European Review for Medical and Pharmacological Sciences 2013;17:1611-1619
Function of TGF-beta and p38 MAKP signaling

pathway in osteoblast differentiation from rat
adipose-derived stem cells
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Abstract. - BACKGROUND: Adipose-derived
stem cells (ADSCs) are multipotent progenitors
that can commit to osteoblast, chondrocyte,
adipocyte and several other lineages. The proper
utilization of stem cells for clinical application
requires an integrated understanding of multiple
signal inputs that control maintenance of stem-
ness, proliferation and differentiation.

MATERIALS AND METHODS: In this study,
ADSCs in rat were isolated from subcutaneous
tissues of abdomen and inguinal fat pads, puri-
fied and expanded in vitro. Bone morphogenetic
protein 2, TGF-beta 1, SB203580 (P38 MAPK in-
hibitor), Noggin (BMP inhibitor) and SB431542
(TGF-beta inhibitor) were used for differentiation
into osteoblasts.

RESULTS: Both TGF-beta signaling pathway and
p38 MAKP signaling pathway could affect the dif-
ferential direction of the ADSCs. PCR assays indi-
cated that both TGF-beta signaling pathway and
p38 MAKP signaling pathway played a crucial
roles in osteoblasts differentiation of the ADSCs,
the members included Smad 1, Smad 5, Smad 8,
P38, ASK1, MKK3, MKK6, Runx 2, collagen type 1,
and osteopontin.

CONCLUSIONS: This research provides a the-
oretical basis and experimental evidence for
therapeutic application of rat ADSCs to treat
bone injury.
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Rat, ADSCs, Osteoblast, TGF-beta signaling path-
way, p38 MAKP signaling pathway.

Abbreviations

ADSCs = adipose-derivated stem cells; BMSCs = bone
marrow stem cells; TGF-f3 = transforming growth factor-
beta; MAPK = mitogen-activated protein kinase; TRAF =
TNF receptor associated factor; ERK = extracellular sig-
nal-regulated kinase; JNK = Jun N-terminal kinase;
DMEM = Dulbecco’s modified eagle medium; bFGF =
basic fibroplast growth factor; PBS = phosphate buffered
saline; BMP-2 = bone morphogenetic protein 2; ALP = al-
kaline phosphatase; DAXX = Death associated Protein 6;
p38 = mitogen activated protein kinase; ASK 1 = Apopto-
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sis signal-regulating kinase 1; MKK3 = MPA kinase ki-
nase 3; RUNX2 = Runt-related transcription factor 2;
GAPDH = Glyceraldehyde 3 phosphate dehydrogenase.

Introduction

Adult stem cells hold great promise in tissue
repair and regeneration. The basic principle in-
volves an appropriate cell source and a biocom-
patible and biodegradable scaffold to produce a
construct that mimics the target site structurally
and functionally. Adipose tissue is derived from
the embryonic mesenchyme and contains a stro-
ma, in which the ADSCs can be induced to mul-
tiple lineages in specific culture system similar to
bone marrow stem cells (BMSCs)!"*. Many
groups working independently have shown that
adult stem cells derived from white adipose tis-
sues can differentiate along multiple pathways in
vitro, including the adipocyte, chondrocyte, en-
dothelial, epithelial, hematopoietic, support, he-
patocyte, neuronal, myogenic, and osteoblast lin-
eages®>?. The skeletal tissue is composed of vari-
ous types of mesenchymal cells such as os-
teoblasts, chondrocytes, myoblasts and bone
marrow stromal cells including adipocytes. Bone
formation is carried out by the osteoblasts, and
bone resorption is carried out by the osteoclasts.
ADSC s are easy to isolate, culture, and manipu-
late in vitro and have great plasticity, for these
reasons they have become an important tool in
cell replacement therapy and are considered as
candidates for bone injury.

