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Abstract. The mere glimpse of venomous an-
imals has always terrified humans because of 
the devastating effects of their venoms. How-
ever, researchers across the globe have iso-
lated therapeutically active ingredients from 
these venoms and continue to explore them 
for drug leads. These efforts lead to the dis-
covery of therapeutic molecules that the US-
FDA has approved to treat different diseases, 
such as hypertension (Captopril), chronic pain 
(Ziconotide), and diabetes (Exenatide).

The main active constituents of most venoms 
are proteins and peptides, which gained more 
attention because of advancements in biotech-
nology and drug delivery. The utilization of new-
er screening approaches improved our under-
standing of the pharmacological complexity of 
venom constituents and facilitated the develop-
ment of novel therapeutics. Currently, with ma-
ny venom-derived peptides undergoing differ-
ent phases of clinical trials, more are in pre-clin-
ical drug development phases. This review high-
lights the various sources of venoms, their phar-
macological actions, and the current develop-
ments in venom-based therapeutics.
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Introduction

Various species underwent random mutations 
during evolution in response to climatic changes 
and predation. These effects led to the formation of 
venom in phylogenetically distant species. Today, 

about 100,000 species of venomous vertebrates 
and invertebrates exist1-3. The venomous verte-
brates include fish like catfish and stonefish, snakes 
like pit vipers, and platypus-like mammals. The in-
vertebrates include mollusks like cone shells and 
cone snails, arachnids like funnel-web spiders and 
scorpions, and insects like bees and ants4. Depend-
ing on the habitat, venomous animals (Figure 1) are 
aquatic or terrestrial. Aquatic animals include cni-
darians, sea snakes, and venomous fishes, whereas 
terrestrial animals include arthropods (scorpions, 
spiders, hymenopterans) and vertebrates (terrestri-
al venomous snakes). A more detailed classification 
of venomous animals and their venom-producing 
glands is illustrated (Table I).

Venoms are the concentrated, biologically ac-
tive, complex secretions usually secreted from 
glands identified along with their stings, teeth, 
or spines for self-defense or immobilization of 
prey5,6. Chemically, they are heterogeneous mix-
tures of bioactive components, such as proteins, 
glycoproteins, peptides, and other chemical enti-
ties, such as lipids, nucleosides, free amino acids, 
and metallic ions. Proteins and peptides make up 
approximately 90-95% of the dry components of 
a venom. Besides, metal ions, such as sodium (as 
a major cation), zinc, and calcium, are found in 
different metalloproteinases isolated from snake 
venoms7-10. Furthermore, carbohydrates exist 
mainly conjugated as glycoproteins11,12.

The historical interest in animal venoms has its 
roots deep in history, as far as humans recorded 
their civilization. The interest in the physiological 
activities of venoms from different sources (Table 
I) grew parallel to human fear of venomous ani-
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mals13. Historical accounts, including the Chara-
ka Samhita, Unani, and Chinese medical systems, 
acknowledged the therapeutic potential of ven-
oms14. Thus, it is well-laid in history that despite 
the toxic nature of venom, it can be explored for 
various biological activities. The prime constit-
uents of venom, such as peptides, enzymes, and 
glycoproteins, can be utilized in investigating/
modulating various pathophysiological process-
es15. Previous studies16 showed that exposure to 
bee and wasp venom extracts increased CD203c 
expression in blood basophils. Another study17 
showed that human basophils express CD16 in re-
spiratory and insect venom allergy patients. Five 
allergens induced allergy by seven Hymenoptera 
species, which were assessed by different diag-
nostic setups18,19. Extensive research continues to 
extract and identify therapeutic molecules from 
venomous substances from different species. This 
article reviews the different biological activities 
and chemical constituents in venoms20-22. 

The toxicity of venoms varies considerably 
according to the source; the variation is paral-
lel to that of the broad range of animal species 
producing them. This broad spectrum of ac-
tivity leads to the discovery of organ-specific 
components in animal venoms, e.g., cytotoxins, 
cardiotoxins, neurotoxins, and hemotoxins, es-
pecially with the current advancements in drug 
discovery techniques2,23-27. Many of the isolated 
peptides and proteins target the cardiovascular 
or nervous systems. Overall, the primary clin-
ical indications for venom-based biologics in 
humans include neurological, oncological, car-

diac, hematological, and renal applications28. 
Furthermore, many isolated non-lethal com-
ponents modulate ion channel function29-34 and 
can serve as future therapeutic agents. Other 
possible applications are in the field of cosmet-
ics20,35-37 and as potential pesticides38-42.

Composition of Venom

Animal venoms consist of complex, natural, 
biologically active molecules with different cel-
lular targets and pharmacological activities43,44. 
The main components are protein/peptides, with 
and without enzymatic activity, and other chem-
ical entities43,45,46. These biologically active mole-
cules have evolved extravagantly in context with 
enzymes, peptides, selectivity, and their potency.

