
Abstract. – BACKGROUND: MicroRNAs (miR-
NAs) play an important role in the regulation of
cell growth, differentiation, apoptosis, and car-
cinogenesis. Deregulated miRNAs are found in
blood cells of cancer patients recently.

AIM: This study aims to screen the differen-
tially expressed miRNAs (DE-miRNAs) which
could discriminate lung cancers from non-can-
cerous lung tissues as well as molecular signa-
tures that differ in tumor histology.

MATERIALS AND METHODS: miRNA expres-
sion profiles of GSE17681 was downloaded from
Gene Expression Omnibus database. Three test
methods were used to identify DE-miRNAs be-
tween lung cancer tissue and healthy controls.
Target genes of DE-miRNAs were retrieved from
three databases and mapped to KEGG to investi-
gate their roles in lung cancer. Further, a protein-
protein interaction (PPI) network was construct-
ed used STRING and Cytoscape.

RESULTS: A total of 17 DE-miRNAs were identi-
fied. Among them, hsa-miR-339-5p draw specific
attention. Pathway analysis revealed that target
genes of RASSF1 and KRAS play roles as onco-
gene or tumor suppressor gene in the progression
of lung cancer. Besides, Target genes of RASSF1
and ERBB4 formed a module in the PPI network.
Functional analysis suggested biological process
of response to hypoxia was significantly enriched.

CONCLUSIONS: hsa-miR-339-5p play impor-
tant role in the regulation of lung cancer and it
may be potential to be used as biomarker to
predict lung cancer progression.
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Introduction

Lung cancer is the most common cause of
cancer-related death in both men and women
worldwide1. The five-year survival rate is the
lowest of all cancer types2. The lung cancer is so
difficult to be discovered that most of patients are
at late stage when diagnosed3. Therefore, it is
necessary for us to find new biomarkers to detect
this disease in early stage.

MicroRNAs (miRNAs) are a type of small non-
coding single-stranded RNAs with length of 20-25
nt typically4. Due to their function as regulator of
gene expression, they play key roles in
physiological and pathological process5,6. MiRNA
expression is deregulated in cancer by a variety of
mechanisms including amplification, deletion,
mutation, and epigenetic silencing. Several studies
have now shown that miRNAs are involved in the
initiation and progression of cancer7.

The miRNAs could be used to as a valuable
tool in cancer diagnosis. Pioneering studies using
miRNA microarray analysis8 identified statistical-
ly unique profiles, which could easily discrimi-
nate cancers from noncancerous tissues. Indeed,
miRNA expression profiles were more informa-
tive than traditional mRNA profiling. Thus, the
profile of only 200 miRNAs was sufficient to
classify poorly differentiated tumors in a recent
study9, with greater accuracy than a profile of
16,000 mRNAs. Another study10 has achieved al-
most perfect accuracy in classifying the tissue ori-
gin of 400 tumor samples from 22 different tumor
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Predicting target genes of DE-miRNAs
This analysis used the three most popular data-

bases: TargetScan15, miRanda16 and PicTar17 to
predict target genes of DE-miRNAs. To reduce
the false positive results, the genes predicted by at
least two of these three databases were selected as
DE-miRNA targets for subsequent analysis.

Network analysis and functional
annotation

The STRING (Search Tool for the Retrieval of
Interacting Genes)18 database provides both experi-
mental and predicted interaction information. Ver-
sion 9.0 of STRING covers more than 1100 com-
pletely sequenced organisms. To identify the
interactive relationships among target genes or other
genes, we mapped the target genes of DE-miRNAs
to STRING. Then, Cytoscape software19 was used to
visualize these relationships and mined modules.

The DAVID (Database for Annotation,
Visualization and Integrated Discovery) provides a
comprehensive set of functional annotation tools
for investigators to understand biological meaning
behind large list of genes20. In this study, we used
the DAVID to annotate the function of genes in
module. We selected the GO terms with adjusted
p-value less than 0.05 and count larger than 2.

Pathway analysis
The target genes of DE-miRNA were further

put into the KEGG database to identify the
enriched pathways in lung cancer based on hy-
pergeometric distribution, The count number
lager than 2 and adjusted p-value less than 0.05
were chosen as cut-off criterion.

Results

Identification of DE-miRNAs
Due to various reasons, such as efficiency of

RNA extraction, reverse transcription, label
incorporation, exposure, and spot detection21, the
original microarray data maybe systematically
biased. Therefore, we performed data preprocessing
first. From Figure 1, we could find that the fluctua-
tions after normalization were less significantly
than that before normalization.

