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Abstract. – OBJECTIVE: The liver is a unique 
organ containing large populations of immune 
cells. Immunotherapy for liver cancer is a prom-
ising yet particularly challenging method. There-
fore, it harbors great significance for the identi-
fication of immune-related subtypes and the po-
tential therapeutic targets for hepatocellular car-
cinoma (HCC).

MATERIALS AND METHODS: Firstly, we 
classified the HCC samples downloaded from 
the dataset of Cancer Genome Atlas (TCGA) in-
to two clusters based on the immune cell infil-
tration. Thereafter, we identified the significant 
module and regulatory factors using the weight-
ed gene co-expression network analysis (WGC-
NA). The immune competence of the regulatory 
factors was delineated through the ESTIMATE 
algorithm, the analysis of the tumor microenvi-
ronment, and pan-cancer analysis. In the sin-
gle-cell RNA sequencing analysis, we further 
explored the immune competence of regulato-
ry factors. We also collected the potential drugs 
targeting the regulatory factors. In addition, we 
constructed lncRNA-miRNA-mRNA interaction 
regulatory networks. Finally, western blot and 
quantitative real-time polymerase chain reaction 
(qRT-PCR) were conducted to verify the protein 
expression of regulatory genes in HCC cell lines 
and tissues.

RESULTS: According to the immune cell infil-
tration, two immune-related subtypes-cluster 1 
and cluster 2-were found. Patients in cluster 2 
had a more significant immune infiltration than 
in cluster 1. Afterward, six significant regulato-
ry genes were identified through WGCNA, and 
the expression in cluster 2 was high in cluster 1. 
We performed a comprehensive analysis to clar-
ify the immune signature. The results showed 
that the six genes had significant immunolog-
ical competence. Moreover, the expression of 
the six genes was similar to the subtypes’ clas-
sification. In the analysis of the prognosis value, 

patients in cluster 2 had a better prognosis. In 
addition, the lncRNA in the lncRNA-miRNA-mR-
NA interaction regulatory networks was located 
in the nucleus and cytoplasm. In the single-cell 
RNA sequencing analysis, the six genes were 
related to the immune cell. We also identified po-
tential drugs for CD6 and CLEC12A, which may 
provide potential therapeutic drugs. Finally, the 
regulatory genes were verified in the western 
blot and quantitative real-time polymerase chain 
reaction.

CONCLUSIONS: The classification into 
two clusters based on the immune cell infil-
tration may provide a promising prospect for 
HCC through immunotherapy. The six regulato-
ry genes may be potential therapeutic targets in 
the treatment of HCC.
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Introduction

Hepatocellular carcinoma (HCC) is the second 
leading cause of cancer-related death worldwide, 
leading to approximately 800,000 cases in 20181. 
Most patients have backgrounds of chronically 
inflamed liver (hepatitis B, hepatitis C, alcoholic 
and nonalcoholic liver disease2-5, and liver fibro-
sis/cirrhosis. Most patients are diagnosed when 
their tumors are already too advanced, which 
leads to poor prognosis for them. Therefore, 
palliative systemic treatment is necessary for 
those patients. Although the results of several 
plethoras of late-stage clinical trials invigorating, 
such as Lenvatinib and regorafenib, the objective 
response rates are only 15-20%6.
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In recent years, the results of much clinical re-
search found that the immune cell composition of 
HCC tumors is closely associated with the overall 
prognosis and the effect of therapy7-13. The liver 
contains some immune cells which have a strong 
antitumor potential including natural killer cells 
(NK cells), helper innate lymphoid cells (ILCs), nat-
ural killer T cells (NKT cells), mucosal-associated 
invariant T cells (MAITs), gamma delta T cells (γδ 
T cells), macrophages, granulocytes, and dendritic 
cells (DCs), patrols the liver to maintain homeo-
stasis14. Many studies15,16 have found that the tumor 
microenvironment (TME) is complex and diverse, 
and different aspects of the TME play significant 
impacts on prognosis and the efficacy of immuno-
therapy. Therefore, it is significant to identify the 
reasonable subtypes of patients potentially respon-
sive to immunotherapy and identify the possible 
regulatory factors to exert anti-tumor properties. 

In this study, we first identified the two clusters 
based on the immune cell infiltration and vali-
dated the classification from the immune status. 
Next, we identified the significant regulatory fac-
tors (BIN2, ARHGAP9, CD6, DOK2, C1orf162, 
CLEC12A), and the expression and immune com-

petence in cluster 2 were higher in cluster 1. In the 
analysis of the prognosis value, patients in cluster 
2 had a better prognosis. We also constructed 
lncRNA-miRNA-mRNA interaction regulatory 
networks, and the lncRNA was located in the nu-
cleus and cytoplasm. The findings in the present 
work show that the classification of two subtypes 
and the identification of the regulatory factors 
may lay a basis for future studies on immunother-
apy for the treatment of HCC patients.

Materials and Methods

Ethics Statement
The studies were approved by the Medical Eth-

ical Committee of the Beijing Institute of Radia-
tion Medicine (Beijing, China). Written informed 
consent was obtained from each patient. 

HCC Samples Data Collection and 
Identification of the 
Immune-Related Subtypes

The flow chart of the study was presented 
in Figure 1. The RNA-seq profiles and clinical 

Figure 1. The flow work of our study.
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information of the HCC cohort consisting of 
374 patients were downloaded from The Can-
cer Genome Atlas (TCGA) data portal (https://
cancergenome.nih.gov/). All biomarkers for each 
immune cell were collected17. Then, we evalu-
ated the level of immune cell infiltration using 
the GSVA package18 and identified the immune 
subtypes based on the immune-related signatures 
for immune cells. Principal component analysis 
(PCA) was used to verify the reliability of the 
consensus clusters.