Enzymes
The diverse proteinaceous macromolecules 

with enzymatic activities are major constituents 
of animal venoms. The commonly found enzymes 
are proteinases47,48, phospholipases9,49,50, arginine 
ester hydrolases51,52, hyaluronidases53, cholines-
terases54, collagenases55, phosphodiesterases56,57, 
DNase58,59, and RNase58,60,61. The enzymatic vari-
ations of venoms of different species are listed in 
Table II. The venom enzymes of spiders, scorpi-
ons, bees, and snakes are primarily responsible 
for their hemolytic, proteolytic, lipolytic, oxidore-
ductive, and hydrolytic activities. The main clini-
copathological manifestations of venom exposure 
in humans include cell/organ injury, neuromus-

Figure 1. Grouping venom-
ous and poisonous animals 
with an easy set of criteria.
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cular dysfunction, coagulopathy, inflammation, 
and disruption of homeostatic mechanisms, such 
as lowering blood pressure and stimulating pain 
sensation.

Cholinesterase
It is mainly extracted and purified from differ-

ent species of snake venoms. Cholinesterases cat-
alyze the hydrolysis of the neurotransmitter ace-
tylcholine into choline and acetic acid62-64. This 
action directly disrupts the nervous system by in-
terfering with cholinergic signaling, which leads 
to uncontrolled relaxation or paralysis of muscle 
tissues and contributes to venom toxicity54,65.

L-Amino Acid Oxidase (LAAO)
The LAAOs are flavoproteins that constitute 

approximately one-tenth of total venom proteins. 
Venom LAAOs exist mainly as homodimers that 
give snake venoms the characteristic yellow color 
thanks to their flavin adenine dinucleotide con-
tent. In a stereospecific deamination reaction, 
they catalyze the conversion of L-amino acid 
substrates (mostly the hydrophobic ones such as 
L-isomers of methionine, leucine, isoleucine, phe-
nylalanine, and tryptophan) to the corresponding 
α-keto acid liberating hydrogen peroxide66. Snake 
venom LAAOs have demonstrated cytotoxic 
(proapoptotic), antimicrobial, antiparasitic, and 
platelet-aggregating activities67. The toxic effects 
of these enzymes are attributed to their liberation 
of hydrogen peroxide and induction of oxidative 
stress68. On the other hand, a recent study report-
ed the attenuation of neutrophil-mediated inflam-
mation and oxidative stress by crude venom and 
the purified LAAO from a Bothrops snake69.

Proteolytic Enzymes (Proteases)
The molecular weight of these enzymes ranges 

from 20 kDa to 95 kDa. Proteases catalyze the 
hydrolysis of tissue proteins into smaller peptides 
and simple amino acids70-72. Sometimes, met-
al ions are required to activate these enzymes, 
whereas reducing agents are used to deactivate 
them72-74. Akin to the pathophysiological func-
tions of endogenous proteases such as thrombin, 
trypsin, elastase, and matriptase75,76, the venom 
content of proteolytic enzymes might modulate 
cellular and tissue function by their protease ac-
tivity77,78. Importantly, these enzymes can acti-
vate, disarm, or modulate the function of prote-
ase-activated receptors75,76. Since their discovery 
in the 1990s, accumulating evidence illustrates 
the role of protease-activated receptors in regulat-
ing inflammation75,79, cellular proliferation80, and 
vascular function81-83, to mention a few of their 
functions84. Venom proteases offer valuable re-
search opportunities in drug discovery based on 
their ability to act like endogenous proteases.

Table I. List of sources of different venoms.

COELENTERATES • Hydroides 
 (Cnidarians)  (direct body contact)
 • Jellyfish
 • Sea anemones
 • Corals (stinging cells, 
  nematocysts)
ANNELIDS • Blood-feeding leaches 
  (polychaete worms)
 • Blood worms
 • Scale worms (possess strong 
  jaws with channels and 
  pores for venom release 
  from underneath venom 
  glands
 • Amphinomida or bristle 
  worms (fragile spines 
  or modified chaetae)
MOLLUSCS • Squid
 • Cuttlefish
 • Octopuses
 • Snugs
 • Snails (harpoon-like 
  radular tooth)
ARTHROPODS • Crustacean (glands connected 
  to muscles surrounding 
  reservoirs, which are attached
  to the needle structure on 
  front claws)
 • Scorpion (stinger tail)
 • Spider (chelicerae, a pair 
  of jointed jaws having 
  sharp fangs)
 • Millipedes
 • Centipedes (pinch using the 
  first pair of walking legs)
 • Insects (piercing and sucking 
  mouth parts)
ECHINODERMS • Starfish (spines/stings)
 • Sea urchins (long, sharp, 
  sometimes venom-coated 
  spines)
 • Sea cucumbers (Cuvierian 
  tubules)
CHORDATES • Cartilaginous and bony 
  fishes (spines, fangs, 
  cleithral spines, and opercular 
  or subopercular spines)
 • Sharks (spines-like process 
  anterior to dorsal fins)
 • Amphibians (glands located 
  in various skin sites)
 • Reptiles
 • Birds
 • Mammals
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Arginine Ester Hydrolase
Arginine ester hydrolase, also known as argi-