To obtain a result with high confidence, we
analyzed the miRNA expression data by three sta-
tistical tests, and then the overlapping miRNAs
from these three tests were selected for further
analysis (Figure 2). At an adjusted p-value of 0.05,
17 miRNAs showed significant differential
expression (Table I).

tissues and metastases. These findings demon-
strate the effectiveness of miRNAs as biomarkers
for tracing the tissue of origin of cancers of un-
known primary origin, a major clinical problem11.

The aim of the present study is to identify the
miRNAs which may play important regulatory
role in the progression of lung cancer and
analyze their functions in the progression.
Using three test methods (wilcox-test, t-test and
exact-test) to deal with the raw data, we got the
credible data of differentially expressed
miRNAs (DE-miRNAs). Then, we drew an
interaction network through STRING and
Cytoscape. Our findings support the idea that
miRNA expression was desregulated in blood
cell of cancer patients compared with that of
healthy individuals. Furthermore, we provide
evidence that miRNA patterns can be used to
detect human cancers from blood cells.

Materials and Methods

Microarray data
The miRNA expression profile of GSE 17681

was downloaded from the Gene Expression
Omnibus (GEO) database, which was deposited
by Keller et al12. we got the expression data of
miRNA: GSE17681, whose test purposes were
peripheral blood expression of lung cancer’s
samples and normal cells’ samples. The
expression profiles of 866 miRNAs in 17 blood
samples of patients with lung cancer and in 19
blood samples of healthy controls were
available. We downloaded the original CEL files
and the platform probe annotation information
file for the next step of bioinformatics analysis.

Identification of differentially expressed
miRNAs (DE-miRNAs)

The raw data were transformed into identifiable
expression measures, and then the missing part of
the data was filled13. Robust multiarray average
(RMA) was used to perform background
correction and quartile data normalization with
defaulted parameters in R affy package14.

Three tests: t test, Wilcox test and Fisher exact
test were used to identify DE-miRNAs between
lung cancer patients and healthy controls,
respectively. The p-value adjusted by the
Benjamin and Hochberg (BH) method of 0.05
was used as the cut-off criterion. Then we select-
ed the miRNAs which could be captured by these
three methods as the final result.
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Target genes prediction
Because miRNAs play roles in post-

transcriptional regression by targeting mRNAs,
we retrieved the putative target genes of DE-
miRNAs from three databases and selected the
target genes retrieved by at least two databases.
We found target genes of six DE-miRNAs were
associated with lung cancer, including hsa-miR-
339-5p, hsa-miR-423-3p, hsa-miR-19a, hsa-
miR-151-3p, hsa-miR-324-3p and hsa-miR-29b
(Table II). Among them, the hsa-miR-339-5p
had the largest number of target genes that
related with lung cancer.

Pathway analysis
The target genes of DE-miRNAs were

performed pathway enrichment using KEGG path-
ways to find the pathway of lung cancer. Figure 3
shows the distribution of target genes in the
pathway of non-small cell lung cancer. The genes
plus red were target genes. We could see that the
predicted target genes: RASSF1 and KRAS play
key roles as oncogene or tumor suppressor gene in
the progression of lung cancer (Figure 3).

Interaction network construction and
module analysis

We mapped the target genes of all DE-miRNAs
to STRING database and screened the significant
interactions with confidence score larger than 0.8.
Then an protein-protein interaction (PPI) network
was constructed by Cytoscape (Figure 4A).

Figure 1. Boxplot shows the difference between before and after normalization. After normalization, the expression was dis-
tributed between 0.3 and 0.5.

The PPI network may aid in understanding the
molecular mechanism of lung cancer, however, it
contains so many nodes and interactions, which
is hard to draw the useful information for us.
Therefore, we mined the modules in the PPI
network using Cytoscape (Figure 4B). In this
module, the target genes of DE-miRNAs,
RASSF1 and ERBB4 were involved. Functional
analysis revealed that the genes in this module
could enriched into 41 functional GO terms (the
top 10 significant terms are showed in Table III).
Among these functional nodes, the most
significant GO category is response to hypoxia
(FDR = 2.00E-02). The target genes of RASSF1
and ERBB4 were involved in GO categories of
negative regulation of biological process,

Figure 2. VENN figure shows the number of differentially
expressed miRNAs identified by the three test methods. The
intersection of the 3 parts was selected for further analysis.
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progression of lung cancer. By retrieving the
target genes of the DE-miRNAs from three
widely-used databases, we found target genes of
six DE-miRNAs were associated with lung can-
cer. Through PPI network construction and
module analysis, target genes of RASSF1 and
ERBB4 were formed a module in the progression
of lung cancer. Functional analysis showed the
module was most related with oxygen response.

negative regulation of cellular process, regulation
of cellular process, and regulation of biological
process.

