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Abstract. – OBJECTIVE: Pseudomonas aeru-
ginosa and Klebsiella pneumoniae are the most 
pervasive and challenging agents of bacterial 
nosocomial infections. Previous studies indicat-
ed that the microbial biofilms formed by these 
bacteria may play important roles in their patho-
genesis and resistance to phagocytosis and an-
tibiotics. The aim of this study was to explore 
the anti-biofilm activity of culture supernatants 
of Salmonella enterica subsp. enteric serovar 
Typhimurium SL1344 and P. aeruginosa PA01 
against biofilms formed by P. aeruginosa PA01 
and K. pneumoniae KR3167, respectively. 

MATERIALS AND METHODS: Biofilm forma-
tion was quantified by crystal violet staining. A 
modified method was applied to separate plank-
tonic and biofilm-forming cells. The viable cells 
in the planktonic and biofilm phases were quan-
titated by viable plate count. Dual-species inter-
actions between P. aeruginosa PAO1 and Sal-
monella enterica subsp. enterica serovar Typh-
imurium SL1344 were investigated using differ-
ent cell density ratios.

RESULTS: Biofilm formation of P. aeruginosa 
PA01 was significantly inhibited by the heat re-
sistant components from the culture superna-
tants of Salmonella enterica subsp. enterica se-
rovar Typhimurium. Biofilm formed by K. pneu-
moniae KR3167 was also inhibited by the culture 
supernatants of P. aeruginosa PA01. The super-
natants obtained from planktonic cell caused 
greater biofilm reduction than those extracted 
from biofilm-forming cells.

CONCLUSIONS: This study is the first to re-
port that sterile crude supernatants extracted 
from the cultures of Salmonella enterica and P. 
aeruginosa significantly inhibited biofilm for-
mation of P. aeruginosa and K. pneumoniae, 
respectively. The active agents in the culture 
supernatants responsible for biofilm inhibition 
have not been determined yet. The culture su-
pernatants of Salmonella enterica and P. aeru-
ginosa should be further studied for their thera-
peutic potential to reduce biofilm formation pro-
duced by bacteria causing nosocomial infec-
tions.
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Introduction

Pseudomonas aeruginosa and Klebsiella 
pneumoniae KR3167 are aggressive opportu-
nistic pathogens that cause otitis media, bac-
teraemia, respiratory, urinary, and gastrointes-
tinal tract infections. Reports suggest they are 
responsible for less than 20%1 and 8%2,3 of all 
hospital-acquired infections, respectively. It is 
generally difficult to control P. aeruginosa and 
K. pneumoniae infections with conventional an-
tibiotics4,5. A microbial biofilm consists of com-
munities of sessile cells attached to each other 
and/or a substratum and embedded in a mixture 
of polymers6. The ability of bacteria to attach 
to various surfaces and form biofilms is an im-
portant aspect of virulence, especially in respi-
ratory infections. Biofilm-forming bacteria are 
widely distributed in the environment and can 
colonise specific sites. Streptococcus viridans 
causes endocarditic decay whilst P. aeruginosa 
inhabits the respiratory mucous membrane in 
cystic fibrosis (CF) patients7. Biofilms produce 
protective matrices that facilitate antibacterial 
resistance and evasion of the host immune re-
sponse. Moreover, biofilms promote bacterial 
persistence and dissemination8-10.

Biofilm-producing bacteria are resistant to the 
antibiotics tetracycline, ampicillin, gentamicin, 
and streptomycin, as well as to the oxidants 
iodine, ozone, and chlorine11. As a result, bio-
film-associated infections are rapidly becom-
ing untreatable and have substantially increased 
wound chronicity12,13. Moreover, 65-80% of all 
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microbial infections may be associated with bio-
films8,14. P. aeruginosa may also survive in bio-
films in the lungs of CF patients15,16.