nine esterase, is extracted from highly venomous 
species of snakes like Crotalus scutulatus, and it 
induces the hydrolysis of substrate proteins con-
taining arginine residues85. The processing of ki-
ninogens by arginine ester hydrolases causes the 
release of bradykinin86. Agkihpin is an arginine 
ester hydrolase from snake venom that showed 
anti-metastatic potential in liver cancer model sys-
tems87. The anti-migratory effect of agkihpin was 
attributed to its reversal of epithelial-to-mesenchy-
mal transition and attenuation of Wnt/β-catenin 
signaling, possibly via degradation of frizzled-7, 
a vital component of the Wnt receptors associated 
with cancer development and metastasis87,88. Thus, 
this enzyme carries the potential for the develop-
ment of novel anti-cancer biotherapeutics.

Thrombin and Thrombin-Like Enzymes
Thrombin is a serine protease that cleaves fi-

brinopeptides to convert fibrinogen to fibrin89. Be-
sides its vital role in blood coagulation, thrombin 
is essential to cellular homeostasis in vascular and 
non-vascular tissues79,90. Thrombin-like enzymes 
are also serine proteases with 29 kDa to 35 kDa 
molecular weight, extracted and purified from 
the venom of snakes (primarily pit vipers)91,92. 
They also play an active part in the blood coag-
ulation pathway and the released unstable blood 
clots93. These effects are achieved either directly 
by the thrombin or thrombin-like constituents of 
the venom or indirectly by activating the endog-
enous coagulation cascade94. On the other hand, 
fibrinogen depletion caused by envenomation 
precipitates fatal hemorrhagic disorders, such as 

venom-induced consumption coagulopathies and 
subsequent thrombotic microangiopathies95-97.

Collagenase
Collagenases are metalloproteinases that, as 

the name implies, break down collagen molecules 
and other matrix proteins74. These enzymes are 
critical to tissue remodeling and activation of sig-
naling pathways during development and patho-
genesis98-100. Enzymes with collagenolytic activ-
ity are ubiquitous in living organisms ranging 
from bacteria to higher mammals and can serve 
as modular therapeutic targets99,100. Notably, the 
venoms of many species contain collagenases that 
contribute to their biological effects101,102.

Hyaluronidase
Degradation of the extracellular matrix hyal-

uronan (hyaluronic acid) by the hyaluronidase ac-
tivity of the venom enhances the spreading of the 
toxic venom into the tissues and leads to a more 
pronounced biological effect. Hyaluronidases act 
mainly by hydrolysis of glycoside bonds in muco-
polysaccharides of connective tissue and thus de-
crease their viscosity. Therefore, they facilitate the 
penetration of other active high molecular weight 
components of venoms inside the tissues2,59,78. 
Moreover, the exact mechanism can be exploited 
for therapeutic and cosmetic applications103.

Phospholipase A2 (PLA2)
Snake and bee venoms are sources of PLA2, 

which primarily promotes the calcium-dependent 
hydrolysis of phospholipids (especially mem-
branous) to produce fatty acids like arachidonic 
acid and lysophospholipids like lysophosphatidic 

Table II. Description of enzymes and peptides in various types of venoms.

 Snake venom Spider venom Scorpion venom Bee venom

Enzymes Phospholipase A2 Phospholipase A2 Hyaluronidases Phospholipase A2
 L-Amino acid oxidase L-Amino acid oxidase Phospholipase A2 Phospholipase B
 Hyaluronidases Antithrombins Metalloproteinases Hyaluronidases
 Acetylcholine esterase Hyaluronidases L-Amino acid oxidase Acid phosphatase
    α-Glucosidase
Peptides/ Sarafotoxins Antimicrobial peptides Ion channel (Na+, Ca2+, Melittin
 polypeptides Lipopolysaccharide  (cytolytic or   K+, and Cl-) toxins Apamin
 Bradykinin potentiating  cationic peptides) Non-disulfide-bridged Peptide 401
  or angiotensin- Cysteine-rich peptides  peptides (NDBPs) Tertiapin
  converting enzyme  Cystine knot inhibitor  Secapin
  inhibitors Psalmopeotoxin I, II
 Neurotensin Huwentoxin I
 Phyllolitorin
 Litorin  
 Tryptophyllin
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acid2,78,104. Thus, venom PLA2 can trigger various 
signaling pathways responsible for pain sensa-
tion105 and cellular proliferation106.

Phosphodiesterase
Phosphodiesterases are enzymes that break the 

phosphodiester bonds in a polynucleotide sequence 
to release 5-mononucleotide1,107,108. Although the 
term usually refers to cyclic nucleotide phosphodi-
esterases that convert cyclic nucleotide monophos-
phates into acyclic forms109, this class also includes 
other exonucleases and endonucleases, which 
cleave a nucleotide sequence either at the terminal 
or middle positions, respectively110. These enzymes 
are isolated from various species of snake venoms. 
Based on their target specificity, phosphodiesteras-
es can significantly affect cell signaling, modulate 
the biological response to toxic venom, and serve 
as novel platforms for drug development111,112.

