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Abstract. – Propofol is a short-acting intra-
venous anaesthetic agent and widely used not
only in operating rooms but also in the intensive
care unit (ICU). Apart from its multiple anaes-
thetic advantages, the neuroprotective effect of
propofol has been demonstrated in diverse mod-
els of neuronal injury. The effect of propofol re-
sults from activation of gamma-aminobutyric
acid (GABA) receptor, modulation excitatory
amino acid transmitter system and protecting
brain cells against oxidative stress. Moreover,
propofol is able to supress apoptosis and in-
flammation and to regulate neuroprotection-as-
sociated proteins or ion homeostasis to act its
neuroprotective effects. This review focuses on
the research progress of the neuroprotective ef-
fects of propofol and its mechanisms of action
to date. The implications for possible use for the
clinical setting are also discussed.
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Introduction

Propofol (2, 6-disopropylphenol) is an intra-
venous short-acting anaesthetic agent and has
been widely used for induction and maintenance
of anesthesia, as well as for sedation1. Apart from
its use as an anesthetic, propofol exerts a number
of non-anaesthetic effects such as antiemetic ef-
fects, immunomodulatory activity, anxiolytic ef-
fects and analgesia and so on2,3. More importantly,
it has been demonstrated that propofol acts as an
efficacious neuroprotective agent4 in different
models in vivo5-28 such as cerebral ischemia or is-
chemia-reperfusion (I/R), Parkinson’s disease, in-
tracerebral hemorrhage, cerebral resuscitation and
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ischemia of spinal cords. Moreover, in vitro stud-
ies have confirmed propofol’s neuroprotective
properties in different models29-34. The clinical da-
ta regarding neuroprotective effect of propofol are
performed35. This article reviews available, up-to-
date information on the effects of propofol, one of
the most commonly used anaesthetic agents, in
terms of neuroprotection and, in particular, dis-
cusses the mechanisms of action.

Chemical Properties
As shown in Figure 1, the empirical formula

of propofol is C12H18O and its molecular weight
is 178,271. Propofol is highly hydrophobic due
to its two isopropylic groups in ortho position
with respect to the hydroxyl group, which exerts
a steric hindrance that prevents the approach of
hydrophilic molecules to the hydroxyl group it-
self36. Therefore, propofol is formulated in a
white, oil-in-water emulsion. The currently avail-
able preparation is 1% or 2% propofol, 10% soya
bean oil, and 1.2% purified egg phospholipid as
an emulsifier, with 2.25% of glycerol as a tonici-
ty-adjusting agent, and sodium hydroxide to ad-
just the pH. To this, 0.005% disodium edetate
(EDTA) or sodium metabisulfite is added as an-
timicrobial agents.

Mechanisms of Action

Propofol and GABA
Gamma-aminobutyric acid (GABA) and

glycine are critical inhibitory neurotransmitter in
the central nervous system (CNS)37. Propofol has
been proposed to be an anesthesia agent through
activating GABA A receptors directly activity38,
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Propofol and EAA
Glutamate (Glu) is known as the major excita-

tory neurotransmitter in the CNS, which exerts
its action through ionotropic and metabotropic
receptor families such as N-methyl-D-aspartate
(NMDA), amino-3-hydroxy-5-methyl-4-
isoxazole propionic acid (AMPA) and kainite re-
ceptor58. An excess of Glu release and dysfunc-
tion of its transporters can induce an accumula-
tion of extracellular Glu, which activates differ-
ent ionotropic Glu receptors and causes calcium
ions to enter cells. The excessive calcium loading
plays an important role in neuronal damage59,
which is known as excitotoxicity. Numerous
studies have demonstrated that Glu concentration
during brain ischemia tended to be attenuated by
propofol20,31,60-62. Propofol may prevent Glu re-
lease from synaptosomes at clinical concentra-
tions, the mechanism of which is attributed to in-
hibition of presynaptic voltage-dependent Na+

channels by propofol63-65. Moreover, the neuro-
logical protection of propofol may be due to the
defending against oxidative stress-reduced inhi-
bition of Glu clearance20,31,66-68 and enhancing ex-
citatory amino acid (EAA) transporter 3
activity69, the effect of which may be PKC-medi-
ated67. Propofol was proved to be able to reduce
Glu and NMDA receptors responses in cortical
and hippocampal neurons by Feiner et al33. High
concentrations of propofol significantly inhibit
NMDA receptor-mediated calcium increase and
attenuate Glu neurotoxicity in vitro70,71. Propofol
can inhibit the activation of Glu receptors, the
mechanism of which may be attributed to its re-
ducing phosphorylation of ionotropic Glu recep-
tors72. Furthermore, Wang et al21,73 found that the
inhibition of AMPA receptor GluR2 subunit in-
ternalization may contributed to long-term neuro-
protection provided by propofol post-condition-
ing against focal cerebral I/R injury.