The bacteria in biofilms are comparatively 
more resistant to multiple antibiotics than free 
cells. Consequently, novel therapeutic agents are 
required to control them8. One approach towards 
overcoming bacterial antibiotic resistance is to 
target quorum sensing (QS) systems or bacterial 
cell-to-cell communication rather than actually 
killing the bacteria. Blocking QS and hindering 
the ability of bacteria to communicate with 
each other may prevent the unified response 
triggered by QS17. Several synthetic and natural 
compounds have been administered to block 
QS systems in P. aeruginosa18. However, the 
few known compounds with intrinsic anti-QS 
activity are derived mainly from non-bacterial 
sources, such as halogenated furanones from the 
red alga Delisea pulchra19, young seedlings and 
seedling exudates of legume Medicago truncat-
ula20, and southern Florida marine algae, which 
produce compounds that inhibit signals from 
the bacterial molecules N-acyl homoserine lac-
tones (AHLs)21. One study22 demonstrated that 
essential oils and plant extracts of peppermint 
(Mentha × Piperita L.), coriander (Coriandrum 
sativum  L.), and anise (Pimpinella anisum  L.) 
had activity against S. aureus and E. coli bio-
films. Zhou et al18 used hordenine as a novel 
QS inhibitor and anti-biofilm agent against P. 
aeruginosa PAO1.

Bacteria often release signals that detect and 
react to the signals of other bacterial species in 
co-culture. Cell-free supernatants from plank-
tonic K. pneumoniae cultures exhibit anti-biofilm 
activity against most Gram-positive and certain 
Gram-negative bacteria23. Therefore, it may be 
possible to eradicate K. pneumoniae biofilms 
from medical devices and P. aeruginosa in the 
lungs of CF patients and on medical implants 
by using bacterial cell-free supernatants. A few 
studies23,24 on the anti-biofilm activity of cell-free 
bacterial cultures against K. pneumoniae and P. 
aeruginosa have been reported. Hence, the pur-
pose of this study was to explore the anti-biofilm 
activity of supernatants extracted from overnight 
cultures of Salmonella enterica subsp. enteric se-
rovar Typhimurium SL1344 against P. aerugino-
sa PA01 biofilm and the activity of supernatants 
derived from overnight cultures of P. aeruginosa 
PA01 against K. pneumoniae KR3167 biofilm. A 
wide range of biological interactions has been 
observed among microbes in biofilms and in 

dual-specie models24. Medically and environmen-
tally important biofilms may consist of various 
microbial species. Therefore, bacterial species 
interactions in a dual-species model comprising 
Salmonella enterica and P. aeruginosa were also 
evaluated. 

Materials and Methods

This study was designed to investigate the ef-
fects of antibiofilm products (secondary metabo-
lites) that are produced in overnight culture from 
and against the following Gram-negative bacte-
ria; (Klebsiella pneumoniae KR3167, Pseudomo-
nas aeruginosa PA01, and Salmonella enterica 
subsp. enteric serovar Typhimurium SL1344).  

Bacterial Strains
The bacterial strains used in this study were 

provided by the University of Leicester, UK. 
The K. pneumoniae KR3167 was supplied by Dr. 
Kumar Rajakumar. The P. aeruginosa PA01 was 
provided by the laboratory of Dr. Peter Andrew. 
The Salmonella enterica subsp. enteric serovar 
Typhimurium SL1344 was furnished by the labo-
ratory of Dr. Primrose Freestone. Lysogeny broth 
(LB) medium was used to grow the bacteria aer-
obically at 37ºC for ≤ 24 h.

Preparation of Bacterial Inocula for 
Phenotypic Characterization

All bacterial inocula were first normalized 
and standardised to OD600 = 0.1 to minimize er-
rors and avoid variations caused by differences 
in inoculum size and cell density. For this pur-
pose, standard inocula were initially prepared 
for all bacterial strains. After overnight incu-
bation at 37°C, each strain was pelleted by cen-
trifugation at 3,500 × g for 10 min and washed 
twice with phosphate-buffered saline (PBS). 
Each pellet was re-suspended in 1 mL PBS and 
adjusted to OD600 = 0.1 [105 colony-forming 
units (CFU) mL-1]. Fresh LB medium was in-
oculated at a 1:100 ratio. The cells were diluted 
to 103 CFU mL-1 for the biofilm formation assay 
and analysis of the anti-biofilm efficacy of the 
secondary metabolites in the bacterial culture 
supernatants.