RNase
The RNase enzymes, also known as ribonu-

cleases, facilitate the point-cleavage of the RNA 
molecules into smaller units, hence its inactiva-
tion. Interestingly, most snake venoms contain 
ribonucleases60,61,113. Although not fully under-
stood, the suggested function of venom RNase 
is the generation of purines (e.g., adenosine) that 
are important in regulating vascular and immune 
function and cell survival114,115.

DNase
DNases are endonucleases that specifically 

cleave the DNA structure into small components. 
Like RNases, they can be extracted from different 
species of snake venoms61. Beyond their known 
digestive effects on DNA (and sometimes RNA), 
little is known about their function as venom 
components. However, they might be involved in 
purine generation58,113,115.

5’-Nucleotidase
These enzymes are active phosphatases extract-

ed and purified from snake venoms and known 
for their nucleotide cleavage activity, mainly the 
conversion of adenosine monophosphate to ade-
nosine116,117. Noteworthy, the combined actions of 
phosphodiesterases, RNases, and DNases degrade 
cellular genetic precursors to form purine and py-
rimidine 5’-nucleotides, which are the substrates of 
5’-nucleotidase and non-specific phosphatases for 
the generation of nucleotides. The generation of ad-
enosine is crucial because it accounts for many of 
the venom-related effects58,113,118.

Lactate Dehydrogenase (LDH)
This oxidoreductase is an intracellular enzyme 

found in the tissues of all animal species. It is main-
ly responsible for the reversible conversion of lactic 
acid to pyruvic acid and NAD+ to NADH in equi-
librium119-121. Under hypoxic conditions, when ox-
idative phosphorylation fails to produce ATP for 
energy, the levels of LDH (cytoplasmic enzyme) 
consequently increase and affect the metabolic path-
way of glucose for energy production120,122. The mas-
sive activation of the LDH enzyme reflects a loss of 
cytoplasm, transient damage to the tissue integrity, 
and cell death120,123. Notably, envenomation induces 
hemotoxicity and cytotoxicity due to local tissue in-
jury resulting in multiple organ dysfunction. Thus, 
the immoderate release of LDH from the damaged 
cells into the bloodstream is associated with marked 
toxicity induced by snake venom. In a previous 
study, Bahadorani and Mirakabadi124 showed that 
exposing human endothelial kidney cells to the ven-
om of Echis carintus dose-dependently upregulated 
the LDH content and consequent cellular damage124.

Similarly, the concentration of LDH increased 
in the rats injected with three different venoms of 
Bitis gabonica, Dendroaspis polylepis, and Naja 
nigricollis125. Moreover, intraperitoneal injection 
of Bothrops asper venom in mice significantly in-
creased LDH levels126. In line with the above data, 
victims of snake bite envenomation represented 
an early rise in LDH content127,128. Conclusively, 
all the above findings uncover the importance of 
LDH as a potential biochemical marker in ven-
om-induced tissue damage.

Peptides
Venoms of poisonous animals are complex 

mixtures of low molecular weight peptides that 
could significantly threaten human life. These 
small peptides are the dominant components in 
most venoms2,92. The peptides from snake ven-
om affect endothelial cell proliferation, migra-
tion, and response to growth factors, notably the 
vascular endothelial type2,129,130. Similarly, spider 
venoms also have different peptides, which target 
ion channels/receptors to modulate cellular func-
tion and proliferation131,132. Scorpion venom is a 
significant source of therapeutical actives, espe-
cially ion channel blockers133. Moreover, the poly-
peptides in bee venom activate specific signaling 
pathways that modulate the effects of pro-inflam-
matory cytokines and mitigate oxidative stress 
in different disease models134-136. The peptides/
polypeptides variations in the venoms of snakes, 
scorpions, spiders, and bees are listed in Table II.
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Types of Venoms

Snake Venoms
There are approximately 3,400 species of snakes 

worldwide. The snakes fall in the suborder Ser-
pentes, order Squamata, reptilian, and infra-orders 
like blind snakes and non-blind snakes137. Different 
venomous snake families, such as Viperidae, At-
ractaspididae, and Colubridae, live on land, at high 
altitudes, and in the deep sea. Moreover, the ven-
oms of these snakes contain various therapeutic/
non-therapeutic moieties, including enzymes, such 
as LAAO, PLA2, serine proteases, and 5’-nucleo-
tidase7,8,117,138,139 and non-enzymatic components, 
such as peptides, cysteine-rich secretory proteins, 
waprins, disintegrins, and sarafotoxins140-144. In ad-
dition, different peptide molecules isolated from 
venoms of various species of snakes have already 
been identified as neurotoxins (K+ channel-binding, 
presynaptic and postsynaptic types), cardiotoxins, 
myotoxins, and cytotoxins7,8,137,139,145,146.