Propofol and Anti-Apoptosis
Ischemic neuronal injury is characterized by

continued neuronal loss for a long time during
recovery period, which is called apoptosis, a type
of programmed cell death74,75. It was shown that
propofol used in anesthetic doses protected pyra-
midal neurons in the hippocampal CA1 subfield
against delayed neuronal death normally induced
by global brain ischemia68. Furthermore, propo-
fol infused at the onset of reperfusion for 30 min
significantly attenuated neuron apoptosis in tran-
sient middle cerebral artery occlusion (MCAO)
rats17.
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Figure 1. The chemical structure of propofol (A) and Vita-
min E (B).

thereby, slowing the channel-closing time39 and
also acting as a sodium blocker40. Activation of
GABA A receptors, which include the specific
binding subunits for propofol, plays a role in the
inhibition of neuronal death induced by brain is-
chemia41 and acute mechanical-injury42. More-
over, Chen’s study showed that propofol can in-
crease GABA accumulation in focal cerebral is-
chemic areas in reperfusion20. Recent research
has also suggested that propofol can cause GA-
BA A receptor triggered and subsequent time-de-
pendent neuroprotection in primary cortical neu-
rons43. Enhancing the inhibitory effects of GA-
BA, as one of the mechanisms of propofol’s
anesthetic action, may explain its protective ac-
tion on the brain.

Propofol and Antioxidant Property
Reactive oxygen species (ROS) have been im-

plicated in many adult neurodegenerative disor-
ders and other brain dysfunctions such as stroke,
trauma, and seizures44, production of which is a
particularly destructive aspect of oxidative stress.
Controlling ROS generation or its level may thus
hold promise as a standard therapeutic modality
for ROS-related neuronal injury. Propofol is sim-
ilar in chemical structure to the active nucleus of
antioxidant substances such as alpha-tocopherol
(vitamin E, Figure 1)45, which has been shown
antioxidant ability in different conditions46. The
clinical studies indicate that propofol increases
the antioxidant capacity of plasma in humans47-49.
As shown by both in vitro and in vivo studies,
propofol can directly scavenge ROS and inhibit
free radical generation and lipid peroxidation in
various experimental models to protect brain
cells against oxidative stress7,11,50-57.



necrosis factor-alpha (TNF-alpha), interleukin
(IL)-1beta and IL-10, in microglia cells19,85. The
effect of propofol may be attribute to its regulat-
ing toll-like receptors and glycogen synthase ki-
nase-3 expressed in microglia cells, which have
been shown to mediate the inflammatory re-
sponse82,86-88. Extracellular adenosine triphos-
phate (ATP) derived from damaged cells and its
receptors in glia participate in the signaling path-
ways evoked in brain insult. Propofol may modu-
late glial functions through ATP receptors to ex-
ert its anti-inflammatory effect89,90. In addition,
propofol inhibits the inflammatory reaction by
inhibiting the nuclear transcription factor kappa
B (NF-kappa B) activation during focal I/R,
which may be one of the mechanisms of its neu-
roprotective function91 since NF-kappa B is an
important transcription factor that plays a key
role in oxidative stress and inflammatory re-
sponses activated during I/R.

Propofol and HO-1
As an enzyme, heme oxygenase-1 (HO-1) sys-

tem can provide substantial cellular protection,
which exerts antioxidant, anti-apoptotic and anti-
inflammatory effects by cleaving heme into car-
bon monoxide, biliverdin and free iron92,93. The
neuroprotective effects of propofol postcondi-
tioning in brain I/R injury may be partially
through the induction of the HO-1 expression94.
In another model, propofol increases HO-1 ex-
pression dose dependently in primary cultured
astroglial cells53 and mitigates the effects of per-
oxynitrite-mediated oxidative stress and apopto-
sis53,81. The propofol-mediated HO-1 induction
might be signaled through activation of NF-kap-
pa B53,81. A better understanding of cytoprotec-
tion provided by HO-1 in vivo could help us un-
derstand the mechanisms involved in its neuro-
protective effects of propofol.