The transforming growth factor-beta (TGF-f3)
superfamily is comprised of over forty members,
such as TGF-fs, Nodal, Activin, and bone mor-
phogenetic proteins (BMPs)!°. TGF-/BMPs
have widely recognized roles in bone formation
during mammalian development and exhibit ver-
satile functions in the body'"'2. Disruptions of
TGF-B/BMP signaling have been implicated in
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multiple bone diseases including tumor metasta-
sis, brachydactyly type A2, and osteoarthritis'*2°.
TGF-f is abundant in bone and plays a critical
role in bone remodeling?!, which is a complex
process and relies on the interplay between bone
resorption and formation that involves osteo-
clasts, osteoblasts, and osteocytes?. In the early
stages of osteoblastic differentiation, TGF-f can
provide competence, but at late stages of os-
teoblastic differentiation, TGF-f3 acts as an in-
hibitor?®. This maturation stage-dependent effect
of TGF-f was also confirmed in highly pure
CD14 osteoclast precursor cells?**. MAPK family
members, which are proline-directed serine/thre-
onine kinases, function in various signaling cas-
cades, including TRAF-mediated ones?3-%S.
MAPK family members are classified into three
groups: the ERK, JNK, and p38 MAPK groups.
p38 MAPK was originally identified as the target
of pyridinylimidazole compounds that inhibit the
production of inflammatory cytokines in mono-
cytes?. Pyridinylimidazole SB203580, a specific
inhibitor of p38 MAPK?, has been widely used
to investigate the roles of p38 MAPK in the regu-
lation of cell differentiation and function®-26°,
Using SB203580, p38 MAPK-mediated signals
were shown to be involved in osteoclastic bone
resorption induced by IL-1 and TNF in fetal rat
long bones?*?°. These results suggest that p38
MAPK-mediated signals regulate osteoclast dif-
ferentiation or function, or both.

To further understand how TGF-beta and p38
MAPK regulates osteoblast differentiation, we
explored the roles of TGF-beta and p38 MAPK
mediated signals in the differentiation of osteo-
clasts from rat ADSCs in the present study.

Materials and Methods

Isolation, Culture and Identification of
Rat ADSCs

Adipose tissues were separated from subcuta-
neous tissues of abdomen and inguinal fat pads of
adult rat. All animal experiments were performed in
accordance with the guidelines established by the
Institutional Animal Care and Use Committee at
Hebei Medical University. All operations were con-
ducted aseptically. The adipose tissues were washed
3 times with phosphate buffer saline (PBS) contain-
ing 100 IU/ml penicillin and 100 pg/ml strepto-
mycin to remove connective tissue membrane and
capillaries. The adipose tissues were chopped into
small pieces (about 1 mm?) and digested with 0.1%

(m/v) type collagenase (Sigma, St, Louis, MO,
USA) at 37°C for 1 h. Enzymatic digestion was
then neutralized with fetal bovine serum (FBS, Gib-
co, Carlsbad, CA, USA). The suspension was fil-
tered with an 80 um Cell Strainer and centrifuged at
300 g for 5 min at room temperature. Then the su-
pernatant was discarded and the cells were resus-
pended with a complete medium containing L-
DMEM, 10% (v/v) FBS, 10 ng/ml bFGF, and 2
mM L-glutamine, 1% B-27 (m/v) (all from USA
Gibco, except bFGF from Peprotech, Rocky Hill,
NIJ, USA). The cell suspension was plated and incu-
bated at 37°C with 5% CO,. The culture medium
was changed every three days and the non-adherent
cells were removed®'. When the cells reached 70-
80% confluence, then 0.25% (m/v) trypsin and
0.02% EDTA (Gibco, Carlsbad, CA, USA) were
added to dissociate the cells from plates, and
trypsinization was terminated with the complete
medium. Immunofluorescence was used to detect
the special surface antigen of rat ADSCs for identi-
fication. The surface antigen of ADSCs included
CD13, CD29, CD44, CD71, CD73, CD90, CD105,
CD31 and STRO-I.

Immunofiuorescence Staining

ADSCs were fixed with 4% paraformaldehyde
in PBS for 15 min, followed by three rinses with
PBS. The cells were then permeabilized with
0.1% Triton X-100 for 15 min. After rinsing three
times with PBS, the cells were blocked with goat
serum or 4% bovine serum albumin (BSA) in PBS
for 30 min. The cells were then incubated with
primary antibodies in a humidified chamber at
4°C overnight. After three washes with PBS for 5
min each, the cells were incubated with FITC la-
beled secondary antibodies at room temperature
for 1 h, the cells were rinsed three times with PBS
for 5 min each. Finally, nuclei were labeled by in-
cubation with 4,6 diamidino-2-phenylindole
(DAPI) (Sigma, St, Louis, MO, USA). The cells
were examined by a phase contrast fluorescence
microscope (Olympus, Tokyo, Japan).