Determination of Biofilm Formation
Biofilm formation was determined by crys-

tal violet staining as previously described25,26. 
This assay is quantitative and commonly used 
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to estimate biofilm formation in Escherichia 
coli25, Enterococcus faecalis26, Staphylococcus 
aureus27, Mycobacterium avium28, and K. pneu-
moniae29. Fresh LB medium was inoculated at 
1:100 to achieve a cell density of 103 CFU mL-1 

in 96-well flat-bottom polystyrene microplates.  
These were statically incubated overnight at 
37°C. The biofilms were assessed by removing 
the planktonic cells from the microplates, fol-
lowed by three separates washes with 200 µL 
PBS. The biofilm was dried at 25°C for 30 min, 
stained with 200 µL of 0.5% (v/v) crystal violet, 
and incubated at 25°C for 15 min. Excess crys-
tal violet was removed by washing the biofilm 
three times with PBS. The stained biofilm in 
each well was dissolved in 200 µL ethanol: ace-
tone (80:20) (v/v). Absorbances were measured 
at 595 nm in a microplate reader (Infinite F50; 
Tecan Group Ltd., Männedorf, Switzerland). 
Wells containing uninoculated medium served 
as controls to correct for the crystal violet that 
had bound to the plastic. The crystal violet bio-
film staining assay permitted the enumeration 
of the planktonic and biofilm-forming cells in 
all bacterial strains30.

Preparation of Supernatant from 
Planktonic and Biofilm-Forming 
Cell Cultures

Biofilms were prepared in 12-well micro-
plates as previously described26,31. A modified 
method was applied to separate planktonic and 
biofilm-forming cells30. The viable cells in the 
planktonic and biofilm phases were quantitated 
by viable plate count using the Miles method32. 
Cell-free sterile supernatants were prepared by 
inoculating a new LB medium with cells at a 
density equivalent to 103 CFU mL-1 superna-
tant. After overnight culture, the supernatants 
were sterilised by centrifugation at 3,500 × g 
for 10 min, filtered through a 2.5-µm acrodisc 
(Merck Millipore, Billerica, MA, USA), and 
stored at -20°C. To determine the bacterial 
supernatant activity and establish whether the 
signals were associated with proteinaceous or 
fatty acid secondary metabolites, each sterile 
supernatant was separated into two parts. The 
first part was inactivated by boiling for 2 min, 
whilst the second was used as a source of active 
secondary metabolites. The pH of each super-
natant was measured with a Jenway pH meter 
model 3510 (Cole-Parmer, Vernon Hills, IL, 
USA) to rule out any possible effects of over-
night cultures.

Determination of Supernatant 
Activity Against P. Aeruginosa PAO1 
and K. pneumoniae KR3167 Biofilms

Sterile supernatants extracted from Salmonella 
enterica subsp. enterica serovar Typhimurium 
SL1344 overnight cultures were used against P. 
aeruginosa PAO1 biofilms. To assess the effects 
of these supernatants on biofilm formation, sterile 
supernatants from each bacterial culture were 
evaluated by mixing or diluting them two-fold 
in fresh LB medium (1/2, 1/4, 1/16, 1/32, 1/64, 
and 1/128) and inoculating them with P. aeru-
ginosa PA01 at a 1:100 ratio. Biofilm formation 
in 96-well flat-bottom polystyrene plates was 
assessed by crystal violet staining as previously 
described 25,26. All experiments were performed 
in triplicate. For each plate, two rows of wells 
were used as controls. One contained sterile uni-
noculated LB, and the other contained sterile su-
pernatant. The viable bacteria were enumerated 
at the end of each biofilm formation assay as pre-
viously described32. Similar protocols were ap-
plied to determine the effects of the harvested P. 
aeruginosa PA01 supernatant on K. pneumoniae 
KR3167 biofilm formation. The supernatants of 
P. aeruginosa PA01 and K. pneumoniae KR3167 
were used against their own growth to rule out 
the possibility of biofilm inhibition caused by 
low nutrient availability or inhibitory factors in 
the medium.

