seems to be mediated by gut dys-
biosis, confirming how the monitoring of the 
composition of the gut microbiota is a useful 
instrument for the diagnosis and staging of glo-
merular diseases127.

Lifestyle Changes and Gut 
Microbiota Composition

Bidirectional communication between gut mi-
crobiota and the host can influence several im-
munological pathways that can promote or affect 
host health128. Lifestyle routine such as diet, phar-
maceutical therapy, physical activity, smoke and 
nicotine-exposure impact on the variable portion 
of the microbiome composition and on its func-
tions129. Among lifestyle modification, nutritional 
therapy plays a key role in the disease manage-
ment and could improve gut microbiota balance in 
CKD patients as it counteracts the uremic toxins 
formation, reduces high urea levels and favors the 
SCFAs production. When LDP is necessary, the 
absorption of dietary fibers could be impaired130. 
For this reason, an expertise team of dietary pro-
fessionals should prescribe a personalized and 
balanced nutritional therapy, possibly empowered 
with pre or probiotics131.

In addition to renal diet, also physical exer-
cise might positively impact on gut microbiota 
composition132. In fact, as suggested by Kidney 
Foundation Kidney Disease Outcome Quali-
ty Initiative (K/DOQI) clinical practice guide-
lines133, if compatible with cardiovascular func-
tion, physical exercise in CKD patients, should 
represent an innovative approach to positively 
modulate gut microbiota composition134. The 
potential effects of physical exercise include 
the re-establishment of gut barrier integrity, the 
increase of vagal tone that is able to reduce the 
inflammatory status in the intestinal-lumen sur-
face, the enhancement of gut commensal bacte-
ria and the decrease of TRLs signalling pathway 
activation135 (Figure 4).

Conclusions

Recent studies have highlighted how the pro-
gression of CKD can be influenced by dietary pat-
terns and by the impact that they exert on the gut 
microbiota composition136.

Some authors underline the importance of 
personalized nutrition to prevent chronic degen-
erative non-transmissible diseases11,137-143, among 
these CKD. Specifically, some types of dietary-nu-
tritional treatment including MD, the LPD and the 
VLPD slow down the progression of CKD38,144. 
The reduced production of uremic toxins, induced 
by nutritional patterns, plays a key role in positive 
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modulation of gut microbiota and in clinical man-
agement of nephropathic patients8,145.

The hope is that with a proper nutritional treat-
ment, combined, where necessary, with symbiotic 
integration146,147, the CKD clinical management 
can improve with significant beneficial effects on 
life quality and expectancy. Moreover, nutritional 
therapy could reduce the health costs related to 
the treatment of RRT patients and better the signs 
and symptoms of CKD148. The correction of the 
gut dysbiosis in CKD patients could represent an 
additional therapeutic goal for clinicians, due to 
the important implications for the general health 
status of nephropathic patients.
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