PCR

RNA was extracted from ADSCs using Trizol
reagent (Invitrogen, Carlsbad, CA, USA). Total
RNA was reverse transcribed, followed by 30
PCR cycles using RNA PCR kit ver 3.0 (Taraka,
China). Information of gene specific primer pairs
was listed in Table I. PCR was performed in 50 ul
of mixture containing 10 1 of 5XPCR Buffer (Tara-
ka, China), 28.5 ul of ddH,O, 0.25 ul of Ex-Taq
(Taraka, China), 0.5 ul of forward and reverse
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Table I. Primer sequences used in PCR assay.

Fragment size
Gene Primer sequence Tm (°C) Cycle (bp)

Smad 1 F 5' CGACACATCGGGAAAGGAGTC 3'

R 5' TTCACAGACTGCGCCAGTAG3' 55 30 181
Smad 5 F 5' TGCACCATCCTGAACCTGAC 3'

R 5' CGACAGGACATGGACAACCA 3' 60 30 114
Samd 8 F5' AACTGCAGACTGTCCAGACG 3'

R 5' TTGGGAATCTGAAAGCCCCC 3' 55 30 115
MKK 3 F5' GATCGCTGTGTCTATCGTGC 3'

R 5' CGAGGCTCCAGACATCAGAC 3' 58 30 112
MKK 6 F5' CCTGCAGCTTGCATCTTTGT 3'

R 5' TCGCTTCTTGCCTTTCGACT 3' 60 30 121
ASK 1 F5' CATGGCGGTGAAGCGGATA 3'

R 5' GGTCACGGTAAACGGACAGTS3' 60 30 109
DAXX F 5' ATTCCGGTGAGGGTCCTAGT 3'

R 5' CAAGATGGTGGGGAGGGAAC3' 60 30 143
Runx2 F 5' TAGAGCTCTCCCCTGTGACC 3'

R 5' TTTGGGATGAACGTGGAGGG 3' 55 30 159
Collagen type I F 5' CAGGCTGGTGTGATGGGATT 3'

R 5' GACCACGGGCACCATCTTTA 3' 55 30 164
Osteopontin F 5' AATGAATCCGACGATGCCGA 3'

R 5' CACGTGTGAGCTGAGGTCTT 3' 55 30 273
P38 F 5' GCTACTACACGGAATCACCA 3'

R 5' GGGCTCCACTGTCACTCA 3' 54.9 30 234
GAPDH F5' TTGCTGTCGCCCGTTCG 3'

R 5' CCAGCATCACCCCACTTGAT 3' 60 30 232

primers, and 1.5 ul of template cDNA. The cy-
cling conditions consisted of one initial 2-min cy-
cle at 94°C, followed by 30 30-s cycles at 94 (de-
naturation), one 30-sec cycle at 50-60°C (anneal-
ing), and one 2-min cycle at 72 (extension). PCR
products were detected by 2.5% agarose gel elec-
trophoresis. Real-time PCR was performed in a 20
| mixture containing 10 1 SYBR premix Ex Taq
buffer (Takara, China), 0.4 1 ROX Reference Dye,
0.8 M each of forward and reverse primers (Table
I), 1 pl template cDNA and 7 ul ddH,O. The cy-
cling conditions consisted of initial 10 sec at 95°C
followed by 40 cycles of two-temperature cycling:
5 sec at 95°C (for denaturation) and 34 sec at
60°C (for annealing and polymerization). Each ex-
periment was performed with duplicates in 96-
well plate and repeated three times. Gene expres-
sion was detected on an ABI 7500 real-time PCR
system (San Mateo. CA, USA). The expression
level was calculated by the 224 method to com-
pare the relative expression.

Osteogenic Differentiation of ADSCs

The ADSCs were plated to 24-well plates for
osteogenic differentiation. When the confluence
of cells reached 80% the medium was removed.
The cells were washed with PBS for 3 times.
Then, DMEM medium containing 5 ng/ml TGF-