Evaluation of the Immune 
Microenvironment and Prognosis 
Value Between Immune Subtypes

First, we performed several kinds of different 
methods to evaluate the level of immune cell 
infiltration between different immune subtypes. 
Afterward, we analyzed the characteristics of the 
immune-related pathways in different immune 
subtypes using the GSVA package. The list of 
immune-related genes was collected from the 
database of Immunology Database and the Anal-
ysis Portal (ImmPort) (https://www. immport.
org/shared/genelists). ImmPort includes the gene 
datasets of 17 immune-related pathways. ESTI-
MATE is employed to measure the immune cell 
infiltration degree (immune score) and tumor 
purity among the clusters19. We calculated the 
immune score using ESTIMATE packages for 
the immune-related clusters. In addition, we cal-
culated the mean value of perforin (PRF1) and 
granzyme A (GZMA) and obtained the cytolytic 
activity (CYT) score. The expression of the im-
munotherapy genes in different clusters also was 
evaluated.

Overall survival, disease-free survival, and 
progression-free survival between different sub-
types were compared through the Kaplan-Meier 
method. Immune-related genes include the gene 
datasets of the chemokine, human leukocyte an-
tigen (HLA), receptor, immunostimulatory and 
immunosuppressive. The differential expression 
of those genes in different immune subtypes was 
also evaluated.

The Analysis of the Functional 
Enrichment for the Immune Subtypes

Firstly, the edgeR package20 was used to 
screen out the differential expression genes, 
and |log2(FoldChange)|>1 and q<0.05 (p<0.05, 
Benjamini & Hochberg) were selected as the 
thresholds for statistical significance. Then, 
we employed Gene Ontology (GO) as well as 

Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment analysis using the 
ClusterProfile package to reveal their potential 
functions (p<0.05)21. Hallmark gene sets were 
abstracted from the Molecular Signature Da-
tabase of Broad Institute (MSigDB) (https://
www.gsea-msigdb.org/gsea/index.jsp). We ana-
lyzed the hallmark for different clusters using 
the GSVA package and collected the differential 
hallmark pathways (false discovery rate <0.05) 
using the limma package22.

The Identification of the Most Significant 
Modules and Regulatory Genes

A weighted gene co-expression network anal-
ysis (WGCNA) was used to identify the most 
significant consensus gene module, and the func-
tional enrichment for the module was further 
conducted23. Then, we screened out the signif-
icant regulatory genes, which should meet the 
criterion of the correlation with a module greater 
than 0.8, the correlation with clusters greater than 
0.5, and the largest degree in the top 25% of the 
module. 

The Expression of Significant 
Regulatory Genes and Survival 
Characteristics in Different Clusters

The expression of the genes in different clus-
ters has also been analyzed. In addition, we ex-
plored the survival characteristics of the genes in 
the subtypes.

The Analysis of the Association Between 
the Significant Regulatory Genes and 
Immune Cells

Firstly, we evaluated the association among the 
expression of the 6 genes themselves. Then, we 
explored the association between those regulato-
ry genes and immune cells.

Immune Status Analysis of 
the Regulatory Genes Between 
Different Clusters

An estimate package was used to calculate 
the immune score, estimate score, and stromal 
score, which were utilized to explore the asso-
ciation with the regulatory genes19. Afterward, 
we further explored the association between im-
munotherapy genes, immune gene sets, immune 
cell infiltration, and the significant regulatory 
genes. The expression of the regulatory genes in 
immune cells was analyzed through the Seurat 
package24.
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The Mutation and Pan-Cancer Prognosis 
Analysis of the Significant Factors

The significant genes were explored in HCC. 
Moreover, the disease-free survival and progres-
sion-free survival analysis of pan-cancer were 
also performed. 

The Analysis of Common Genes in 
the Intersection of the Genes in 
the PPI Network and the DEGs of 
the two Clusters

A list of cancer-related genes and immune-re-
lated genes was collected from COSMIC data-
bases  (http://cancer.sanger.ac.uk) and ImmPort 
databases, respectively. The Search Tool for the 
Retrieval of Interacting Genes (STRING, https://
string-db.org/cgi/input.pl) is an online database 
resource that includes approximately 24.6 million 
proteins and more than 3.1 billion interactions. 
We constructed a PPI network for the regulatory 
genes using the STRING with a confidence score 
>0.900. Then, we collected the common genes at 
the intersection of the genes in the PPI network 
and DEGs of the two clusters.

The Construction of the 
lncRNA-miRNA-mRNA Competitive 
Endogenous RNA (ceRNA) Network

The miRcode database (http://www.mircode.
org/) was used to match DElncRNAs and DEmiR-
NAs. The miRNA and mRNA pairs were collected 
from miRcode databases (http://mirtarbase.mbc.
nctu.edu.tw/), miRTarBase databases (http://www.
mirdb.org/),  and TargetScan  databases (http://
www.targetscan.org/). Subsequently, we integrat-
ed the interaction between miRNAs and lncRNAs 
or mRNAs to construct a ceRNA regulatory net-
work using the Cytoscape (version 3.7.2).

Drug-gene Interaction Analysis of 
Significant Regulatory Genes

The Therapeutic Target Database (http://
db.idrblab.net/) provides information on drugs 
with the corresponding proteins, pathways, and 
diseases25. The drug-gene interaction database 
(DGIdb, www.dgidb.org) consolidates disparate 
data sources and describes drug-gene interac-
tions and gene druggability26. DrugBank (www.
drugbank.ca) is a web-enabled database contain-
ing comprehensive molecular information about 
drugs, their mechanisms, their interactions, and 
their targets27. We identified the interactions be-
tween the drugs and significant regulatory genes 
from these databases.