Biofilm of Mixed Culture Interactions
Dual-species interactions between P. aerugino-

sa PAO1 and Salmonella enterica subsp. enterica 
serovar Typhimurium SL1344 were investigated 
using different cell density ratios of P. aerugi-
nosa PA01 (P) and Salmonella enterica subsp. 
enterica serovar Typhimurium SL1344 (S). Fresh 
LB medium was inoculated at 1:100 to achieve a 
cell density of 103 CFU mL-1. The inoculum ratios 
(10 µL added to 1,000 µL LB medium) were as 
follows: (S) 5 µL:(P) 5 µL; (S) 2.5 µL:(P) 7.5 µL; 
and (S) 7.5 µL:(P) 2.5 µL. After overnight incu-
bation at 37°C, biofilm was quantified by crystal 
violet staining as previously described.

Statistical Analysis
All assays were conducted at least in triplicate 

and repeated twice. Data were analysed by two-
way ANOVA and Tukey’s multiple-comparison 
test in GraphPad Prism v. 6 (GraphPad Soft-
ware, La Jolla, CA, USA). Data were expressed 
as means ± standard error of the mean (SEM). 
For all analysis, p-value < 0.05 was considered 
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statistically significant. Significance is defined 
as *p-value< 0.05, **p-value< 0.01, ***p-value < 
0.001, and ****p-value< 0.0001.

Results

Biofilm Formation Comparison
K. pneumoniae KR3167 formed the strongest 

biofilm followed by P. aeruginosa PA01, whereas 
Salmonella enterica subsp. enterica serovar Ty-
phimurium formed the weakest biofilm; (OD595: 
0.939 ± 0.05107, 0.6267 ± 0.05029 and 0.1102 ± 
0.01, respectively).

Effect of Supernatants on 
Biofilm Formation 

Several dilutions (1/16, 1/32, and 1/64) of su-
pernatants from an overnight culture of P. aeru-
ginosa PA01 significantly reduced biofilm forma-
tion produced by K. pneumoniae KR3167 (OD595: 
0.38 ± 0.02, 0.46 ± 0.04, 0.59 ± 0.05, respectively; 
p-value < 0.0001) compared to the positive con-
trol K. pneumoniae KR3167 in LB medium alone, 
(OD595: 0.93 ± 0.05), (Figure 1). On the other 
hand, the extracted supernatants from overnight 
culture of K. pneumoniae KR3167 failed to inhib-
it biofilm formed by P. aeruginosa PA01. Similar-
ly, Salmonella enterica subsp. enterica serovar 
Typhimurium SL1344 had no significant effect on 

biofilm formed by K. pneumoniae KR3167 (data 
not shown). Furthermore, several dilutions (1/4, 
1/8, 1/16, 1/32, and 1/64) obtained from the su-
pernatants of Salmonella enterica subsp. enterica 
serovar Typhimurium SL1344 significantly de-
creased biofilm formation of P. aeruginosa PA01 
(Figure 2). However, P. aeruginosa PA01 did not 
affect the biofilm formation of Salmonella enter-
ica subsp. enterica serovar Typhimurium SL1344 
(data not shown).

To investigate the heat tolerance and nature 
of the antibiofilm molecules, the supernatants of 
overnight bacterial cultures were exposed to boil-
ing. Various dilutions of boiled and non-boiled 
filter-sterilized supernatants of Salmonella enter-
ica subsp. enterica serovar Typhimurium SL1344 
were equally able to cause a significant reduction 
of biofilm formed by P. aeruginosa PA0. Boiled 
supernatant dilutions (1/4, 1/8, 1/16, 1/32, and 
1/64) reduced biofilm formation of P. aeruginosa 
PA01 (OD595: 0.22 ± 0.01, 0.23 ± 0.01, 0.26 ± 0.01, 
0.34 ± 0.02, 0.41 ± 0.02, and 0.59 ± 0.04, respec-
tively; p-value < 0.0001), (Figure 2). The same 
dilutions of non-boiled supernatants significantly 
reduced biofilm formation of P. aeruginosa PA01 
(OD595: 0.22 ± 0.01, 0.3 ± 0.01, 0.34 ± 0.01, 0.37 
± 0.008, 0.43 ± 0.01, and 0.56 ± 0.03, respective-
ly; p-value < 0.0001), (Figure 2). To examine 
the impact of supernatants on growth, the same 
dilutions of boiled and non-boiled supernatants 
of Salmonella enterica subsp. enterica serovar 
Typhimurium SL1344 did not affect the growth of 
P. aeruginosa PA01 (data not shown). Therefore, 
S. enterica exclusively inhibited the attachment 
of P. aeruginosa to the surfaces of polystyrene 
microplates.