Discussion

In this study, we found 17 DE-miRNAs that
may play important regulatory role in the

1512

Figure 3. The KEGG pathway map of non-small cell lung cancer. The genes marked gray represent target genes of differen-
tially expressed miRNAs.

MiRNA t-test wilcox-test exact-test logFC

hsa-let-7e 0.017128 0.019364631 0.048314 -1.1692
hsa-miR-18a* 0.000715 0.001227822 0.014645 1.400385
hsa-miR-19a 0.001217 0.000975057 0.020934 1.322033
hsa-miR-324-3p 0.000211 0.00161427 0.044037 1.147487
hsa-miR-339-5p 3.71E-05 0.000125347 0.014757 1.400421
hsa-miR-361-5p 0.001429 0.00170178 0.024794 1.283974
hsa-miR-423-3p 0.000662 0.001170831 0.016045 1.380185
hsa-miR-93* 0.000144 0.000182898 0.005093 1.617376
hsa-miR-98 0.015294 0.002608095 0.008583 -1.57124
hsa-miR-126 0.077809 0.027500805 0.042787 -1.20017
hsa-miR-140-3p 0.003054 0.029932099 0.09577 0.943873
hsa-miR-22 0.00688 0.007377646 0.156253 0.80017
hsa-miR-423-5p 0.037698 0.038326302 0.278657 0.607389
hsa-miR-604 0.005902 0.004333637 0.114741 0.894142
hsa-miR-574-5p 0.096829 0.049428098 0.356751 0.51585
hsa-miR-675 0.129957 0.044937283 0.22132 0.68868
hsa-miR-939 0.096335 0.032540417 0.104941 0.919219

Table I. The differentially expressed miRNAs from the three tests.
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regulator in the lung cancer procession23,24. In this
study, hsa-miR-339-5p had the largest number of
target genes that related with lung cancer. Ueda
suggested that Dicer is responsible for the
generation of the mature miR-339, which suppress
intercellular cell adhesion molecule-1 expression on
tumor cells, thereby down-regulating the
susceptibility of tumor cells to cytotoxic T-
lymphocytes-mediated cytolysis25. Besides, Wu et
al showed that miR-339-5p could significantly

The expression of 6 DE-miRNAs, including hsa-
miR-339-5p which we screened could be used as
biomarkers to monitor cancer progression and
early diagnosis.

The pathogenesis of cancer and its associated
genes has been the object of medical workers, and
lung cancer due to its low survival rate and got
more attention22. Recently reports on lung cancer-
related miRNA are more and more. such as MiR-7
and miR-133 have been specified as an important

Sources
miRNA Diseases Target Gene TargetScan miRanda PicTar

hsa-miR-339-5p NSCLC RASSF1 √ √ √
lung cancer ARHGEF11 √ √
lung cancer CAMKK1 √ √
lung cancer CDKN1A √ √
lung cancer ERBB4 √ √
lung cancer MMP2 √ √
breast cancer, colorectal cancer,

lung cancer, stomach cancer MYLK2 √ √
breast cancer, colorectal cancer,

leukemia, liver cancer, lung cancer,
stomach cancer PTPRT √ √

lung cancer VEGFA √ √
bladder cancer, leukemia myeloid,
lung cancer CYP1A1 √

hsa-miR-423-3p lung cancer VEGFA √ √
bladder cancer, leukemia myeloid,
lung cancer NQO1 √

lung cancer NQO1 √

hsa-miR-19a bladder cancer, leukemia, lung cancer,
upper aerodigestive tract cancer KRAS √ √

lung cancer KRAS √ √
lung cancer ERBB4 √ √
lung cancer IGFBP3 √ √
breast cancer, cervical cancer,
colorectal cancer esophageal cancer,
lung cancer, stomach cancer CASP8 √

hsa-miR-151-3p bladder cancer, leukemia, lung cancer,
upper aerodigestive tract cancer TP53 √

hsa-miR-324-3p lung cancer MMP2 √ √

hsa-miR-29b breast cancer, colorectal cancer,
leukemia liver cancer, lung cancer,
stomach cancer PTPRT √ √

breast cancer, colorectal cancer,
lung cancer, stomach cancer MYLK2 √ √

lung cancer CAMKK1 √ √
lung cancer LEP √ √
lung cancer DNMT3B √ √

Table II. The target genes of differentially expressed MiRNA predicted by three databases.
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decrease tumor cell migration and invasion
capacity, which associated with downregulation of
BCL-6 expression in breast cancer cells26. Indeed,
altered expression of miR-339-5p has been reported
in several kinds of tumors, such as gastric cancer
and colorectal cancer27. Our result is consistent with
these previous studies that miR-339-5p play a role
in regulation of lung cancer progression.