Propofol and Aquaporin 4
Propofol may be involved in neuroprotection

by preventing brain edema18. Aquaporin 4
(AQP4) plays a key role in maintaining water
balance in the CNS, and its dysfunction may lead
to brain edema95. Treatment with propofol re-
duces brain edema after transient focal brain
I/R96 or traumatic brain injury97 in rats, possibly
through inhibiting AQP4 over-expression96,97. An-
other study showed that propofol down-regulated
AQP4 expression and provided neuroprotective
effects in an OGD model of cultured rat astro-
cytes98. The effect of modulating AQP4 expres-

The apoptosis regulatory genes B-cell
leukemia-2 (Bcl-2) and Bcl-2-associated X pro-
tein (Bax) act as anti- and pro-apoptotic regula-
tors respectively. Several studies showed that
neuroprotective effects of propofol against neu-
ronal apoptosis after ischemia in rat, which may
be related to increase expression of Bcl-2 and de-
crease expression of Bax10,76,77. Another study78

demonstrates that propofol might attenuate H2O2-
induced PC12 cell apoptosis through the inhibi-
tion of signaling pathways mediated by the p38
MAP kinase.

Caspase-3 has been found to play a dominant
role in the apoptotic pathway79. Zhang et al80

study showed that propofol attenuated the isoflu-
rane-induced caspase-3 activation in H4-APP
cells and mouse brain tissue. But another study10

indicated that activated caspase-3-dependent
apoptotic pathways were not affected by propo-
fol. Glia in CNS contributes to the neuroprotec-
tion and survival of neurons, apoptosis of which
exists in damaged brains suffering from ischemia
and neurodegenerative disease. Acquaviva et al81

study demonstrates that propofol attenuates per-
oxynitrite-mediated apoptosis in astroglial cells.
Propofol pretreatment also significantly reduced
apoptosis in oxygen and glucose deprivation
(OGD)/reoxygenation BV2 microglia82.

Moreover, propofol can markedly attenuate
autophagic processes of autophagy (another type
of programmed cell death) via the decreased ex-
pression of autophagy-related proteins in vitro
and in vivo83. Cui et al84 demonstrated that propo-
fol, at clinically relevant concentrations, attenuat-
ed cell death through both autophagic and apop-
totic mechanisms in a transient global cerebral
I/R model of rat, the effects of which is related to
inhibition of p53, a tumor suppressor protein in-
volved in apoptosis.

The neuroprotection of propofol related to in-
hibition of apoptosis might depend on timing of
administration of drugs. The therapeutic win-
dow for propofol initiated before the onset of is-
chemia and lasted until early stage of reperfu-
sion75.

Propofol and Anti-inflammation
Glial cells (microglia or astrocytes) play im-

portant roles in coordinating the inflammatory
brain responses to hypoxia and insult. There are
studies showed that propofol suppressed the
lipopolysaccharide-induced production of in-
flammatory substances, including prostaglandin
E(2), thromboxane B(2), COX enzyme tumor
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sion of propofol might be associated with attenu-
ated expression of IL-1beta and TNF-alpha and
inhibiting NF-kappa B and p38/MAPK pathways
by itself97.

Propofol and EDTA
Although the physiological significance of neu-

ronal zinc release within the CNS is not clear, and
its role in brain injury is controversial99, it has
been proposed that under clinical conditions such
as traumatic brain injury, stroke or epilepsy, the
excess influx of zinc into neurons has been found
to result in neurotoxicity and damage to postsy-
naptic neurons100,101. Propofol formulations con-
tain either EDTA, which has antibacterial and anti-
fungal properties. EDTA is also a chelator of diva-
lent ions such as zinc, magnesium, and calcium.
Recently, EDTA has been reported to exert a neu-
roprotective effect itself by chelating surplus in-
tracerebral zinc in an ischemia model of perma-
nent MCAO102 and OGD-induced cell damage102.
Thus, EDTA may be a new contributor to the neu-
roprotection of propofol.

Additional Mechanisms
Acute cerebral ischemia is associated with an in-

creased extracellular dopamine accumulation103.
Wang et al22 have demonstrated that propofol atten-
uated dopamine accumulation in the striatum in rat
model of temporary MCAO. Moreover, Propofol
suppressed the ischemia-induced increase in circu-
lating catecholamines to baseline levels during in-
complete cerebral ischemia61. Propofol may inter-
fere with Na+ influx through voltage-dependent
Na+ channels and inhibit neurotransmitter
release104, including reducing catecholamine secre-
tion in the adrenal medulla and, probably, in the
sympathetic nervous system105. Attenuation of cat-
echolamine may be one of mechanisms of the neu-
roprotective property of propofol.