Effects of Supernatants Extracted from 
Planktonic and Biofilm Former Cells 

To assess the origin of antibiofilm activity 
seen on the previous experiments, supernatants 
were extracted from planktonic and biofilm for-
mer cells and were evaluated against the biofilm 
formed by the same bacterial species. Since K. 
pneumoniae formed the largest amount of biofilm 
compared to P. aeruginosa and S. enterica in this 
study, supernatants of K. pneumoniae KR3167 
overnight culture were examined against its own 
biofilm. The results showed that the supernatants 
of K. pneumoniae KR3167 harvested from the 
planktonic cell stationary phase significantly re-
duced biofilm formation at three successive dilu-
tions (1/16, 1/32, and 1/64) (OD595: 0.212 ± 0.016, 
0.483 ± 0.014, and 0.747 ± 0.015, respectively, 

Figure 1. Effects of sterile supernatants harvested from 
P. aeruginosa PA01 on biofilm formed by K. pneumoniae 
KR3167. Biofilm formation was determined by crystal 
staining. Strains were grown in LB under static conditions 
in 96-well polystyrene microplates for 24 h. Biofilms were 
stained with 1% (v/v) crystal violet for 30 min. Data show the 
mean ± SEM of three independent triplicate experiments (n 
= 9) with significance evaluated using one-way ANOVA and 
Tukey’s multiple comparisons test (****p-value ≤ 0.0001).
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p-value < 0.0001), (Figure 3). On the other hand, 
the supernatants extracted from biofilm-forming 
cells also significantly reduced biofilm formation 

but exclusively at dilutions 1/16 and 1/32 (OD595: 
0.325 ± 0.042, and 0.629 ± 0.066, respectively, 
p-value < 0.0001) while no biofilm inhibition was 

Figure 2. Biofilm formation by P. aeruginosa PA01 in response to supernatant extracted from planktonic cells of Salmonella 
enterica subsp. enterica serovar Typhimurium SL1344. Strains were grown in LB alone and in LB mixed with boiled or non-
boiled supernatants under static conditions. Biofilms in 96-well polystyrene microplates were stained with 1% (v/v) crystal 
violet for 30 min. Data show the mean ± SEM of three independent triplicate experiments (n = 9) and significance was 
evaluated using the one-way ANOVA and Tukey’s multiple comparisons test (****p-value ≤ 0.0001).

Figure 3. K. pneumoniae KR3167 biofilm formation in response to supernatant extracted from planktonic and biofilm-
forming K. pneumoniae KR3167. Strains were grown on LB under static condition in 96-well polystyrene microplates for 
24 h. Biofilm was stained with 1% (v/v) crystal violet for 30 min. Data show the mean ± SEM of three independent triplicate 
experiments (n = 9), evaluated by one-way ANOVA and Tukey’s multiple comparisons test (****p-value ≤ 0.0001).
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seen at dilution 1/64 (Figure 3). Thus, the super-
natants obtained from planktonic cells caused 
greater biofilm reduction than the supernatants 
extracted from biofilm-forming cells of K. pneu-
moniae KR3167. In addition, the supernatants of 
P. aeruginosa PA01 and K. pneumoniae KR3167 
had no significant impact (p-value > 0.05) on 
their own growth (data not shown). Hence, the 
observed inhibition of bacterial biofilm is inde-
pendent of toxic waste accumulation and/or nu-
trient depletion in the culture medium.

Effects of Interspecies Interactions in 
Mixed Biofilms

An earlier study33 on interspecies interactions 
reported that diffusible signal factors from Steno-
trophomonas maltophilia promoted biofilm for-
mation in P. aeruginosa. To observe the effects of 
S. enterica on biofilm formation of P. aeruginosa 
PA01 in mixed culture, interspecies interactions 
between P. aeruginosa PA01 and S. enterica sub-
sp. enterica serovar Typhimurium SL1344 were 
investigated. After culturing at different cell den-
sities, relative to P. aeruginosa in a monospecies 
biofilm (0.571 ± 0.053), mixed-species interac-
tions between P. aeruginosa PA01 and S. enterica 
subsp. Enterica serovars Typhimurium SL1344 
demonstrated that the former significantly de-
creased biofilm formation (0.25 ± 0.04, 0.26 ± 
0.038, and 0.27 ± 0.045, respectively; p-value < 
0.0001) (Figure 4). 