Because of the heterogeneous complex com-
position, we are far from understanding the exact 
mechanisms by which snake venoms exert their 
effect. Venoms of the snakes possess various ac-
tive constituents that show different pathological/
physiological outcomes like bleeding, edema, and 
muscle cell necrosis147,148. Snake envenomation 
induces pathological changes, like damaging lo-
cal tissues, because of blistering, hemorrhage, 
and inflammation2,96,149. Further, this response to 
inflammation triggers the release of endogenous 
mediators, such as histamine, prostaglandins, and 
bradykinins. Thus, envenomations of snake biting 
lead to a complex pathogenic process with local 
and systemic effects. The toxic manifestations 
of snake envenomation result mainly from their 
effects on the nervous, cardiovascular and respi-
ratory systems50,96,150. The severity and outcomes 
depend on many factors, such as the site of enven-
omation, venom volume and concentration, age, 
weight, and genomic variations in the victim151-155. 
Moreover, snake bites may induce vital organ fail-
ure (e.g., heart and kidney) and even death, which 
were corroborated in clinical reports151,156.

The hemotoxic effects of venoms from the Vipe-
ridae family are caused by venom proteins, which 
disrupt the coagulation cascade to affect bleeding 
and tissue necrosis95,151,157. In contrast, neurotoxic 
venoms from the Elapidae family interfere with the 
function of the peripheral nervous system, primar-
ily the myoneural junction, by disrupting ion trans-
port and membrane homeostasis78,105,158. On the 
neuromuscular junction, neurotoxins act on either 

presynaptic or postsynaptic membranes to prevent 
the release of acetylcholine or its interaction with 
its nicotinic receptors78,158,159. Although many snake 
envenomation symptoms are neurotoxic effects re-
lated to the blockade of the peripheral nervous sys-
tem and neuromuscular junction, central nervous 
system toxicity symptoms, such as drowsiness, 
are observed as a result of central nervous system 
depressant effects of venom ingredients160,161. Dif-
ferent venom neurotoxins, such as bungarotoxins, 
dendrotoxins, and fasciculins induce paralysis-like 
symptoms by blocking the nicotinic acetylcholine 
receptors162. Thus, emergency management proto-
cols for snake envenomation should synonymous-
ly consider a suitable identification procedure for 
the source of envenomation, e.g., by immunolog-
ical assays, followed by appropriate antivenom 
therapy153,163,164. The therapeutic procedure should 
be carefully monitored to take care of any fatal 
anaphylaxis reactions induced by antivenom ther-
apy165,166. Thus, studying the pharmacological ac-
tions of different venom components, either alone 
or combined with other active moieties, is essential 
to understand the adverse effects observed in snake 
envenomation fully and to exploit this knowledge 
in the management and drug discovery.

Proteinases
The heterogeneous proteinases extracted 

and purified from viper venoms, with molecular 
weights of 15-100 kDa, are primarily implicated 
in tissue necrosis, hemorrhage, and bleeding167-174. 
The proteinases extracted from snakes are pri-
marily categorized as snake venom serine prote-
ases (SVSPs) and snake venom metalloproteinases 
(SVMPs). Both categories are structurally stabi-
lized by disulfide bonds (bridges) and are capable 
of hydrolyzing various natural (e.g., casein and he-
moglobin) and synthetic substrates (Olaoba et al175, 
Larreche et al96). Few of these proteolytic enzymes 
affect the hemostatic system either by activation 
(pro-coagulant) or inhibition (anti-coagulant).

The SVSPs (20-100 kDa) are extracted from 
different species of snakes (Pit viper, Gaboon vi-
per from Viperdiae, and Boomslang from Colub-
ridae)2,112,170. They have been widely utilized for 
their active role in hemostasis171 by induction of 
platelet aggregation169,172. Broadly, these enzymes 
are known for their thrombin-like actions. They 
all have a common active site structure that com-
prises three basic amino acids: serine, histidine, 
and aspartic acid, each of which plays a role in 
the catalytic activity of the enzyme. Afaacytin 
extracted from the venom of the desert horned 
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viper Cerastes cerastes is an example of SVSPs 
that exhibits α- and β-fibrinogenase activity172,173.

The initial classification of SVMPs into four 
classes relied on their molecular weight and chem-
ical structure174. Later, scientists classified SVMPs 
into three main types according to the complexity 
of their domain structures. The simplest SVMPs 
(P-I SVMPs) contain only metalloproteinase do-
mains. Members of the second class of SVMPs 
(P-II SVMPs) contain metalloproteinase and dis-
integrin domains. The third and the most com-
plex members are the P-III SVMPs that contain 
metalloproteinase, disintegrin, and cysteine-rich 
domains175. The SVMPs are usually proenzymes 
of three major domains: a catalytic domain (bind-
ing site for zinc and lectin), a pro-domain, and 
a signal peptide175,176, and have the unique motif 
sequence HEXXHXXGXXH, which is essential 
for their pharmacological activity177,178. Moreover, 
they have a conserved histidyl system mainly re-
sponsible for Zn2+ binding179,180.