The protein was extracted from the HCC cell 
line, and the protein concentration was deter-
mined according to the introduction of the BCA 
Kit (Boster Biological Technology Co. Ltd, Wu-
han, Hubei, China). The extracted protein was 
added to the loading buffer and boiled at 95°C for 
10 minutes, and each well was loaded at 30 μg. 
The protein was isolated by 10% polyacrylamide 
gel electrophoresis (Boster Biological Technolo-
gy Co. Ltd, Wuhan, Hubei, China) with voltage 
transferred from 80 v to 120 v. The wet transfer 
was conducted with the transmembrane voltage of 
100 mv for 45-70 minutes. Then, the protein was 
transferred to polyvinylidene fluoride (PVDF) 
membrane, and the membrane was sealed by 
5% bovine serum albumin (BSA) at room tem-
perature, added with the primary antibody BIN2 
(1:1,000), Polyclonal Antibody to Cluster Of Dif-
ferentiation 6 (CD6) (1:1,000), C-type lectin do-
main family 12 member A (CLEC12A) (1:1,000), 
C1orf162 (1:500), [all purchased from Cell Sig-
naling Technologies (CST), Beverly, MA, USA], 
and glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH) (1:1,500) (Becton and Dickinson Com-
pany, Bioscience, San Jose, CA, USA) for incuba-
tion at 4°C overnight. The membrane was washed 
with Tris-buffered saline tween (TBST) 3 times 
(5 minutes for each), incubated with correspond-
ing secondary antibody at room temperature for 
1 hour, washed 3 times (5 minutes for each), and 
developed by chemiluminescence reagent. With 
GAPDH serving as an internal reference, Bio-rad 
Gel Dol EZ imager (GEL DOC EZ IMAGER, 
Bio-rad, California, USA) was applied to develop. 
The gray value of the target band was analyzed 
by Image J software, protein expression = target 
band gray value / internal reference gray value.

The total RNA was extracted using a Trizol 
kit (Invitrogen). Complementary DNA (cDNA) 
was synthesized using a TaqManTM MicroRNA 
reverse transcript kit (Applied Biosystems Com-
pany, Shanghai, China). The PCR assay was 
performed by ABI Prism® 7300 real-time fluo-
rescence quantitative PCR instrument (Applied 
Biosystems, Shanghai, China). U6 and GAPDH 
were set as endogenous controls. The relative lev-
els were calculated by the 2-∆∆Ct method. 

Statistical Analysis
All statistical analyses were performed by R 

software, version 4.1.2 (www.r-project.org). Ka-
plan-Meier survival curves were drawn by the 
R package “Survival” and the log-rank test was 
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used for comparisons. The Wilcoxon test was 
used to compare continuous variables. For all 
statistical analyses, the threshold of statistical 
significance was defined as p<0.05.

Results

Identification of two Immune 
Subtypes for HCC

We first downloaded the HCC cohort from TC-
GA databases using the TCGAbiolinks package28 
in R software, which included 374 HCC samples 
and 50 normal samples. The ssGSEA algorithm 
from GSVA packages was used to evaluate the 
level of infiltration for 28 immune cells in the 
HCC samples. Then, the two immune subtypes, 
the optimal classification in patients with HCC, 
were identified based on the immune cell infiltra-
tion score (Figure 2A-C). Cluster 1 included 230 
patients with HCC, while cluster 2 consisted of 
144. There was more immune cell infiltration in 
cluster 2 than in cluster 1. This immune-related 
classification for HCC was also well presented 
in PCA. To compare the level of immune cell 
infiltration between two clusters, we calculated 
the GSVA score using the GSVA packages. The 
results showed that almost all immune cells ex-
cept Memory B cells were particularly enriched 
in cluster 2 (p<0.05) (Supplementary Figure 1).

The Difference in Tumor 
Microenvironment and Prognosis Value 
Between Two Immune-Related Subtypes

To further evaluate the difference in tumor 
microenvironment between two immune sub-
types, we took several common methods to judge 
the level of immune cell infiltration, including 
CIBERSORT, TIMER, quanTIseq, EPIC, and 
xCell. Although the analysis for immune cell 
infiltration between the two immune subtypes 
revealed that only four types of the 22 immune 
cells inferred by the CIBERSORT analysis had 
significantly different degrees of infiltration, the 
fraction of these immune cells was significantly 
higher in cluster 2 than in cluster 1 (Figure 2D). 
The infiltration analysis between the two im-
mune subtypes inferred by the TIMER analysis 
demonstrated that five types of six immune cells 
in cluster 2 were significantly higher degrees of 
infiltration than in cluster 1 (Figure 2E). In the 
quanTIseq analysis, the infiltration of eight types 
of 11 immune cells was significantly higher in 
cluster 2 than in cluster 1 (Figure 2F). The sig-

nificantly different fractions of B cell (p<0.001), 
cancer-associated fibroblast (p<0.001), T cells 
CD4+ (p<0.01), and endothelial cell (p<0.05) in 
the EPIC analysis were higher in cluster 2 than 
in the cluster 1 (Figure 2G). In the xCell analy-
sis, compared within cluster 1, the immune cell 
infiltration in the cluster 2 group had a higher 
xCell score. The immune score (p<0.001), stro-
ma score (p<0.001), and microenvironment score 
(p<0.001) had the same situation (Figure 2H). 
Therefore, the level of immune cell infiltration 
in cluster 2 was higher in cluster 1 after the 
analysis of the immune cell infiltration using five 
methods, which could suggest that cluster 2 had a 
hotter tumor microenvironment.

To compare the difference in immune-related 
pathways between two immune subtypes, we 
collected the gene datasets of 17 immune-related 
pathways from ImmPort databases. Then, we 
calculated the score of immune-related pathways 
for each sample using the ssGSEA algorithm in 
the GSVA package and compared the score of 
immune-related pathways for two clusters. The 
results showed that 14 of 17 immune-related path-
ways (except interferons, TGFβ Family Member, 
and TGFβ Family Member Receptor) were re-
markably enriched in the two clusters, and the en-
richment in cluster 2 was higher than in cluster 1.