Discussion

Various studies18,22-24 have reported the an-
ti-biofilm activity of certain bacterial superna-
tants and medicinal plant extracts against patho-
genic bacteria. However, this study has found, for 
the first time, that sterile crude supernatants were 
extracted from overnight cultures of Salmonel-
la enterica subsp. enteric serovar Typhimurium 
SL1344 and P. aeruginosa PA01 substantially 
inhibit biofilm formation of P. aeruginosa PA01 
and K. pneumoniae KR3167, respectively. P. 
aeruginosa and K. pneumoniae are opportunistic 
Gram-negative pathogens associated with lung 
inflammation in CF and ventilator-related pneu-
monias34-36. Approximately 80-95% of all patients 
with CF die of respiratory failure as a result of 
chronic bacterial infection and inflammation in 
the airway35. Several studies36-40 reported that the 
pathogenesis of P. aeruginosa and K. pneumoni-
ae depends on their ability to resist antibiotics, 

evade the immune system, and form biofilms. 
Biofilm is vital to the persistence of K. pneumo-
niae and P. aeruginosa in CF airways36-41. 

This study revealed that the extracted superna-
tants of P. aeruginosa PA01 significantly reduced 
biofilm formation produced by K. pneumoniae 
KR3167. The ability of P. aeruginosa to suppress 
biofilm formed by other bacteria may explain 
why this bacterium is a predominant lung patho-
gen in CF patients35. An earlier study reported 
that P. fluorescens and P. aeruginosa attenuated 
Candida albicans adhesion42. With regards to 
K. pneumoniae, this observation is in line with 
another study that demonstrated that whole cells, 
acid, and neutral supernatants of Lactobacillus 
fermentum CRL 1058 inhibited biofilm formation 
of K. pneumoniae43. The mechanism behind an-
ti-biofilm activity of P. aeruginosa supernatants 
could be related to its inhibition of cGMP sig-
naling which is essential for biofilm formation in 
K. pneumoniae36. Furthermore, the supernatants 
may also repress the genes regulating biofilm 
formation since P. aeruginosa supernatants have 

Figure 4. Biofilm formation in monocultures and mixed 
cultures with interactions between P. aeruginosa PA01, and 
Salmonella enterica subsp. Enterica serovars Typhimurium 
SL1344 in mixed biofilms. Strains were grown in LB under 
static conditions in 96-well polystyrene microplates for 24 
h. Biofilms were stained with 1% (v/v) crystal violet for 30 
min. LB was inoculated with 10 µL inoculum:1,000 µL LB 
1. Salmonella (S) 5 µL:5 µL (P) Pseudomonas. 2. Salmonella 
(S) 7.5 µL:(P) 2.5 µL Pseudomonas. 3. Salmonella (S) 2.5 
µL:7.5 µL (P) Pseudomonas. Data represent the mean ± 
SEM of three independent triplicate experiments (n = 9) and 
significance was determined using one-way ANOVA and 
Tukey’s multiple comparisons test (****p-value ≤ 0.0001).
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been shown to downregulate the genes associ-
ated with adhesion and biofilm formation of C. 
albicans42.