Target genes of RASSF1 and ERBB4 were
formed a module in the PPI network constructed in
lung cancer, suggesting the important roles of these

two genes. RASSF1 (Ras association domain family
1) is located on chromosome 3p21.328,29 and
encodes at least eight different transcripts (RASSF1
A-H) under alternative splicing modalities30. Loss or
altered expression of this gene has been associated
with the pathogenesis of a variety of cancers, most
often include gene promoter methylation and loss of
heterozygosity, suggesting the tumor suppressor
function of this gene31-33. In addition, Pelosi et al34

suggested that RASSF1 has dual function as tumor
suppressor gene in all types of neuroendocrine
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GO-ID FDR Description Genes in test set

1666 2.00E-02 Response to hypoxia EPAS1|EPO|ARNT
48519 2.00E-02 Negative regulation of biological process COL18A1|SERPINF1|VHL|RASSF1|TIMP2|GSTP1|

EPO|ARNT
42127 3.45E-02 Regulation of cell proliferation COL18A1|VHL|TIMP2|EPO|ARNT
43193 3.45E-02 Positive regulation of gene-specific EPO|ARNT

transcription
48523 3.45E-02 Negative regulation of cellular process COL18A1|VHL|RASSF1|TIMP2|GSTP1|EPO|ARNT
50793 3.45E-02 Regulation of developmental process SERPINF1|VHL|TIMP2|TIMP3|GSTP1|ARNT
51244 3.91E-02 Regulation of cellular process COL18A1|NRG3|ERBB4|EPAS1|VHL|ITGB3|TIMP2|

TIMP3|AHR|ARNT|SERPINF1|RASSF1|
ITCH|SHC2|NRG2|GSTP1|EPO

32583 3.91E-02 Regulation of gene-specific transcription EPO|ARNT
50791 3.91E-02 Regulation of biological process COL18A1|NRG3|ERBB4|EPAS1|VHL|ITGB3|

TIMP2|TIMP3|AHR|ARNT|SERPINF1|
RASSF1|ITCH|SHC2|NRG2|GSTP1|EPO

6950 3.91E-02 Response to stress EPAS1|VHL|ITCH|ITGB3|AHR|EPO|ARNT

Table III. GO analysis of target genes (The top 10, FDR< 0.05).

Figure 4. A, Protein-protein interaction network construction. B, The module identified from the protein-protein interaction
network. The diamond nodes represent target genes of differentially expressed miRNAs. The round nodes represent their inter-
active genes predicted from STRING.
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tumors (NET) for RASS1A/E isoform and as
oncogene impairing patients’ survival for RASSF1C
isoform in high-grade NET.

ERBB 4 (Receptor tyrosine-protein kinase) is
a member of the Tyr protein kinase family and
the epidermal growth factor receptor subfamily.
This gene has a significant role in the growth and
survival of many types of human tumors35.
Mutations in this gene have been associated with
cancer36. Starr et al37 provide evidence that
ERBB-4 plays a significant role in human lung
cancer and may serve as a molecular target for
anticancer therapy.

Functional analysis showed that GO category of
response to hypoxia was significant desregulated
in lung cancer. Hypoxia is a common
phenomenon in human tumors, with most tumors
possessing lower oxygenation than their
corresponding tissue of origin38. An aggressive
phenotype has been associated with hypoxic
tumors, encompassing both the well-studied
resistance of poorly oxygenated cancers to
radiotherapy and chemotherapy as well as a
propensity for hypoxic tumors to exhibit increased
potential for invasion, growth, and metastasis39-42.
Our result suggests that hypoxia response play
important role in the progression of lung cancer,
which is consistent with previous studies.

Conclusions

We identified 6 DE-miRNAs which may play
important regulatory roles in the progression of
lung cancer. We suggested the expression profiles
of these DE-miRNAs in peripheral blood cells
have potential to be used as biomarkers to predict
cancer progression. However, further study will be
needed to verify the usefulness of these miRNAs
as biomarkers before used in the clinic.
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