Several SVMPs (primarily the Zn2+-type) 
were isolated from snake venoms with molecular 
weights ranging from 22 to 100 kDa9,10,175. Several 
SVMPs display preferential affinity and speci-
ficity to endothelial cells130,181,182. These enzymes 
have also been evaluated pharmacologically 
for their hemostatic function183,184. Additionally, 
metalloproteinases are involved in the pathophys-
iology of inflammation77, heart failure185,186, and 
inhibition of platelet aggregation, which initiate 

bleeding96,175,187. These proteins induce blood ex-
travasation via the degradation of extracellular 
matrix proteins, such as fibronectin and collagen; 
hence they are called hemorrhagins188-190. Patho-
logical effects, such as tissue necrosis, blistering, 
and swelling in major organs, occur as a result 
of local or systemic bleeding96,191,192 or by direct 
stimulation of inflammatory and apoptotic path-
ways in such tissues130,192,193.

Disintegrins and C-Type Lectins
Proteins with disintegrins and C-type lectins 

are extracted from snake venoms and are found in 
envenomation sites after snake bites. They gained 
popularity in biomedical research for developing 
new therapeutics and diagnostics2,11,112,194. These 
disintegrins and C-type lectins modulate plate-
let aggregation (Table III) due to their affinity 
toward different platelet receptors, such as α2β1, 
αIIbβ3, GPIb, and GPIIb/IIIa195-197. Moreover, 
these proteins have promising anti-cancer and 
anti-angiogenic potential2,116,198-201. They have also 
been explored clinically for treating coronary ar-
tery diseases and stroke202,203. Notable examples 
include eptifibatide and tirofiban; both are syn-
thetic derivatives of disintegrins isolated from the 
dusky pygmy rattlesnake Sistrurus barbourin and 
Echis carinatus, respectively194,204,205. Other ex-
amples, such as lebectin and lebecetin, are prom-
ising candidates in the field of heart and cancer 
diseases206-208.

Table III. List of non-enzymatic components found in snakes’ venoms.

Non-enzymatic Molecular Mechanism Pharmacolo- Type of 
 components  mass (kDa)  of action  gical action  snake family 

Three-finger toxins  Blocks neuromuscular transmission  Neurotoxicity Elapidae and
 e.g., α-neurotoxins  6-9  by inhibiting acetylcholine receptors  (postsynaptic)  Viperidae
   (postsynaptic nicotinic type), a blocker
   of calcium channel (L-type) 
Kunitz peptides  7 Interference with the blood coagulation Interference with Elapidae and
   cascade and ion channel  hemostasis  Viperidae
Cysteine-rich   20-30 A blocker of calcium channel (L-type) Inhibit smooth Viperidae
 secretory proteins   and cyclic nucleotide-gated channel  muscle contraction 
C-type lectins Composed  Interference with the blood  Interference with  Viperidae
  of two   coagulation cascade  hemostasis
  subunits;
  α (A chain):
  β (B chain)  
Disintegrins  5-10 Interference with the blood coagulation Interference with Viperidae 
   cascade  hemostasis 
Natriuretic peptides 3.5-4 Binding with guanylyl cyclase receptors Shows hypotension Elapidae and
   triggers an increase in the level of cGMP  due to vasodilation,  Viperidae 
   and further signaling. Inhibitor of   diuresis, and
   angiotensin-converting enzyme  natriuresis
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PLA2
Many phospholipase isoenzymes have been 

identified in snake venoms, such as Trimeresurus 
flavoviridis and Vipera russelli91,92,116,191,209. Based 
on their primary structure and disulfide bonds, 
most PLA2 enzymes are categorized as Group I 
and II182,210, with more or less similar amino acids 
(~125 residues), and are stabilized by seven S-S 
bonds. However, small, even subtle, changes in 
amino acid sequence or the secondary structure 
greatly affect the substrate specificity211,212. Group 
I PLA2 enzymes were isolated from Hydrophidae 
and Elapidae, whereas Group II PLA2 enzymes 
were extracted from other sources213-215. PLA2 en-
zymes show different pharmacological actions, 
such as inflammatory, cardiotoxic, myotoxic, 
neurotoxic, and anti-coagulant49,50,57,78,105,216.

Scorpion Venoms
Approximately 3% of scorpion species are 

very poisonous. The Buthidae family is wide-
ly acknowledged for its fatality, poisonous, and 
medical importance217,218. Scorpion venom com-
prises multiple peptides and proteins. Significant 
enzymatic activities include phospholipases, hy-
aluronidases, alkaline phosphatases, acetylcho-
linesterase, and sphingomyelinases25,154,218-220. 
Other notable ingredients include amino acids 
and neurotransmitters221. Some of the peptides 
isolated from scorpion venoms are cysteine-rich. 
They show high specificity towards sodium, po-
tassium, and calcium channels133,222, which makes 
them beneficial as research tools and discovery 
platforms223,224.