We also computed the immune score for two 
subtypes using the ESTIMATE package in the 
R software, and the result showed that the de-
gree of enrichment in cluster 2 was higher than 
in cluster 1. The cytolytic activity score (CYT) 
is a quantitative measure of immune cytolytic 
activity based on transcript levels of GZMA and 
PRF136. We collected the CYT score using the 
mean of GZMA and PRF1 expression for each 
group and found that the CYT score in cluster 2 
was higher in cluster 1. To evaluate the expres-
sion of the immunotherapy genes between two 
clusters, we collected 12 immunotherapy genes 
(CD274, PDCD1, CTLA4, CD80, CD86, CD38, 
TIGIT, ICOS, IDO1, LAG3, CCL5, CXCL10)29. 
The result showed that the expression of twelve 
immunotherapy genes in cluster 2 was signifi-
cantly higher than in cluster 1 (Supplementary 
Figure 2). Those indicated that the patients in 
cluster 2 were more sensitive to immunothera-
py than those in cluster 1. 

In addition, we analyzed the expression of 
the immune-related genes between two groups 
using the gene sets of chemokine, HLA, recep-
tor, immunostimulatory, and immunosuppressive 
(Supplementary Figure 3). The results showed 

https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Figure-1-14.pdf
https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Figure-2-7.pdf
https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Figure-2-7.pdf
https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Figure-3-4.pdf
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Figure 2. The classification of immune-related subtypes based on the immune cell infiltration score and the comparison 
of the immune cell infiltration score in different subtypes through the analysis of CIBERSORT(A), TIMER(B) quanTIseq, 
EPIC, and xCell. A, Cumulative distribution function (CDF) curve of the consistency score for different subtype numbers (k 
= 2-9). B, Delta area curves represent the relative change in area under the cumulative distribution function (CDF) curve for 
each category number k compared to k-1. C, The consensus score matrix for HCC samples when k = 2. A higher consensus 
score between two samples indicates that they are more likely to be assigned to the same cluster in different iterations, and the 
classification effect is the best. The comparison of the immune cell infiltration score in different subtypes through the analysis 
of CIBERSORT (D), TIMER (E), quanTIseq (F), EPIC (G), xCell (H). p values were showed as: p≤0.05; **; p≤0.01; ***: 
p≤0.001; ****: p≤0.0001; ns: not significant.
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that the expression of those genes in cluster 2 was 
higher in cluster 1. 

In the prognosis analysis, although no dif-
ference between the two clusters in the overall 
survival was not found, the patients with HCC in 
cluster 2 had a longer disease-free survival and 
progression-free survival than patients in cluster 
1 (Supplementary Figure 2E-F). Patients with 
HCC in cluster 2 had better prognostic benefits 
than those in cluster 1. Collectively, we thought 
that patients in cluster 2 had a hotter tumor mi-
croenvironment and better prognosis than those 
in cluster 1 from the comprehensive analysis of 
the immune landscape, including immune cell 
infiltration, immune-related pathways, and im-
munotherapy genes.

The Functional Enrichment of 
the two Immune-Related Subtypes

We collected the differential expression genes 
(DEGs) between the two subtypes using the 
edgeR package (q<0.05 and |log2(FoldChange)| 
>1, Benjamini and Hochberg procedure). A total 
of 1,233 DEGs were collected (False Discovery 
Rates (FDR)<0.05 and fold change>2 or fold 
change <1/2), 1,055 DEGs of which were up-reg-
ulated, while 178 DEGs had down-regulated. 
Then, we performed the functional enrichment 
analysis of the KEGG and GO using the Clus-
ter Profile package (Figure 3A). The results of 
the top 30 pathways in the KEGG enrichment 
analysis showed that pathways for DEGs were 
remarkably enriched in the immune-related 
pathways such as chemokine signaling pathway, 
Th17 cell, Th1 cell, Th2 cell, B cell pathways, 
and immune network (Figure 3B). The results 
in the GO enrichment analysis demonstrated 
that many pathways were mainly enriched in 
the biological process of immunity, such as hu-
moral immune response and the activation of T 
cells (Figure 3C). These results demonstrated 
that the significant difference in tumor micro-
environment between the two immune subtypes 
existed, and the DEGs between the two subtypes 
were involved in many pathways related to im-
munity. We also downloaded the Hallmark gene 
sets from MsigDB databases and evaluated the 
difference of hallmarks between immune-relat-
ed subtypes using GSVA and limma package 
(FDR<0.05). A total of 34 differential hallmarks 
were obtained, and the result showed that those 
hallmarks were mainly involved in apoptosis, 
inflammation, B2M checkpoint, and WNT sig-
nal pathways (Supplementary Figure 4).

The Identification of Significant Regulators
We did a co-expression analysis based on the 

differential expression of mRNA between the two 
subtypes using the module-trait relationships ap-
proach of WGCNA. Among the significant mod-
ules, the turquoise module (R=0.52) was signifi-
cantly related to subtypes (Figure 4A). Then, we 
performed a functional enrichment annotation for 
the module, and the results showed that the module 
was highly enriched in the KEGG pathways relat-
ed to immune biological processes (Figure 4B-C). 
This suggested that the genes of the module were 
more representative. To identify the significant 
regulatory genes, we set the relationship score of 
the module to more than 0.8 and the subtypes to 
more than 0.5 and collected the genes located in 
the top 25% of this module. We finally identified 
six significant regulatory genes (BIN2, ARHGAP9, 
CD6, DOK2, C1orf162, CLEC12A)

The Expression and Prognosis Value of 
the Significant Regulatory Genes

The expression of the six significant regulato-
ry genes between two immune-related subtypes 
in cluster 2 was significantly higher in cluster 1 
(Figure 5A-B). Due to the reason that the six regu-
latory genes originated from the same module and 
expression patterns were highly consistent with 
prognostic value, we performed the analysis of ex-
pression for the six genes themselves. The results 
showed that the relationship among six genes was 
positively correlated (the correlation coefficient 
was more than 0.7) (Figure 5C). We also found that 
the expression of six genes was positively correlat-
ed with the immune-activated cells and negatively 
associated with immunosuppressed cells (Figure 
5D). Those results indicated that the six regulatory 
genes had important immune competence.