beta 1, 300 ng/ml BMP-2 (Peprotech, Rocky
Hill, NJ, USA) and 10% FBS was added for the
induced group (group A)***. Induced medium
containing 5 ng/ml TGF-beta 1, 300 ng/ml BMP-
2, SB203580 (10 M, Peprotech, USA) as P38
MAPK inhibitor and 10% FBS as a group B. In-
duced medium containing 5 ng/ml TGF-beta 1,
300 ng/ml BMP-2, SB31542 (10 uM, Peprotech,
USA) as TGF-beta inhibitor and 10% FBS as a
group C. Induced medium containing 5 ng/ml
TGF-beta 1, 300 ng/ml BMP-2, Noggin (100
ng/ml, Peprotech, USA) as TGF-beta inhibitor
and 10% FBS as a group D. The SB431542
(TGF-beta inhibitor) was added into every in-
duced group after 6 h induced osteogenic differ-
entiation for inhibition late function of TGF-be-
ta in stem cell differentiation. The control was
cultured with conventional complete L-DMEM
medium, and induced group and control medi-
um were collected every 3 h respectively to de-
tected alkaline phosphatase (ALP) concentra-
tion using alkaline phosphatase assay kit (Ab-
cam, San Francisco, CA, USA). Two days later,
the cells were detected for the formation of cal-
cium node using Alizarin Red staining, and the
expression of osteoblasts specific genes and
TGF-beta and P38 MAPK signals pathway
members via RT-PCR and real time PCR assay.
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Results

Morphological Features of
Primary Cultures

Approximately 6x10° ADSCs were yielded
from the inguinal fat pads of each rat. Most of
the cells that attached to the culture dish surface
exhibited a fibroblast-like spindle shaped at first.
The cells proliferated quickly in completed medi-
um to form colonies that grew and merged to a
uniform confluent cell monolayer after 5 days.
The cells doubled every 41.62 h and were main-
tained in culture for more than 100 days with no
sign of senescence or differentiation.

Phenotypic Characterization of Rat ADSCs
Multiple independent groups have examined
the surface immunophenotype of ADSCs isolated
from human and other species. The expression
profile changes as a function of time in passage
and plastic adherence. To characterize the AD-
SCs, CD marker profile (included CD13, CD44,
CD29, CD71, CD73, CD90, CD31 and CD105)

and STRO-1, a marker used to isolated multilin-
eage progenitors from bone marrow and other
tissue, were examined using Immunofloures-
cence. Immunoflourescence staining results
showed that different passages of ADSCs ex-
pressed antigens CD13, CD44, CD71, CD73,
CD90, CD105 and STRO-1, but did not express
antigens CD31. CD31 antigen is special marker
of endothelial cells. There was no significant dif-
ference in the positive rates of different passages
(p > 0.05) (Figure 1).

Osteogenic Differentiation of Rat ADSCs
After the induction with osteoblast inducers,
ADSCs had apparent changes in appearance.
From the 5 h after the induction, ADSCs in group
A changed from fusiform to three-dimension, be-
coming larger and changing into polygon. As
time went by, triangle or polygonal cells in-
creased, and then grew into multilayers, and
many crystal particles could be observed.
Alizarin red staining of cells was positive at 2
days after induction. The positive region was

Figure 1. Surface antigen
characteristics of rat AD-
SCs at different passages.
Immunoflourescence
staining results showed
that rat ADSCs at different
passages expressed anti-
gens CD13, CD44, CD29,
CD71, CD73, CD90 and
CD105, but not antigens
CD31. (bar = 100 pm).
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Figure 2. Osteogenic differentiation of rat ADSCs. A, Rat ADSCs. The cells expanded easily and exhibited fibroblast-like
morphology. B, After induction in osteogenic differentiation for 2 days, the cells metamorphosed from fusiform to tridimen-
sional shapes and the nodules increased in number and size with prolonged inducing time. The nodules were obviously ob-

served following Alizarin Red staining. (bar = 100 um).

brightly red, showing clear calcium nodules
(Figure 2), while the control group was negative.
The ALP concentration assay of medium
showed that ALP concentration of group A in-
creased with induced time extension, other
groups was no significant difference (Figure 3).
Real-time PCR and RT-PCR indicated that after
incubation with BMP-2 and TGF-beta 1, the
specific genes, including Smad 1, Smad 5, Smad
8, ASK1, MKK3, MKKG®6, p38, Runx2, collagen
type 1 and osteopontin were detected, and gene
expression level showed a time-lapse increase
(Figures 4, 5 and 6).