Bee Venom
Bee venom is a transparent, odorless liquid 

secreted from a gland in the abdominal cavity of 
honeybees, containing 88% water and only 0.1 
µg dry venom225,226. The therapeutic application 
of bee venom finds its roots in ancient civiliza-
tions thousands of years ago227. Envenomation 
of various stinging insects like the honeybee 
releases many proteins, peptides, and enzymes, 
in addition to activating mast cell release of 
peptides and other chemicals (e.g., serotonin, 
acetylcholine, and histamine). These venoms 
also have hyaluronidase and other enzymatic 
activities, which diversifies their potential ap-
plications43,49,134. The role of bioactive mediators 
derived from bee venom and its isolated compo-
nents have been extensively implicated in immu-
notherapy, arthritis, neurodegenerative diseases, 
cancer, and viral infections.

 Spider Venoms
Venoms isolated from spiders, like snake ven-

oms, are heterogeneous and complex mixtures 
that contain therapeutically active and inactive 
components in the form of proteins, polypep-
tides, enzymes, nucleic acids, amino acids, and 
inorganic salts133,223,228-232. Although most spider 
bites do not need much medical attention, ven-
omous spider bites show neurotoxicity, necrotic 
effects, and sometimes organ damage233,234. More-
over, toxicity may vary with species and site of 
envenomation. Neurotoxins, like latrotoxins and 
atracotoxins, are the major component of venoms 
from Widow spiders and Australia funnel-web 
spiders, respectively. The latrotoxins induce the 
release of neurotransmitters, which further cause 
muscle contractions, painful abdominal cramps, 
gooseflesh, and sweating235,236. The atracotoxins 
show toxicity by modulating blood pressure, ex-
cessive neural activity by opening Na+ channels, 
and muscle contractions237,238. They also cause 
fatal conditions like pulmonary edema. Similar 
pathological effects were noted with toxic enven-
omation of Brazilian wandering spiders. More-
over, the venom of this species also contains sero-
tonin that stimulates pain239-241.

The Sicariidae family includes the recluse 
spiders (genus: Sicarius and Loxosceles, spe-
cies: Sicarius ornatus and Loxosceles interme-
dia, Loxosceles gaucho) and the six-eyed sand 
spiders (genus: Hexophthalma), known for their 
necrotic effects242,243. Furthermore, other spiders, 
including the white-tailed spider, sac spider, and 
hobo spider, can induce necrotic effects243-247. 
These pathogenic spider venom possesses sphin-
gomyelinase D, a well-known dermo-necrotic 
agent responsible for necrotic effects and causes 
a range of local to systemic effects244,245,248. Most-
ly, no pain was found post-envenomation of these 
spiders, but the wound grows broader and deeper 
with time, and the site might become gangrenous 
and very painful. Along with localized effects, 
envenomation of these spiders also showed sys-
temic effects like hemolysis, kidney damage, and 
muscle cramps234,249.

Pharmacological Activity

Neurotoxicity
The venoms of venomous animals usual-

ly contain neurotoxins that attack the nervous 
system. The clinical manifestations of intoxica-
tion with neurotoxic venom are the blockage of 
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nerve impulses to the muscles, muscle cramps, 
and rigidity, which ultimately disrupts many of 
the body’s functions, notably respiration151,217. 
Some neurotoxins, including atracotoxins of the 
funnel-web spider venom, directly stimulate the 
profound release of endogenous neurotransmit-
ters, such as acetylcholine and norepinephrine, 
causing paralysis of the entire nervous sys-
tem237,238. Neurotoxins from snake venoms (coral 
snake, tiger snake, rattlesnake, and Russell’s vi-
per snake) can induce acute neuromuscular paral-
ysis78,161,242,250. These neurotoxins act in two ways 
to inhibit neuromuscular transmission; α-neuro-
toxins inhibit postsynaptic transmission of the 
neuromuscular junction, whereas β-neurotoxins 
inhibit presynaptic transmission159,162. One exam-
ple of β-neurotoxins is b-bungarotoxins extracted 
from the many-banded krait snakes, which have 
PLA2 enzymatic activity251,252. On the other hand, 
α-bungarotoxins are α-neurotoxins that inhibit 
the postsynaptic nicotinic acetylcholine receptors 
at the motor-end plate146,253.

Hemotoxicity
Venoms from different sources have demon-

strated activities, such as coagulant, anti-coagu-
lant, and fibrotic properties, interacting with the 
blood coagulation system95,96,185,187. For example, 
venoms of the Levantine viper (Vipera lebetina) 
and Bothrops atrox can activate factor X and ini-
tiate blood coagulation254,255. However, venoms 
and their toxins might demonstrate pro-coagulant 
and anti-coagulant activities67,173,256. They show 
anti-coagulant effects by inhibiting the clotting 

factors and protein C activators257. Venom from 
Bothrops jararaca was isolated and characterized 
as Bothrojaracin, which acts as a thrombin inhib-
itor258.