In the prognosis value analysis of disease-free 
survival and progression-free survival, we found 
that significant differences existed between the 
high expression and the low expression. More-
over, the survival analysis showed that patients 
with high expression had a better prognosis than 
patients with low expression (Supplementary 
Figure 5), which was consistent with the expres-
sion of six regulatory genes between subtypes.

The Immunological Competence of the 
six Important Regulators

To clarify the immune function of the six 
important regulatory genes, we performed an 
analysis of immunological competence. Firstly, 
we did a Pearson correlation after collecting the 

https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Figure-2-7.pdf
https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Figure-4-1.pdf
https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Figure-5.pdf
https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Figure-5.pdf
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immune score, estimate score, and stromal score. 
The result showed that six genes were significant-
ly associated with the immune score, especially 
DOK2 (the correlation value = 0.89, p<0.05) (Fig-
ure 5E). Then, we collected the immunotherapy 
genes, the expression of which was significant-
ly different between the two immune subtypes. 
Moreover, those immunotherapy genes were par-
ticularly related to the six important regulators, 

especially BIN2 and CD86 (the correlation value 
= 0. 9, p<0.05) (Figure 5F). 

To evaluate the association between six import-
ant regulators and immune cell infiltration, we 
performed the analysis of TIMER and xCell. In 
the analysis of TIMER, the six important regula-
tors were significantly associated with the immune 
cell infiltration score, especially the association 
between BIN2 and Myeloid dendritic cell (Pear-

Figure 3. Differentially expressed genes and function enrichment analysis between two clusters. A, Heatmap demonstrating 
differentially expressed genes between two subtypes. B, The Kyoto encyclopedia of genes and genomes (KEGG) analysis of 
the top 30 pathways. C, Gene Ontology (GO) analysis.



Potential biomarkers for the prognosis and treatment of HCC immunotherapy

2035

son  correlation analysis, the correlation value = 
0.81 and p<0.05) (Figure 5G). In the analysis of 
xCell, the results showed that CD6 had the most 
significant association with Myeloid dendritic cells 
(Pearson correlation analysis, the correlation value 
= 0.8, p<0.05) (Figure 5H). Those results showed 
that the genes BIN2 and CD6 had the most signifi-
cant immunological competence, while DOK2 had 
the most significant relationship with the immune 
score. There also had internal correlations among 

the six important regulators. Therefore, we spec-
ulated that all six important regulators may have 
significant immunological competence. 

To further elucidate the immunological compe-
tence of the six important regulators, we collected 
the single-cell sequence data of immune cells for 
the liver from scRNA-HCC databases (https://www.
omic.tech/scrna-hcc#). It includes more than 70,000 
single-cell transcriptomes for 10 HCC patients from 
four relevant sites: primary tumor, portal vein tu-

Figure 4. The identification and analysis of the significant module and regulatory factors. A, The identification of the 
significant module in the analysis of module-trait relationships. The red and blue colors indicate a strong positive correlation 
and strong negative correlation, respectively. The functional enrichment analysis of the significant module in the analysis of 
the Kyoto encyclopedia of genes and genomes (KEGG) (B) and Gene Ontology (GO) (C). p values were showed as: p≤0.05; **: 
p≤0.01; ***: p≤0.001; ****: p≤0.0001; ns: not significant.
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Figure 5. The correlation analysis and immunological competence of the significant regulatory factors. Comparison of the expression of the significant regulatory genes between 
two clusters (A-B) (p<0.05). C, The analysis of the self-expression of the regulatory genes. D, The association between the regulatory genes and the status of the immune cells. 
E, The association between the six regulatory factors and the immune score, the estimated score, and the stromal score. F, The association between the six regulatory factors 
and immunotherapy genes. The association between the six regulatory factors and immune cell infiltration through the TIMER algorithm and xCell algorithm (G and H). I, 
Visualization of clustering and annotation in the tSNE plot. J, The expression of the regulatory genes in the immune cells. ***: p≤0.001. 



Potential biomarkers for the prognosis and treatment of HCC immunotherapy

2037

mor thrombus (PVTT), metastatic lymph node, and 
non-tumor liver. The immune cells were classified 
into 53 clusters (Figure 5I), which were very dis-
tinct. We then explored the expression of the six 
genes. The results showed that all significant genes 
had expression in some clusters, while some genes 
were expressed in almost all clusters (Figure 5J). 
The expression level of CLEC12A, DOK2, ARH-
GAP9, BIN2, and C1orf162 was high in the Myeloid 
dendritic cell, which was consistent with the analy-
sis result of the xCell and TIMER. Therefore, those 
results suggested that the six important regulators 
had significant immunological competence.

We also explored the relationship between the gene 
sets of chemokine, HLA, receptor, immunostimulato-
ry and immunosuppressive, and six important regula-
tors. The results showed that the six genes were sig-
nificantly related to those gene sets, and the correlation 
patterns of these genes were similar. In the chemokine 
analysis, CD6 and CCL5 had the strongest correlation 
(the correlation value = 0.88, p<0.05). BIN2 and HLA-
DA had the strongest correlation (the correlation value 
= 0.87, p<0.05). In HLA, the strongest correlation was 
BIN2 and CCR5 (the correlation value =0.87, p<0.05). 
In immunostimulatory analysis, CD6 and CD48 had 
the strongest correlation(the correlation value= 0.94, 
p<0.05). In immunosuppressive analysis, CD6 and 
CD96 had the strongest correlation (the correlation 
value = 0.94, p<0.05) (Supplementary Figure 6). 
Those results showed that the six important regulators 
had significant immunological competence, especially 
CD6 and BIN2.