The mitochondrial mechanisms involved in
neuroprotective effects of propofol may be relat-
ed to its preventing the increase in neuronal mito-
chondrial swelling14, which is demonstrated in an
in vitro model of cerebral ischemia by Adembri
et al14. Uncontrolled opening of the mitochondri-
al permeability transition pore (mPTP) may lead
to mitochondrial swelling during ischaemia-
reperfusion injury106. It is now considered that
propofol-induced closure of the mPTP is the un-
derlying effector mechanism that is responsible
for neuroprotection106. The data illustrate that
propofol mitigated the isoflurane-induced mPTP
opening in the H4-APP cells and may ameliorate

the isoflurane-induced neurotoxicity by inhibit-
ing its mitochondrial dysfunction80.

Delayed rectifier potassium current (I(K)) was
reported to be closely related to neuronal
damage107. A study show that propofol inhibited
I(K) via the activation of PKC epsilon in rat cere-
bral parietal cortical neurons108 and exert its neu-
roprotective effects.

Transcription factor c-Jun affects neuronal
cell death and survival in mammalian brain109.
There is a study showed that inhibition of c-Jun
activity is involved in the neuroprotective effects
of propofol on glutamate-induced injury in neu-
ronal PC12 cells110.

He et al29 reported that propofol may up-regu-
late metallothionein-3, a growth inhibitory factor
that exhibit neuroprotective effect in the CNS in
vivo, and play a protective role in hypoxia/re-
oxygenation model on hippocampal neuron cells
in vitro.

The cAMP response element-binding protein
(CREB) was proposed that its phosphorylation (P-
CREB) constituted a convergence point involved
in neuroprotection111. Propofol could significantly
inhibit the decrease of P-CREB level in peri-in-
farct region, which is involved in high dose propo-
fol-induced neuroprotection of MCAO mice112.

Ischemic depolarization about the infarction
triggers a cascade of biochemical events that play
an important role in cerebral injury113, prolonging
the onset or shortening the duration of which
may reduces neuronal damage. Kobayash et al’s
study60 showed that propofol reduced duration of
ischemic depolarization in 2-vessel occlusion
model of gerbils.

Basic fibroblast growth factor (bFGF) is a
polypeptide with potent trophic and protective ef-
fects on the brain and has been reported to exert
neuroprotection against a wide variety of insults,
including ischemic neuronal injury114,115. In a
model of MCAO, post-ischemic administration
of propofol provides neural protection from cere-
bral I/R injury. This protection may be related to
an early increase in the expression of bFGF116.

As mentioned above, propofol might regulate
various neuroprotection-associated proteins or
ion homeostasis to act its neuroprotective effects,
which are far from clarification and deserve fur-
ther exploration.

Clinical Evidence
Propofol appears to have the same neuroprotec-

tive properties with other general anesthetics117-119,
although they have distinct molecular mechanisms
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of action. As far as we know, there have been no
clinical studies to determine that propofol is more
neuroprotective than other general anesthetics in
the clinical setting, and even clinical studies
showed that propofol may be inferior to other
anesthetics. For example, a preliminary study of
20 patients120 showed that propofol appeared to of-
fer no advantage over isoflurane for cerebral pro-
tection during cardiopulmonary bypass. Another
randomized controlled trial121 demonstrated that a
sevoflurane-based anaesthesia was associated with
better short-term postoperative cognitive perfor-
mance than propofol. However, propofol, as an in-
travenous sedative-hypnotic agent, has effects of
reducing cerebral blood flow122,123, cerebral meta-
bolic rate dose-dependently, and intracranial pres-
sure, which is already in use clinically in neuro-
surgical anaesthesia124, and now also widely used
for the sedation of patients in the intensive care
unit. It is difficult to draw conclusions to recom-
mend propofol for clinical use as a neuroprotec-
tant per se, but it might play an important role in
the so-called multimodal neuroprotection36. There-
fore, it will be necessary to further explore the
neuroprotective potential of propofol clinically.

Conclusions

As shown here, accumulating experimental ev-
idence has clearly revealed that the intravenous
anaesthetic propofol is an efficacious neuropro-
tective agent. Although, some studies showed
that propofol has no neuroprotective properties
and even yielded contradictory results125-128. This
inconsistency could be due to the types of mod-
els, the concentration126, dose and timing of ad-
ministration of drugs129. The exact mechanisms
of propofol’s neuroprotection will be required
further investigations. More importantly, the in-
vestigators working in propofol-related field
should pay more attention to the clinical patients
of acute cerebral injury, cerebral ischemia, neu-
rosurgical operations, cerebral protection of re-
suscitation, traumatic brain injury and intracra-
nial space occupying lesions, for whom the re-
search is being conducted.
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