Importantly, Salmonella enterica subsp. Enter-
ica serovars Typhimurium SL1344 supernatants 
were able to significantly reduce biofilm formation 
of P. aeruginosa PA01. Interestingly, agents with 
efficacy against C. albicans biofilm were detected 
in the supernatants of S. enterica serovar Ty-
phimurium44. Previous investigations13,45,46 stated 
that aqueous extracts of certain medicinal plants 
have anti-biofilm and anti-QS efficacy against P. 
aeruginosa. In addition, an old study reported 
that biofilm reduction appeared to be dependent 
on the blockage of QS, which is important for P. 
aeruginosa pathogenesis in CF patients47. This 
study showed that biofilm reduction was signifi-
cantly greater in dual cultures of S. enterica se-
rovar Typhimurium and P. aeruginosa PA01 than 
it was in a culture of P. aeruginosa PA01 alone. 
Hence, strong interspecies interactions prevented 
biofilm development in P. aeruginosa. A study48 
on mixed bacterial species interactions concluded 
that Stenotrophomonas maltophilia significantly 
inhibited biofilm formation by Escherichia coli. 
In the supernatants of single or mixed bacterial 
cultures, one species releases anti-QS signals 
to possibly block the signals that regulate the 
communication of the second species. AHLs and 
autoinducer-2 (AI-2) signals may participate in 
bacterial QS. In a biofilm co-culture model, uni-
directional communication between P. aerugi-
nosa and B. cepacian was observed. The latter 
recognised the AHLs from P. aeruginosa, but 
the reverse was not the case34,48. In contrast, AI-2 
bi-directionally communicated between E. coli 
and Vibrio harveyi49. Biofilm reduction seen by 
both boiled and non-boiled supernatants suggests 
that the inhibitory signals do not arise from struc-
tural proteins. Davies and Marques50 discovered 
that P. aeruginosa produces the unsaturated fatty 
acid, cis-2-decenoic acid, during growth and that 
this substance reduces biofilm formation in a 
wide range of bacteria. Other studies demonstrat-
ed that Stenotrophomonas maltophilia produces 
DSF fatty acids that modulate biofilm formation 
by P. aeruginosa and E. coli33,48. The putative 
biofilm inhibitors in certain bacterial superna-
tants might be lipopolysaccharides, exopolysac-
charides, or other lipid molecules42.

The present study also demonstrated that super-
natants of planktonic cell caused greater biofilm 
reduction than those supernatants extracted from 
biofilm-forming cells. This could be due to physio-

logical differences between sessile and planktonic 
cells of bacterial species. Heffernan et al51 suggest-
ed that the biofilm performance and planktonic 
cells of Pseudomonas fluorescens DSM 8341 are 
variable in utilising fluoroacetate, glycolate, and 
degradation of xenobiotics. Further differences 
have been reported in protein profiles of biofilm 
and planktonic cells of P. aeruginosa in both sta-
tionary and exponential growth phases52. 

Since Maldonado et al43 reported that the high 
lactic acid levels in Lactobacillus fermentum 
CRL1058 supernatant inhibited Klebsiella pro-
liferation in mixed cultures. However, this study 
eliminated the possible influences of the bacteri-
cidal effects of supernatants and the changes in 
media pH on biofilm formation by the culture su-
pernatants and/or interactions between bacterial 
strains. Moreover, the lack of growth-inhibiting 
metabolites in the P. aeruginosa and S. enterica 
serovar Typhimurium supernatants suggests the 
presence of certain novel agents displaying effi-
cacious properties against K. pneumoniae and P. 
aeruginosa biofilms. Signal mimicry and degra-
dation interrupt bacterial QS, which, in turn, in-
hibits downstream virulence and downregulates 
biofilm genes53. Biofilm production may also be 
suppressed either by a secreted metabolite or 
alterations in nutrient and/or macromolecule lev-
els42. Nutrient competition and metabolism play 
essential roles in interspecies interactions48. QS 
controls microbial communication by modulating 
virulence factors and biofilm formation54,55. One 
approach towards overcoming antibiotic resis-
tance is to target bacterial QS systems rather 
than killing the bacteria themselves17. For these 
reasons, the finding of this study could aid in 
identifying a novel agent that can target bacterial 
abilities to communicate and to form biofilm 
through interfering with their QS system.

Conclusions

This study has revealed that a crude bacterial 
culture supernatants alone were sufficient to sup-
press the biofilm formation of well-known patho-
genic bacteria like P. aeruginosa and K. pneu-
moniae. The impact of such microbial entities on 
other organisms forming a biofilm on biological 
surfaces or indwelling medical devices might be 
of great prophylactic and therapeutic values. The 
novel molecules within supernatants of P. aerugi-
nosa and S. enterica could be utilized to control 
K. pneumoniae and P. aeruginosa colonisation in 
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CF patients. Further investigations are required 
to identify the anti-biofilm molecules, which may 
potentially be anti-QS signals. It is also essential 
to elucidate the molecular mechanisms by which 
superannuants of certain bacterial species can re-
press or downregulate genes encoding for another 
bacterial biofilm formation.
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