The Mutation and Pan-Cancer Prognosis 
Analysis of the Six Important Regulators

In the expression analysis of the six important 
regulators, we found that the mutation frequency 
of the six genes in HCC was relatively low (Figure 
6A). Those results indicated that these genes might 
influence the two immune subtypes of HCC by 
the expression level of gene expression. To explore 
the function of the six important regulators in 
pan-cancer, we analyzed disease-free survival and 
progression-free survival. The result showed that 
BIN2 could influence disease-free survival in 12 
cancers and progression-free survival in 19 cancers 
(Figure 6B). CD6 could play a role in 10 cancers and 
affect the progression-free survival in 19 cancers 
(Figure 6C). DOK2 could contribute to disease-free 
survival in 9 cancers and progression-free survival 
in 15 cancers (Figure 6D). ARHGAP9, C1orf162, 
and CLEC12A had a similar situation. Those results 
indicated the significant prognosis value of the six 
regulatory genes (Supplementary Figure 7).

PPI Network Construction Between 
Immune-Related Genes and Significant 
Regulatory Genes

A PPI network was constructed for the six sig-
nificant regulatory genes using STRING with a 
confidence score >0.900. The result showed that 
except for BIN2, the other five regulatory genes 
were constructed into a close network, which 
had a total of 2,062 nodes. Then, we obtained the 
common genes using the intersections of genes 
between the DEGs of two clusters and the genes 
in the network. We found that 17 cancer-related 
genes, 133 immune-related genes, 22 immune-re-
lated oncogenes, and the other 318 genes were 
closely related to the regulatory genes (Figure 
7A). There had 295 proteins associated with CLE-
C12A, 280 with DOK2, 271 with ARHGAP9, 184 
with CD6, and 115 with C1orf162, respectively.

The Construction of the 
lncRNA-miRNA-mRNA ceRNA Network

To establish the lncRNA-miRNA-mRNA ceR-
NA network, we collected the interactions be-
tween miRNA and mRNA from the targetscan 
database, mircode database, and mirtarbase da-
tabase, and miRNA and lncRNA from mircode 
databases. We identified 107 miRNAs that had 
an association with six significant mRNA. In 
addition, we collected the lncRNA related to 
the 107 miRNAs. Finally, we constructed a ln-
cRNA-miRNA-mRNA ceRNA network includ-
ing five lncRNA 21 miRNA, and six mRNA 
(Figure 7B), which were related to the five 
regulatory genes. Meanwhile, we used lncLo-
cator to predict the subcellular localization of 
5 lncRNAs in the construction of ceRNAs30. 
The results showed that MIAT and HCG11 were 
predicted to be located in the nucleus, and DN-
M3OS, HLA−DQB1−AS1, and LINC00426 were 
predicted to be located in the cytoplasm.

Drug-gene Interaction Analysis of 
Significant Regulatory Genes

The six significant regulatory genes were used 
as significant regulatory genes in a drug–gene in-
teraction analysis. We identified a list of four po-
tential drugs for CD6 and CLEC12A (Figure 7C).

 
Validation of the Gene Signature in 
Clinical Tissue Samples

To validate the expression of C1orf162 and 
CD6, we carried out Western blot and qRT-
PCR using three and twelve pairs of HCC 
tissues and paracancerous tissues, respectively. 

https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Figure-6.pdf
https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Figure-7.pdf
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The results showed that their expression in 
the tumor tissues was downregulated com-

pared with those in the paracancerous tissues 
(p<0.05) (Figure 8A-D).

Figure 6. The mutation and the pan-cancer analysis of the regulatory genes. A, The mutation frequency of the regulatory 
genes in HCC. The analysis of disease-free survival and progression-free survival of the regulatory gene BIN2, CD6, and 
DOK2 in pan-cancer analysis (B-D).
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Discussion

In recent years, we have achieved a revolu-
tionary breakthrough in therapy for most patients 
with advanced stages, such as the application 
of immune checkpoint inhibitor therapy target-
ing either the programmed cell death1 (PD-1)/
programmed cell death ligand 1 (PD-L1) or cy-
totoxic T-lymphocyte (CTLA-4) pathways31. Un-
fortunately, the clinical benefits of the objective 

response for patients were extremely limited6. 
The liver is a unique organ that contains large 
populations of immune cells, some of which have 
strong antitumor potential. Nevertheless, the liv-
er is also an organ of immune tolerance, which 
may lead to the suppression of the anticancer 
immune response and further influence the ef-
fect of immune immunotherapy. The survival of 
HCC patients was closely related to the increased 
innate immune and inflammatory gene expres-

Figure 7. A, the common genes using the intersections of genes between the DEGs of two clusters and the genes in the 
network. B, The lncRNA-miRNA-mRNA competitive endogenous RNA (ceRNA) network. C, The drug-gene interaction 
analysis of significant regulatory genes.
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sion in tumor-infiltrating immunocytes32-34. The 
association between immunosuppressive factors, 
the inflammation or immune-related gene ex-
pression, and the possible role of the neutrophils 
in the tumor microenvironment and prognosis 
value have been demonstrated preliminarily in 
HCC35-37. Taken together, it is significant to make 
a reasonable classification and identify the signif-
icant regulatory factors to activate the anti-tumor 
function. 

In our study, we first classified the HCC 
datasets downloaded from TCGA into two im-
mune-related clusters based on the immune cell 
infiltration score and explored the difference in 
immune status and clinical prognosis between 
clusters. The immune status and clinical progno-
sis in cluster 2 were better than in cluster 1, which 
suggests that cluster 2 was an immune-hot phe-
notype compared with cluster 1. Based on those 
results, functional enrichment analysis based on 
the difference of the differential gene expression 
showed that immune-related pathways in cluster 
2 were higher in cluster 1. Then, we identified 
the six significant regulatory factors, the analysis 

of which showed that the prognosis of patients 
in cluster 2 was better than that in cluster 1. 
Moreover, those genes were closely related to 
immune status, and their expression in cluster 2 
was higher in cluster 1. In the single-cell RNA 
sequence analysis, the expression of the six genes 
was correlated to the immune cell. Both the anal-
ysis of patients from TCGA and the results of 
single-cell RNA sequence analysis indicated that 
the six genes were related to the immunology. We 
also identified potential drugs for CD6 and CLE-
C12A, which were helpful to explore the potential 
therapeutic drugs to treat HCC. Moreover, we 
constructed lncRNA-miRNA-mRNA interaction 
regulatory networks, and the lncRNA was locat-
ed in the nucleus and cytoplasm. In addition, the 
result of the pan-cancer analysis showed those 
genes contributed to an important prognosis ef-
fect, which highlighted the potential antitumor 
effect. Finally, we validated the expression of 
genes in the experiment. 