Cytotoxicity
Many cytotoxins have been isolated from 

venoms of various animals and showed target-
ed affinity towards several cellular sites/compo-
nents116,200,259,260. Several studies131,260,261 showed 
the potential application of cytotoxic venom 
constituents as cancer therapeutics. Constituents 
from Elapid venoms illustrated significant cyto-
toxic potential with neuroblastoma and leukemia 
models262,263. 

Myotoxicity
A very important invalidating effect of enven-

omation is the irreversible damage to muscle tis-
sues. Venoms extracted from the Elapidae and Vi-
peridae snakes have demonstrated high levels of 
PLA2, one of the most abundant myotoxins118,162,262. 
Other myotoxins, like crotamine obtained from 
the Prairie rattlesnake (Crotalus viridis) showed 
affinity to bind with Na+ channels and polypep-
tides cardiotoxins extracted from different snake 
venoms, which further induce the depolarization 
of skeletal muscle cell membrane264-266.

Inflammation
The inflammation process initiated by enven-

omation was reported several years ago, and a 
complete understanding of the process is yet to be 
explored. Several components of snake venoms 

Figure 2. Important timelines of venom-based therapeutics.
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(e.g., PLA2 and proteinases) are responsible for 
initiating inflammation response induced by in-
creased vesicular permeability77,193. The Bothrops 
asper venom induces muscular and other tissue 
inflammation synchronous with a high concen-
tration of interleukin-6, interleukin-1β, and other 
inflammatory mediators267-276.

Venom-Derived 
Approved Therapeutic

Although many animal bites and stings usu-
ally have serious implications on the vital or-
gans, such as the heart, brain, liver, and intestine, 
careful isolation, purification, chemical analy-
sis, synthesis, or synthetic modification of ven-
om ingredients led to the discovery of beneficial 
therapeutics20,22,24,132,164,176,261. Venoms are now 
well-recognized as the biggest natural source 
of drugs after plants. Figure 2 shows a few im-

portant landmarks of venom-based therapeutics. 
Several successful examples (Table IV) highlight 
the commercial importance of venom-based ther-
apeutics. Famous clinically successful cardiovas-
cular preparations include Aggrastat (tirofiban), 
Capoten (captopril), and Integrilin (eptifibatide), 
which were designed based on model molecules 
from snake venoms. Many venom components 
from different sources of animals have shown 
their potential in treating various disease states 
and in different clinical phases.

Conclusions

From toxin to drug development, this over-
view highlights the categorization of several ven-
om-derived enzyme and peptide products that are 
clinically available. Furthermore, as the efficiency 
and affordability of commercial peptide synthesis 
and recombinant expression of peptides improve, 

Table IV. Venom-based approved therapeutics.

Protein & Source of Molecular Mode of Indication Company Reference
 derivative  venom target delivery
  protein     

Batroxobin Lancehead snake Defibrino- Parenteral  Perioperative Nuokang Zhang
 (Baquting®)  (Bothrops  genating   (i.v. infusion)  Bleeding  Biopharma  et al255

  moojeni &  agent
  Bothrops atrox) 
Bivalirudin Medicinal leech  Direct thrombin Parenteral  Anticoagulant The Medicines Warkentin
 (Angiomax®)  (Hirudo  inhibitor  (i.v. infusion)  during   Co.  et al256

  medicinalis)    surgery 
Captopril Brazilian pit  Angiotensin Oral Hypertension Bristol-Myers King257

 (Capoten®)  viper (Bothrops   converting    Squibb
  jararaca)  enzyme (ACE)
   inhibitor
Enalapril  Brazilian pit  ACE inhibitor Oral Hypertension Bausch Health Bordon
 (Vasotec®)  viper (Bothrops      (Formerly   et al26

  jararaca)     Valeant Pharm)
Eptifibatide Pygmy rattlesnake Glycoprotein IIb/ Parenteral  Antiplatelet Merck Tcheng &
 (Integrilin®)  (Sistrurus   IIIa inhibitor  (i.v. infusion)    O’Shea258

  miliariusbarbouri) 
Exenatide  Gila Monster  Binds to  Parenteral  Type 2 diabetes Amylin and  Barnett259

 (Byetta®) and  lizard   glucagon-  (s.c. infusion)   Eli Lilly;
 Lixisenatide  (Heloderma   like peptide-1    Sanofi
 (LyxumiaTM)  suspectum)  (GLP-1) 
   receptor 
Tirofiban Saw-scaled  Glycoprotein IIb/ Parenteral  Antiplatelet Iroko Cardio Menozzi
 (Aggrastat®)  viper  IIIa inhibitor  (i.v. infusion)   and Merck  et al260

  (Echiscarinatus)     (USA only)
Zinconitide Cone snail  Ca2+ channel Intrathecal Chronic pain Azur Pharma Miljanich261

 (Prialt®)  (Conus magus)  antagonist    and Eisai
      (Europe)

Source: http://clinicaltrials.gov
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more of these complex peptides will be generat-
ed. The application of high throughput screening 
after advanced purification techniques and struc-
ture-activity relationship studies is essential for 
discovering new venom-derived therapeutics and 
diagnostics.
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