Discussion

Since bone and cartilage tissue engineering re-
quires large amounts of osteogenic/chondrogenic
precursor cells, new sources of progenitor cells
are needed. Compared with BMMSC, ADSC
have the same ability for osteogenic differentia-
tion, and this ability is maintained with increas-
ing donor age*¥. ADSC can easily be isolated
from adipose tissue'**, and they have the poten-
tial to differentiate into bone, cartilage and other
cells when cultivated under lineage-specific con-
ditions*’*8. Isolated ADSC can be cryopreserved
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Figure 3. Detection of ALP concentration after Osteogenic differentiation. The ALP concentration assay of medium showed
that ALP concentration increased with induced time extension. Group A is significantly different (p < 0.05) then other group,
this result demonstrated that both TGF beta and p38 MAKP signaling pathway could collaboratively affect the osteogenic dif-
ferentiation of rat ADSCs.
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Figure 4. RT-PCR analyses
of TGF beta and p38 MAKP
signals pathway members Oh 3h 6h 91 12h 15h Oh 3h 6h 9h 12h 15h
and osteoblast markers in
osteogenic differentiation. Smad 1 MKK 6
MKK 3 GAPDH

and expanded easily in vitro. Under the condi-
tions commonly used, these cells develop a fi-
broblast-like morphology. The greatest number
of ADSCs can be obtained from cultures plated
at low density.

Transforming growth factor § (TGF-beta) and
more than 30 related proteins have been identified
as members of the TGF-beta superfamily, which
includes three isoforms (betal, beta2, beta3) of
TGF-beta, three isotypes of activins, and nearly
20 isoforms of bone morphogenetic proteins
(BMP), which are present with special subtypes
in all tissues®. Transforming growth factor-f is
the prototype for a family of proteins, several of
which regulate bone and cartilage differentiation.
Several lines of evidence have implicated TGF-§,
which is deposited in bone matrix by osteoblasts
and is released during osteoclastic resorption**#!.
p38 MAPK is known to play an important role in
stress response. It is also involved in cell differen-
tiation*?. Two of the best studied examples are os-
teoclasts and myocytes***. The mechanisms
whereby p38 MAPK regulates osteoclast differen-
tiation are not well understood. Previous studies
have shown that p38 MAPK activation plays im-
portant roles in differentiation of primary calvari-
al osteoblast, bone marrow osteoprogenitor cells,
and some immortalized osteoblast or stromal cell
lines. The activation of p38 by TGF-f31 and BMP-
2 stimulation in C2C12 cells and the crucial role
of p38 in osteoblast differentiation have been re-
ported*>#®. However, target transcription factors of
p38 and TGF-beta pathway responsible for the
osteoblast differentiation have been poorly under-
stood. In this study, we provided evidence that
one mechanism by which both p38 MAPK and

TGF-beta associated regulates osteoblast differen-
tiation is through up-regulating the expression of
Smad 1, Smad 5, Smad 8, ASK1, MKK3, p38,
Runx 2, Osterix and Osteopontin. Eight Smad
proteins are encoded in the human and mouse
genomes, four in Drosophila, and three in C. ele-
gans. Smad transcription factors lie at the core of
one of the most versatile cytokine signaling path-
ways in metazoan biology-the transforming
growth factor-p (TGFp) pathway. Only five of the
mammalian Smads-Smadl, Smad2, Smad3,
Smad5, and Smad8-act as substrates for the TGF-
B family of receptors; these are commonly re-
ferred to as receptor-regulated Smads, or RS-
mads. Smads 1, 5, and 8 serve principally as sub-
strates for the BMP and anti-Muellerian recep-
tors, and Smads 2 and 3 for the TGFf, activin,
and Nodal receptors. ASK1 (Apoptosis signal-
regulating kinase 1) also known as mitogen-acti-
vated protein kinase kinase kinase 5 (MAP3KS5)
is a member of MAP kinase kinase kinase family
and as such a part of mitogen-activated protein ki-
nase pathway. MKK3 a dual-specificity protein
kinase of the STE7 family. Activates p38 MAP
kinase by phosphorylating a Thr and a Tyr residue
in the activation loop. It is activated by cytokines
and environmental stress in vivo.

Conclusions

We results demonstrated that TGF-beta and
p38 MAPK pathway regulation of early os-
teoblast genes in rat ADSCs imply that the mech-
anisms of osteoblastic differentiation should be
generalized with great caution.
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Figure 5. Real time PCR analyses of
TGF beta and p38 MAKP signals path-
way members and osteoblast markers in
osteogenic differentiation. The result in-
dicated that after osteoblast induction the
specific genes, including TGF beta sig-
nals pathway members (Smad 1, Smad 5
and Smad 8), p38 MAKP signals path-
way members (DAXX, ASK1, MKK3,
MKK®6 and p38) and osteoblast markers
(Runx 2, collage type I and osteopontin)
were detected, and gene expression level
showed a time-lapse increase.
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