Our study was different from recent immune 
subtype reports on HCC38. The study reported 
classified the HCC data sets into five clusters 

Figure 8. Expression of CD6 and C1orf162 in HCC. A, CD6 and C1orf162 expression in normal hepatocytes line (QSG-7710), 
compared to the paired hepatoma cell lines (HepG2, Huh7, SMCC-7721, MHCC-97H) by western blot analysis. B, CD6 and 
C1orf162 expression in HCC tissues, compared to the paired paracancerous tissues specimens from 3 pairs of patients by 
western blot analysis. CD6 and C1orf162 expression in HCC tumor tissues and paracancerous tissues from normal from 12 
pairs of patients by qRT-PCR analysis (C and D). NT: HCC tissues; N: normal tissues.
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based on the expression of immune-related genes 
profiles and showed that patients from Cluster 
3 had the worst prognosis and lower immune 
score. However, the immune score and progno-
sis in Cluster 4 and Cluster 2 were inconsistent. 
In our study, we identified the two subtypes for 
HCC and further verified the rational classifi-
cation using bioinformatics analysis of immune 
status. We found that patients in cluster 2 were 
immune-hot subtype and had a better prognosis. 
In the analysis of the functional enrichment, 
the result showed that the DEGs were enriched 
in the immune-related pathways, including the 
GO, KEGG, and MsigDB analysis. In addition, 
we also collected significant regulatory factors, 
which were closely related to the immune status 
and could be regarded as possible immunothera-
py targets.

Our current study showed that patients in clus-
ter 2 had more types of immune cell infiltration. 
These results were verified using the CIBER-
SORT, TIMER, quanTIseq, EPIC, and xCell. The 
infiltration of CD4+ and B cell in cluster 2 in 
almost all analyses had a higher level in cluster 
1. In the immune cell population, B cells are the 
main effector indirectly killing cancer cells39. 
CCL19/CCR7 axis, CCL21/CCR7 axis, and CX-
CL13/CXCR5 axis are considered to be the main 
B cell-related pathways in tumor immune reac-
tion40. Since the TME plays a role in both bene-
ficial and adverse consequences for tumor initi-
ation, progression, and response to therapy, the 
immune cell composition of TME in the HCC has 
a major impact on cancer biology 441,42. However, 
the different immune cell subsets induce either 
inflammation or restrict antitumor immunity43. 
The immune-related pathways in the Cluster 2 
were higher enriched than in Cluster 1. The CYT 
score had a higher level in cluster 2 compared 
to cluster 1. In addition, the analysis of expres-
sion immunotherapy genes8 and immune-related 
genes44,45 showed the patients in cluster 2 had 
a better immunotherapy response and a better 
prognosis. In the functional enrichment analysis 
based on the  differential  gene  expression, the 
enrichment of the immune-related pathways in 
cluster 2 was higher in cluster 1. These analyses 
indicated that cluster 2 was an immune-hot sub-
type with a better immunotherapy response.

Here, six genes were identified as significant 
regulatory factors in HCC. Moreover, we found 
that their expression in cluster 2 was higher com-
pared to cluster 1, and patients in cluster 2 had a 
better prognosis than in cluster 1 in the survival 

analysis. We also verified the expression of the 
CD6 and C1orf162 in the experiment. BIN2, 
also called BRAP1, is a bona fide member of the 
N-BAR protein family, which can influence po-
dosome formation, motility, and phagocytosis in 
leukocytes46. In endometriosis, BIN2 is regarded 
as a novel Mϕ2 macrophage-related biomarker47. 
BIN2 was identified as the hub gene in HCC, and 
the expression in HCC tissues was higher than in 
normal tissues48. Rho GTPase activating protein 
9 (ARHGAP9), a member of the RhoGAP family, 
had a down-regulated level in HCC. However, 
ARHGAP9 can be identified as a potential tumor 
suppressor by affecting migration and invasion 
of HCC cells via regulating FOXJ2 and its target 
gene CDH149. In our study, we found that ARH-
GAP9 was closely associated with immune cell 
infiltration. In an analysis of the cSNP chip on 
hepatocellular carcinoma-related genes, the ex-
pression of DOK2 shows polymorphisms, and the 
DOK2 has a strong association with the immune 
score50. The hypomethylated C1orf162 is associ-
ated with the mRNA expression level comparison 
between gastric cancer and normal gastric tissues 
and may be regarded as a novel marker51. C-type 
lectin domain family 12 member A (CLEC12A), 
as an Ag delivery receptor, is broadly expressed 
by all human DC subsets and is an attractive can-
didate for in vivo boosting tumor-reactive T cell 
immunity in cancer patients52. As shown in our 
study the CLEC12A had a strong association with 
the myeloid dendritic cell activated in HCC. The 
expression of CLEC12A also was downregulated 
in the HCC than in the normal tissues53. In the 
analysis of the immune status, we found that the 
six regulatory genes had a close relationship with 
chemokines, HLA, receptors, immunostimulato-
ry molecules, and immunosuppressive molecules, 
especially for CD6 and BIN2. The six genes had 
a different function in the tumorigenesis and de-
velopment of HCC. In our study, the results will 
help provide a novel direction to study the HCC.

Dendritic cells play an important role in initiat-
ing, regulating, and maintaining immune respons-
es and inducing anti-tumor immune responses54. 
The characteristics of relatively low cost, the easy 
obtainment, safety, and the absence of sequence 
exclusion and gene integration make the mR-
NA vaccine to be regarded as highly feasible for 
targeting tumor-specific antigens and promising 
immunotherapy strategies. Recently, the mRNA 
vaccine has presented significant potential in the 
treatment of COVID-1955. Moreover, most patients 
with HCC had a background of viral  hepatitis. 
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In our study, we found that CD6 and BIN2 were 
closely associated with the dendritic cells, which 
reflected the great potential in the development 
of the mRNA vaccine. In the single-cell RNA 
sequence analysis, we found that the expression 
of the six regulatory genes was a significant asso-
ciation with the immune cell, and the six genes in 
HCC were mainly expressed in the Myeloid cells, 
Mature B cells, and T/NK cells. Myeloid cells in 
tumor tissues consisted of a dynamic immune pop-
ulation characterized by a non-uniform phenotype 
and diverse functional activities. However, some 
of the most successful treatments have now been 
applied in the clinic and are being investigated in 
clinical trials56,57, such as tumor-associated mac-
rophages (TAMs) and tumor-associated neutro-
phils (TANs). Recent studies58 demonstrated the 
specificity and cytotoxicity of T and, NK cells to-
wards tumor-specific or associated target antigens 
generated by genetic engineering of the immune 
cells to express a chimeric antigen receptor. Those 
indicated that the six genes may change the status 
of Mature B cells and T/NK cells to perform the 
anti-cancer property. Those genes in the pan-can-
cer analysis also affected the disease-free survival 
and progression-free survival in most cancers. 
Therefore, the identification of these significant 
immune-related genes may help upregulate their 
expression in immune-cold HCC and enhance the 
outcome of immunotherapy. 

LncRNA has been regarded as a molecular 
sponge of miRNA to adsorb miRNA to remove 
the inhibition of miRNA on its target genes59,60. 
The network formed by mRNAs, miRNAs, and 
lncRNAs can jointly play a role in regulating 
gene expression at the transcription or posttran-
scriptional stage. In our study, we constructed 
a significant regulatory factor-related ceRNA 
network and predicted the subcellular local-
ization of the selected lncRNAs. The results 
showed that lncRNA was located in the lncRNA 
nucleus and cytoplasm. In the ceRNA networks, 
we found that CD6 was the core gene, and was 
related to almost all miRNA. mRNA vaccines 
have a great advantage to respond rapidly to 
the global explosion of the coronavirus disease 
2019 (COVID-19) U.S., and the mRNA vaccine 
field will encompass a dramatic rise in the mar-
ket value and will attract widespread interest in 
anticancer61,62. FDA has recently approved pro-
phylactic vaccines for the hepatitis B virus that 
can cause liver cancer63,64. In future studies, the 
vaccine development of mRNA for HCC may 
offer another treatment. 

Potential drugs identified by drug-gene inter-
action for CD6 and CLEC12A were classified into 
CAR−T cells targeting CLL1, itolizumab, oncol-
ysin CD6, tepoditamab. Itolizumab, a humanized 
IgG1 kappa anti-CD6 monoclonal antibody, binds 
to domain 1 of human CD6, which is used to treat 
autoimmune and inflammatory diseases. In 2020, 
Itolizumab was approved for emergency use in In-
dia to treat cytokine release syndrome in COVID-19 
patients with moderate to severe acute respiratory 
distress syndrome, and the results showed better 
survival and recovery benefits65. ticOncolytic CD6 
and CAR−T cells targeting CLL1 have a clear in-
dication for the treatment of Hematologic tumors 
such as Leukemia, Lymphoid, Autoimmune Dis-
ease, and Lymphoma66-68. Tepoditamab can bind to 
CLEC12A leading to a potent cytotoxic T-lympho-
cyte (CTL) response against CLEC12A-expressing 
tumor cells. All these drugs may provide promising 
prospects for the treatment of HCC.

Our study provides the potential therapeutic 
target for the clinical treatment through the iden-
tification of the six genes, which may provide 
new insights and novel directions to utilize and 
activate the immune response for HCC treatment. 
These can explore the direct antitumor function 
and cytotoxic capacities of the immune system43. 
Firstly, we performed a comprehensive analysis 
to explain the significance of the six genes. We 
identified the six genes in patients with HCC 
from TCGA and further verified them in the 
single-cell RNA sequence data. Moreover, we 
also validated the expression of the genes in the 
experiment. Secondly, we used the immune cell 
infiltration analysis, immune-related pathways, 
immune competence analysis, immune target-
ing gene analysis, and immune gene analysis to 
clarify the association between the six genes and 
immunology in immune tumor microenviron-
ment analysis. Because hepatocellular carcinoma 
(HCC) is the second leading cause of cancer-re-
lated death worldwide, we further explored the 
universal significance of the six significant genes 
in the pan-cancer analysis, in which the results 
indicated the universal significance. 

Limitations
Several limitations in this study should be 

mentioned. Firstly, we did only construct clusters 
for HCC from the TCGA database. Secondly, al-
though we experiment to explain the expression 
of the six significant genes, our study lacks the 
elucidation between the six significant genes and 
immunology. In the future, we will do some ex-
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periments to solve the problems through RNA se-
quence in animals and treat the HCC based on the 
association between six genes and immunology. 
Therefore, our consequent works will do some 
basic experiments to verify the reasonability of 
the classification in HCC.

Conclusions

Collectively, we identified the two clusters 
based on immune cell infiltration. The analysis 
of immune status found that cluster 2 was an 
immune-hot subtype and had a better prognosis 
compared to cluster 1. Moreover, we collected six 
regulatory factors, which may be regarded as po-
tential biomarkers for the prognosis and treatment 
of HCC immunotherapy.
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